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Abstract— In this paper, the problem of tracking and
managing the identity of multiple targets in a cluttered
environment is discussed and applied to passive radar tracking
of aircraft. The targets are assumed to be hybrid systems. We
propose a filter based on joint probabilistic data association
for target-measurement correlation combined with an identity
management algorithm [1] and an algorithm that we have
developed in earlier work [2] for hybrid state estimation.
The Multiple-Target Tracking and Identity Management al-
gorithm, also incorporates suitable local information, when
available, in a manner that decreases the uncertainty, as
measured by system entropy. In situations in which local
information is not explicitly available, a version of local
information incorporation based on multiple hypothesis testing
is included to improve identity management. The algorithm
allows us to track multiple targets, each capable of multiple
modes of operation, in the presence of interference which could
be both noise in the continuous processes as well as in the form
of spurious measurements.

I. I NTRODUCTION

The multiple-target tracking problem deals with correctly
tracking several targets given noisy sensor measurements;
the identity management problem tries to associate target
identities with the state estimates available. Application of
these problems includes tracking in sensor networks [1]
and multiple-aircraft tracking [3]. As an example of the
latter, the current Air Traffic surveillance system uses data
from radar measurements to track aircraft. In spite of a
substantial improvement in technology, the radar system
is still vulnerable to several problems, such as extraneous
measurements from clouds, birds and other objects, as
well as “phantom” blips [4], [5]. Another issue that poses
danger is the growing number of general aviation aircraft.
These aircraft do not transmit their identities unless their
transponders are switched on, and even then, the transpon-
ders may be problematic [6]. Since Air Traffic Controllers
are instructed not to issue orders to aircraft unless they are
certain of their identity [7], it becomes essential that they
have access to reliable track data with identities, so that
they can maintain safety.

Given a radar system (or a network of sensors), in
addition to the continuous state measurements, local sensor
information about identities is often available. In the case of

radar systems, this information may be derived from either
the physical attributes of an aircraft or from establishment
of communication with one of the aircraft. In our previous
work [8], we proposed the Multiple-Target Tracking and
Identity Management (MTIM) algorithm, which is a com-
bination of the Joint Probabilistic Data Association (JPDA)
algorithm [4] in which a target’s kinematic information
(position and velocity) is used for associating measurements
with targets, and the Identity Management (IM) algorithm
for sensor networks [1]. MTIM utilizes target attribute
information from local sensors to correctly maintain target
identity. In [8], we assumed there were no extraneous
measurements.

In reality, the MTIM problem could be complicated by
several shortcomings in the quality of available information
about the targets. The surveillance system may have mea-
surement errors, and may even miss measurements entirely.
In certain environments, the surveillance system may also
measure extraneous signals, known as clutter. The behavior
of the targets also adds complexity to the problem: many
targets may be interacting in a small spatial region, and
these interactions increase the uncertainty in what is being
measured. These issues motivate the extension of the MTIM
algorithm to cluttered environments.

Tracking multiple targets in clutter involves the prob-
lem of associating measurement data with targets [4],i.e.,
computing the probability of a given measurement having
originated from a given target. To compute these data
association probabilities, we propose a modified version
of the JPDA algorithm which works for the large number
of measurement-target associations computationally effi-
ciently. Assignment algorithms have been used to choose
the correct measurement-target correlations among all pos-
sible ones [9], [10]. However, these assignment algorithms
select measurements which are close to expected target po-
sitions without considering measurement-target correlation.
Therefore, they lose the advantages of the JPDA algorithm
which considers all possible correlations between measure-
ments and targets. Thus, we propose a data association
algorithm which considers measurement-target correlations
and uses theextended Munkres algorithm[11], [12] in order



to maximize the overall data association probability. We also
propose the use of a Multiple Hypothesis Testing (MHT)
algorithm ([13], [14]) to correct the identities of the targets
when targets are close and thus their identities are mixed.
This can be interpreted as a method of generating local
information in the system when such information is not
explicitly available.

