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Abstract— In this paper, we analyze the performance of es-
timation algorithms for discrete-time stochastic linear hybrid
systems. The problem of being able to estimate both the discrete
and continuous states of a hybrid system given only the contin-
uous output sequence is a difficult one, and while algorithms
[1], [2] exist for this purpose, little has been proved on the
limitations of these algorithms, or even the dependence of their
performance on system parameters. We find necessary condi-
tions to guarantee the convergence of these hybrid estimation
algorithms. We also derive expressions to determine bounds
on the discrete mode detection delay. These conditions also
provide a method to predict a priori which transitions in a
hybrid system are relatively easy to detect, as a function of
the system parameters. Finally, we validate our conditions and
predictions using first a simple yet illustrative 1-D example, and
then a more complex aircraft tracking example.

I. I NTRODUCTION

Many complex systems can be modeled by hybrid systems
with a number of discrete modes having different continuous
dynamics and discrete transition relations between the modes.
The objective of hybrid estimation is to estimate both the
mode and the continuous state of a hybrid system at any
given time. Hybrid estimators usually consist of the com-
bination of a bank of continuous state estimators (usually
Kalman filters), designed for the different discrete modes,
and a hypothesis testing (mode selecting) algorithm. The
class of hybrid estimators analyzed in this paper addressesa
very challenging problem – that of mode detection and state
estimation given only the continuous system output data. For
hypothesis testing, it is then necessary to use the differences
in statistical properties (such as mean and covariance) of the
outputs from the different Kalman filters to choose the most
likely mode.
Hybrid estimation algorithms have been developed for
discrete-time stochastic linear hybrid systems in which the
discrete transitions are governed by finite-state Markov
chains. The Multiple Model Adaptive Estimation Algorithm
(MMAE) [1] is an algorithm in which, for hypothesis testing,
the Kalman filter residuals are used to form likelihood func-
tions for the different modes, which are then used asadaptive
weightsto find the most probable mode. A refinement of the
MMAE, the Interacting Multiple Model Algorithm (IMM)
[2], mixes the initial conditions of each of the Kalman filters
at each time-step. The rationale behind this refinement was to
enable keeping information fromN2 discrete time histories

(where N is the number of discrete modes) with justN
Kalman filters. [1], [2], [3], [4] give various other hybrid
estimation algorithms and their applications.
While several researchers ([4], [5], [6], [7], [8], [9], [10],
[11]) have analyzed hybrid estimators for special classes of
systems, general analysis techniques for the performance of
hybrid estimation algorithms have not been investigated in
detail until now. Maybeck [1] gives qualitative reasons forthe
performance of hybrid estimators and adds that no rigorous
general proofs are available for the (asymptotic convergence)
properties of the hypothesis conditional probabilities. In this
paper, we attempt to remedy this situation and successfully
derive conditions under which the hybrid estimates converge
exponentially to the exact hybrid states. We determine nec-
essary conditions for mode detection, sufficient conditions
for instantaneous mode detection, and bounds on the mode
detection delay. The results of our analysis also provide
insight into determining which mode transitions aremore
detectable(faster convergence to true mode) than others and
also improving the performance of hybrid estimators. We
compare the performance of the MMAE algorithm with that
of the IMM algorithm which has been widely (and success-
fully) used in the area of multiple target tracking. We show
analytically why the IMM algorithm has better performance
than the MMAE. For brevity, we omit proofs – they are
available upon request.

II. D ISCRETE-TIME STOCHASTIC LINEAR HYBRID

SYSTEMS

We consider a discrete-time stochastic linear hybrid system
[12]

H :

{

x(k + 1) = Aix(k) + Biu(k) + wi(k)
z(k) = Cix(k) + vi(k)

(1)

wherek ∈ N, x ∈ R
n, u ∈ R

l andz ∈ R
p are the continuous

state, control input, and output variables respectively. The
index i ∈ {1, 2, · · · , N} represents the discrete state whose
evolution is governed by the finite state Markov chain