This paper is organized as follows: Section II presents
the aircraft model for tracking and discusses the MTIM
algorithm, including the modified approximate JPDA, the
extended Munkres algorithm, and MHT for local informa-
tion incorporation. Section III presents a multiple-aircraft
scenario simulation as demonstration of the efficacy of the
MTIM algorithm. Finally, our conclusions are presented in
Section IV.

II. M ULTIPLE-TARGET TRACKING AND IDENTITY

MANAGEMENT (MTIM) ALGORITHM IN CLUTTER

In this section, we consider the problem of associating a
time series of measurements to the tracking and managing
of identity of one or more aircraft in the presence of clutter.

We model the dynamics of an aircraft as a stochastic
linear hybrid system with discrete-time continuous-state
dynamics:

x(k + 1) = Ajx(k) + wj(k)
z(k) = Cjx(k) + vj(k)

(1)

and a Markov transition model of the discrete state (mode)
given by:

P [j(k+1)|i(k)] = Hij i, j ∈ M = {1, 2, · · · , N} (2)

where x ∈ R
n and z ∈ R

p are the state and the output
respectively.M is the set of discrete states, or modes.
The termsw and v are respectively the mode-dependent,
uncorrelated, white Gaussian process noise and measure-
ment noise with zero means and covariancesQj and Rj .
Hij is the Markov mode transition probability from mode
i to mode j. This hybrid model is useful for tracking a
maneuvering aircraft since the trajectory of an aircraft is
composed of straight lines and circular arcs depending on
the flight mode of the aircraft. For example, if a single linear
(or nonlinear) continuous model is used for aircraft tracking,
the process noise covariance in the model has to be large in
order to account for model inaccuracy. This large process
noise covariance leads to poor state estimates. Hybrid
models with multiple modes that represent the flight regimes
(flight modes) of an aircraft could represent the dynamics
of the aircraft more accurately than one continuous model,
and thus each continuous model could have a small process
noise covariance that would give accurate state estimates.
The flight mode changes of an aircraft depend on the pilots
input which is usually unknown to the surveillance system.
This unknown pilot’s input makes the flight mode changes
of an aircraft nondeterministic and can be modelled as a
finite Markov process [15].

Given the above system parameters, hybrid estimation
requires estimating both the continuous state and the dis-
crete state at timek from the measurement sequence up to
time k − 1 (k = 1, 2, · · · ). The Residual-Mean Interacting
Multiple Model algorithm (RMIMM) ([2], based on [13])
is a hybrid algorithm which computes the state estimate
using a weighted sum of estimates from a bank of Kalman
filters matched to different modes of the system, and uses
information about the mean of the residual to improve
estimation performance. A detailed explanation of RMIMM
is provided in [2].

First, denoteẑ(k + 1|k) as the predicted measurement
of a specific target at timek + 1 using information up to
time k. Assume that the true measurement at timek + 1,
z(k + 1), conditioned on the measurement sequence up to
k (Zk), is normally distributed. Then, thevalidation gateis
defined as:

Ṽk+1(γ) := {z|r(k + 1)T S−1(k + 1)r(k + 1) ≤ γ2} (3)

where r(k + 1) = z(k + 1) − ẑ(k + 1|k) is the residual,
S(k + 1) is its covariance, andγ is a design parameter
which determines the size of the validation gate. At each
time k + 1, all measurements that lie insidẽVk+1(γ) are
considered valid possibilities. The problem of associating
each validated measurement with an appropriate target or
identifying it as clutter and discarding it is known as data
association.

The MTIM algorithm approaches this problem using
the three main blocks shown in Figure 1 at each time
step. The first stage isData Association, which consists
of matching incoming measurements to the targets. Given
state estimates ofT targets from the previous time step
and L measurements from the current time step, theData
Associationblock is used to generate anL × T matrix of
association probabilities. Entries in this matrix represent the
probability of a given measurement having originated from
a given target. TheTracking/Hybrid State Estimationblock
of MTIM performs the tracking ofT targets in parallel.
At time k, the tracking algorithm for each target takes as
input the hybrid state estimate from the previous time step
k−1 and a single measurement from the current timek. The
measurement input comes from the Data Association block.
The hybrid state estimate comprises position and velocity
estimates, their covariances, and a flight mode estimate. The
output of the Tracking/Hybrid State Estimation block is the
hybrid state estimate at timek. The Identity Management
block takes as input the belief matrix from timek − 1
whose entries represent the probability that a given target
has given identity, and theL × T association probability
matrix. This block maintains identity information over time
given information about the interaction betweenT targets.
This information is stored in aT ×T identity belief matrix
B(k), wherek is the current time step. The matrix is doubly
stochastic; that is,

∑T

i=1 Bij(k) = 1, for j ∈ {1, . . . , T}
and

∑T

j=1 Bij(k) = 1, for i ∈ {1, . . . , T}. The evolution
of this belief matrix is governed by aT × T mixing matrix



M(k), which stores interaction information for a single time
step.Mij(k) represents the probability that targeti at time
k − 1 has become targetj at time k. The belief matrix is
updated according to the equation [1]:

B(k) = B(k − 1)M(k) (4)

The Identity Management stage outputs the belief matrix at
time k. The following sections discuss each structural block
and the algorithms used to implement the stages in detail.

   State Prediction

Measurement Validation/ 
     Association

 State Estimate Update  Belief Matrix Update

 Local Information
   Incoporation

Hybrid state estimates

N state predictions, residual covariancesMeasurements

Measurement assignments Mixing matrix Local Information

Data Association

Tracking/Hybrid 
State Estimation

Identity Management

Fig. 1. MTIM Block Diagram (single time step)

A. State Prediction

The State Prediction step, which generates an estimate of
the state at timek based only on the outputs of MTIM at
timek−1, is carried out for each of theT targets in parallel.
This is done using the RMIMM algorithm. The details
that follow refer to the procedure used for a single target.
This stage takes as input the continuous state estimates
x̂i(k − 1|k − 1), covariancesPi(k − 1|k − 1), and mode
probabilitiesµi(k−1), which is a measure of how probable
it is that the system is in modei, where i refers to the
mode of the target. The output of the block is a prediction
of the state and its covariance at timek without information
from time k. First, RMIMM combines the state estimates
from the different modes, resulting in new initial states
x̂0i(k−1|k−1) and covariancesP0i(k−1|k−1). These are
input to a set of Kalman filters, one for each mode, without
measurement inputs. The outputs of the Kalman filters are
state predictions

x̂i(k|k − 1) = Aix̂0i(k − 1|k − 1), (5)

covariances

Pi(k|k − 1) = AiP0i(k − 1|k − 1)AT
i + Qi, (6)

and residual covariances

Si(k) = CiPi(k|k − 1)CT
i + Ri, (7)

The mode estimatêm(k−1) from the previous time step is
used to obtain a single continuous state predictionx̂(k|k−1)
and a single residual covarianceS(k). Because the predicted
state is assumed to have a Gaussian distribution, the state
prediction is the mean (center) of the validation gate of the
target, while the residual covariance is the covariance of
the validation gate.S(k) is also supposed to be used to
determine the size of the validation gate, according to (3).
However, when a target changes modes (starts a maneuver),
the Kalman filter overestimates its confidence in its state
estimate, which results in a smallerS(k) than is appropriate.
Often, the measurement of the maneuvering target does not
fall inside its validation gate; as a result, the size of the
validation gate must be increased. This increase is obtained
by increasing the state covarianceS with an additional term
that compensates for the additional uncertainty about the
maneuvering target. This additional term is related to the
state velocity estimatêv according to the expression

Sextra = τ2v̂v̂T + ν2v̂⊥v̂⊥
T , (8)

where v̂⊥ is obtained by rotatinĝv by 90o in the counter-
clockwise direction. The effective residual covarianceS′ is
then equal to

S′ = S + Sextra. (9)

SinceSextra is positive definite, the region covered by the
validation gate created fromS′ is larger than that created by
S, as shown in Figure 2. In this figure, the smaller ellipse
is the validation gate as determined byS, while the larger
ellipse is that determined byS′. The extended validation
gate is longer in the cross-track direction to account for
the likelihood of targets maneuvering to either side of
their expected track. The constantsτ and ν are chosen
empirically to ensure that maneuvers are extremely unlikely
to lead to measurements outside validation gates; the cross-
track termν is chosen to be larger than the along-track term
τ . The additional termSextra is related to velocity because
errors in track due to a maneuver will be directly related to
the velocity of the target. Thus, the outputs from the first
block are state prediction̂xt(k|k − 1), residual covariance
St(k), and effective residual covarianceSt′(k) for targett.
There areT sets of outputs, one set for each target. The
effective residual covarianceS′ is used for measurement
validation only.

B. Measurement Validation/Association

Thus, the measurements are tested in validation gates
defined in (3) withS(k) replaced with the effective residual
covarianceS′(k). The Joint Probabilistic Data Association
(JPDA) algorithm can be used to chooseT measurements
and generate aT × T mixing matrix M(k). However, in
order to deal with many targets in clutter with good accu-
racy, in this section, we develop a Modified Approximate
JPDA (MAJPDA) to generate the mixing matrix.

The Approximate JPDA (AJPDA) algorithm is a com-
putationally abbreviated version of JPDA [16]. Denote
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Fig. 2. Validation gates determined by the original residualcovariance
S and the effective residual covarianceS′ which accounts for the maneu-
vering uncertainty of a target.

the Gaussian probability density function of the residual
N [zj(k); ẑt(k|k − 1), St(k)] asGjt(k) where ẑt(k|k − 1)
denotes the predicted measurement for targett with an
associated residual covarianceSt. Thus,Gjt(k) is propor-
tional to the Gaussian likelihood function that represents
the closeness between targett and measurementj. We let

Pst(k) :=
∑

j

Gjt(k), Prj(k) :=
∑

t

Gjt(k) (10)

Then the association probability is defined as [16]

βjt(k) =
Gjt(k)

Pst(k) + Prj(k) − Gjt(k) + ζ
. (11)

Thus, (11) puts more weight on the target which does not
fall into the validation gates of any other targets.ζ is a bias
term set to 0 in most cases, including in this paper. The
data association algorithm can be described as follows:

Algorithm 1: Data Association

• Given: validated measurementszj(k) (j =
{1, · · · , L}) and targetst (t ∈ {1, · · · , T}) where
L ≥ T .

1) Modified Approximate JPDA (MAJPDA)

a) Compute theL× T association probability ma-
trix β′(k) = [β′

jt(k)] using (11).
b) Scaling: Find β(k) = SI(β′(k)) such that

∑L

j=1 βjt = 1 and
∑T

t=1 βjt = 1 where the
operatorSI represents the Sinkhorn scaling pro-
cess.

2) Assignment (extended Munkres algorithm): Find a
permutationΠ such that

maxΠ(t)

∑T

t=1 βΠ(t)t

subject to 1 ≤ t ≤ T, 1 ≤ Π(t) ≤ L
i 6= j ⇒ Π(i) 6= Π(j)

3) Mixing matrix: M(k) = SI(βΠ(t)t) for t ∈
{1, · · · , T}.

Step 1-a computes association probabilities between the
validated measurements and the targets. However, column

sums of the association probability matrix computed by
AJPDA might not be equal to 1, as in the case of JPDA.
Thus, the accuracy of AJPDA might not be good enough
for certain situations. To correct this and improve the
performance of data association, we propose a Modified
Approximate JPDA (MAJPDA) algorithm, which uses the
Sinkhorn algorithm ([17], [8]) to make the association
probability matrixβ(k) doubly stochastic (Step 1-b). There-
fore, MAJPDA keeps the essential characteristics of JPDA,
and thus outperforms AJPDA, with far less computational
complexity than JPDA, for tracking many targets in clutter.

Because there can be more measurements than targets in
a cluttered environment, there is a need to choose a subset
of the full association probability matrix as the mixing
matrix, which should be a square matrix [1]. The MAJPDA
algorithm entails both the determination of the association
probability matrix and the doubly stochastic, square mixing
matrix. In the no-clutter case, the mixing matrix is nothing
more than the doubly stochastic form of the association
probability matrix. However, for a cluttered environment,if
there areL measurements, then the association probability
matrix hasL rows andT (≤ L) columns. The mixing matrix
M(k) must still haveT rows andT columns. To chooseT
of theL rows, we use the extended Munkres algorithm [12],
which is an assignment algorithm which chooses the set of
T numbers with maximum sum from all sets ofN numbers
taken from aT × T matrix such that the numbers cover
every row and every column [11]. Bourgeois and Lassalle
extended this algorithm to rectangular matrices [12]. Thus,
for a L × T matrix, with L ≥ T , the extended Munkres
algorithm picksT elements from the matrix with maximum
sum so that these numbers coverT distinct rows and all
of the T columns (Step 2). This extension lends itself to
processing the data association probability matrix outputby
MAJPDA. TheT numbers chosen by the extended Munkres
algorithm constitutezt(k), which are theT measurements
assigned to theT targets to maximize the sum of association
probabilities. The assignment of measurements to targets is
a one-to-one correspondence between measurementj and
target t; that is, j is a function of t and vice-versa. The
T rows of β(k) representing these measurements form a
T × T matrix. The doubly stochastic form of this matrix is
the mixing matrixM(k) (Step 3). The mixing matrix and
measurement assignments are then passed to the Belief Ma-
trix Update and State Estimate Update blocks respectively.
The State Estimate Update block propagates the continuous
state, its covariance, and mode probabilities to timek. The
Belief Matrix Update blocks updates the belief matrix from
time k − 1 to time k using (4).

C. Local information incorporation

Local information is useful only if its use results in
the uncertainty of the belief matrix being reduced, where
uncertainty is measured as entropy (Shannon Information)
[8]. Entropy of the belief matrix is defined as a measure of
statistical uncertainty of the probability density of the iden-



−0.1 0 0.1 0.2 0.3
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x1(k−1)∧

x2(k−1)∧ x2(k)  ∧

x1(k)  ∧

x1(k+1)∧

x2(k+1)∧

z
b
(k)  

z
a
(k)  

z
d
(k+1)

z
c
(k+1)

distance [km]

d
is

ta
n

ce
 [
km

]

Aircraft A

Aircraft B

Fig. 3. State estimates (x) and measurements (o) for a two-aircraft
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tity of the T targets. From our earlier work [8], it has been
shown that local information that identifies one or more
targets with absolute certainty can always be incorporated,
since such information will never increase entropy. In this
paper, an additional source of possible local information
is presented. This set is automatically generated whenever
targets interact and the entropy increases significantly.
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Fig. 4. (a)-(d): Possible joint events in MHT. The solid arrows denote
the direction of movement of the targets. The dotted lines donot denote
distances, they give the association between the labels andthe points.

Without using extra sensors to get attribute information
about the targets to correct target identities, we propose to
use the Multiple Hypothesis Testing (MHT) algorithm to get
local (attribute) information about interacting targets.The
reason for using MHT is that it covers all possible target
identity hypotheses. MHT is used only when the minimum

diagonal element of the mixing matrix is below a threshold,
which we treat as a design parameter. The local information
comes from applying the MHT algorithm on track estimates
for two time steps. This information is useful in the situation
portrayed in Figure 3. In this figure, two aircraft cross
perpendicularly at timek. Their estimated positions are
marked with x’s, while the radar measurements are marked
with o’s. The expression̂xt(l) denotes the state estimate for
targett at timel. The measurementsza(k), zb(k), zc(k+1),
andzd(k+1) are indexed by letters to reflect that of possibly
many choices, two measurements were chosen by MAJPDA
at each time step to correspond to the two targets. Aircraft
A starts at the bottom left at timek−1 and moves to the top
right at timek+1, while Aircraft B starts at the top left and
moves to the bottom right. The assumption is that aircraft
A(or B) is Target 1(respectively, 2) with absolute certainty at
time k−1. That is, the belief matrixB(k−1) is the identity
[

1 0
0 1

]

. At time k, the two targets are close together

and almost equally likely to be associated with each of two
measurements. Assume the mixing matrixM(k), and thus

the belief matrixB(k) = B(k−1)M(k), is

[

0.51 0.49
0.49 0.51

]

at time k. At time k + 1, the aircraft have diverged, and
the validation gates of the two aircraft no longer intersect.
Thus, the mixing matrixM(k + 1) from MAJPDA is the
identity, and the belief matrixB(k + 1) = B(k)M(k +

1) remains at

[

0.51 0.49
0.49 0.51

]

. The MAJPDA algorithm

cannot differentiate between the two measurements at time
k; as a result, uncertainty in the belief matrix is essentially
maximum. This uncertainty remains even after the aircraft
separate. However, from the dynamics of the two aircraft,
it is clear that neither aircraft can execute a 90o turn in
one time step. Thus, the only possible outcome is that
aircraft A(B) remains associated with Target 1(2) and this
yields a belief matrix equal to the identity matrix, which
has minimum entropy.

The MHT algorithm is utilized to obtain a lower entropy
belief matrix than MAJPDA and standard Belief Matrix
Updates can achieve. This algorithm is discussed in detail in
[4], [14]. Given initial conditionŝx1(k−1) andx̂2(k−1), as
well as measurementsza(k), zb(k), zc(k+1), andzd(k+1),
there are four possible target-measurement matchings that
can occur; these are illustrated in Figure 4. Figure 4(a)
refers to the outcome chosen by MAJPDA, since Target 1
is assumed to have gone through measurementsza(k) and
zc(k + 1). Each plot in Figure 4 is a joint event made up
of four events represented by the line segments in the plot.
The likelihood of the joint event that each target chooses
its pair of measurements is the product of these individual
events. The result is four likelihoods for the four joint events
portrayed in the plots of Figure 4.

To determine belief, one is only interested in whether
Target 1 reaches the expected position of Aircraft A at
time k + 1 or not. Thus, the sum of the likelihoods from



Figure 4(a) and (c) is the likelihood that Target 1(2) remains
identified as Aircraft A(B); let this quantity be denotedL1.
The sum of the likelihoods from Figure 4(b) and (d) is the
likelihood that the targets swap identities; let this quantity
be denotedL−1. Because a 90o turn in one time step is not
allowed in the dynamic models of the aircraft,L−1 = 0.

The doubly stochastic version of the matrix
[

L1 L−1

L−1 L1

]

represents the mixing matrix for the

two aircraft between time stepsk − 1 and k + 1. This
matrix, a two-step mixing matrix, is denoted asΓ(k + 1).
For the example presented,Γ(k + 1) is the identity. Thus,
the belief matrix determined by MHT at timek + 1 is

B′(k + 1) = B(k − 1)Γ(k + 1) =

[

L1 L−1

L−1 L1

]

. The

resulting belief matrixB′(k + 1) is the identity, which has
lower entropy than theB(k + 1) from the standard MTIM
model. The local information can thus be incorporated
through the Belief Matrix Update block of MTIM.

Because there is no guarantee that automated MHT local
information will improve the entropy of the belief matrix,
it is only incorporated if this local information decreases
entropy. This automated local information and identity local
information are both handled by the Incorporate Local
Information block of the MTIM algorithm.

III. A PPLICATION OFMTIM TO MULTIPLE AIRCRAFT

FLYING IN CLUTTERED ENVIRONMENT

One of many scenarios where multiple aircraft are
interacting in a cluttered environment is presented be-
low to demonstrate the efficacy of the MTIM algorithm
in clutter. Measurement points are assumed to be made
available every 5 seconds. Measurement covarianceR is
[

(100)2 0
0 (100)2

]

, which means the standard deviation

of position error is100m in both dimensions. Process

noise is set to be

[

0.001 0
0 0.001

]

for straight flight

and

[

10 0
0 10

]

for turning mode. The above constants

are realistic values for aircraft in clutter and are taken
from [18]. Clutter is uniformly distributed in space and
Poisson distributed in number; the density of clutter points
is 0.5 ∗ 10−6 clutter points per square meter, or0.5 points
per square kilometer. The validation gate parameterγ is
set to 9.2, which would correspond to a 3σ confidence
level if residual covarianceS were used. The effective
residual covarianceS′ that is actually used is determined
with system constantsτ andν set to 3 and 6, respectively.
The threshold for initiating MHT is set to 0.75. In the
example, the target 1 is initially identified as Aircraft A,
2 as B, and so on.

The example shown in Figure 5 is an extreme (acrobatic,
not realistic for air traffic, but nonetheless interesting)
scenario where four aircraft fly at each other directly and
maneuver; this example is useful in understanding the
capabilities of MTIM. Figure 5 (top) shows a shot of the

radar screen including the entire flight data, but without
the trajectories explicitly indicated. This gives us an idea
of the clutter density, as well as how unclear the system
is, especially when the aircraft come close to each other.
Figure 5(center) displays the actual and estimated positions
of four aircraft following symmetric paths that first con-
verge, then maneuver around a common point, and finally
diverge. The dashed lines with dots as markers are the noisy
measurements from the targets. The solid lines with markers
as shown in the legend are the estimated positions found
by MTIM. The fainter dots interspersed throughout the plot
are clutter points. Aircraft A, B, C, and D fly with constant
velocity of 200 m/s. All turns are executed at3o/sec. Target
tracking is accurate except for overshoot when aircraft
start turning. Indeed, the dashed lines depicting the noisy
measurements are not clearly visible because the solid lines
depicting estimated target positions match them almost
exactly. Figure 5(bottom) displays the evolution of the belief
matrix in graphical form. The plots, from top to bottom,
show the probability that any aircraft is identified with
targets one through four, respectively. From this figure,
it is clear that the belief matrix is unchanged while the
aircraft are distant from and not interacting with each other.
When paths cross, the belief matrix is changed significantly
only if the measurements for both targets happen to nearly
coincide. For example, at time 30, targets 1 and 2 nearly
coincide, leading to the belief that both targets 1 and 2
are nearly 0.5 Aircraft A and 0.5 Aircraft B. However,
the automated MHT local information generated by this
interaction restores the belief matrix to nearly identity at the
following time step. At time 30, targets 3 and 4 also interact
with equally drastic loss of identity between Aircraft C and
D. Again, the local information restores the belief matrix
at the following time step. At time 32, targets 1 and 3
interact, with similar jump in belief matrix entropy followed
by belief matrix restoration from local information. Targets
2 and 4 also interact in the same fashion at time 32. The
scenario depicted in Figure 5 establishes the efficacy of the
MTIM algorithm in clutter.

IV. CONCLUSIONS

We have developed a Multiple-Target Tracking and Iden-
tity Management algorithm in a cluttered environment,
which can track and manage identities of multiple maneu-
vering targets simultaneously. This algorithm is composed
of three different blocks: Data Association, Tracking/Hybrid
State Estimation, and Identity Management. For data asso-
ciation, we have proposed a Modified Approximate Joint
Probability Density (MAJPDA) algorithm which can han-
dle many targets with low computational complexity, yet
possessing the main advantages of the standard JPDA algo-
rithm. For tracking multiple-maneuvering targets, we used
the Residual-Mean Interacting Multiple Model (RMIMM)
algorithm which gives better estimation performance than
IMM by using the mean of the residual computed by indi-
vidual Kalman filter. For identity management, we extended



the algorithm developed by the authors earlier work in [8]
to account for clutter.
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Fig. 5. Measurement points with clutter (top), aircraft trajectories (center)
and accompanying belief matrix plot (bottom).