µ(k + 1) = Πµ(k) (2)

where Π = {πij} ∈ R
N×N is the mode transition matrix

and µ(k) ∈ R
N is the mode probabilityat time k. The

system matricesAi ∈ R
n×n, Bi ∈ R

n×l, and Ci ∈ R
p×n

for i ∈ {1, 2, · · · , N} are assumed known. We denote the



covariance of the initial statex(k0) asπ0 ∈ R
N , and assume

that the process noisewi(k) and the measurement noisevi(k)
are uncorrelated, zero-mean white Gaussian sequences with
the covariance matricesE[wi(k)wi(k)T ] = Qi ∈ R

n×n and
E[vi(k)vi(k)T ] = Ri ∈ R

p×p respectively.E[·] and (·)T

denote expectation and matrix transpose respectively. It is
assumed thatwi(k) andvi(k) are both uncorrelated with the
initial state, i.e.,E[x(k0)wi(k)T ] = E[x(k0)vi(k)T ] = 0.
We defineZ(k) = {z(0), · · · , z(k)} as the measurement
sequence up to timek. Since the state evolution of a hybrid
system has continuous trajectories as well as discrete jumps,
we define a hybrid time trajectory:

Definition 1: (Hybrid time trajectory) A hybrid time tra-
jectory is a sequence of intervals[k0, k1 − 1][k1, k2 −
1] · · · [ki, ki+1 − 1] · · · whereki(i ≥ 1) is the time at which
the i-th discrete state transition occurs.
In this paper, by ‘exponential convergence of a hybrid esti-
mator’ we mean:

Definition 2: (Exponential convergence of a hybrid esti-
mator) Given a hybrid systemH with N discrete modes, we
say that a hybrid estimator is exponentially convergent if its
discrete state estimate exhibits correct identification ofthe
discrete-state transition sequence of the original systemafter
a finite number of steps; and at any given time, the continuous
state estimate is unique, with a mean estimation error which
is exponentially bounded to zero across transitions.

III. H YBRID ESTIMATION ALGORITHMS

In this section, we consider a generic hybrid estimation
algorithm [1] for the discrete-time stochastic linear hybrid
system (1)-(2). From Bayesian estimation [1], the continuous
state estimate is the conditional mean:

x̂(k + 1) = E[x(k + 1)|Z(k + 1)] (3)

Let p(·|·) be the conditional probability density function,
given by:

p(x(k)|Z(k)) =
N

∑

i=1

p(x(k), Z(k),mi(k))

p(Z(k))

wheremi(k) denotes the event that the mode at timek is i.
Thus, the state estimate (3) is

x̂(k + 1) =

N
∑

i=1

x̂i(k + 1)p(mi(k + 1)|Z(k + 1)) (4)

wherex̂i(k+1) =
∫ ∞

−∞
x(k+1)p(x(k+1)|Z(k+1), mi(k+

1))dx(k+1) is the mode-conditioned state estimate ofx(k+
1) given mi(k + 1). x̂i(k + 1) is computed by the state
estimator matched to modei. Therefore, the state estimate
(4) is a weighted sum ofN mode-conditioned state estimates
produced by each Kalman filter with the weightp(mi(k +
1)|Z(k + 1)). The weight is given by

p(mi(k + 1)|Z(k + 1)) =
Λi(k + 1)p(mi(k + 1)|Z(k))

p(z(k + 1)|Z(k))

whereΛi(k+1) := N (ri(k+1); 0, Si(k+1)) is the likelihood
function (i.e., p(z(k+1)|mi(k+1), Z(k))) of modei, ri(k+
1) = z(k + 1) − Cix̂i(k + 1) is the residual produced by
the Kalman filteri, Si(k + 1) ∈ R

p×p is the corresponding
residual covariance, andN (a; b, c) is the probability ata of a
normal distribution with meanb and covariancec. p(mi(k +
1)|Z(k)) is the mode probability estimate at timek + 1. If
the mode transitions are governed by a finite Markov chain,
the mode probability estimate can be expressed by

p(mi(k + 1)|Z(k)) =

N
∑

l=1

πilp(ml(k)|Z(k)) (5)

Thus, the weight (mode probability) is

µi(k + 1) :=
Λi(k + 1)

c(k + 1)

N
∑

l=1

πilp(ml(k)|Z(k)) (6)

wherec(k + 1) is a normalization constant. The mode esti-
mate at timek is chosen to be the mode which has the max-
imum mode probability at that time. The mode probability
depends not only on the finite Markov chain but also on the
likelihood produced by each Kalman filter. A probabilistic
analysis of the sojourn time based purely on the discrete
dynamics of the hybrid system would suggest that the typ-
ical sojourn time in any mode is very small. However, the
assumption that a finite Markov chain models the discrete dy-
namics well is not very realistic, since most physical hybrid
dynamical systems have longer sojourn times. We therefore
need to incorporate knowledge from the continuous dynamics
(through the likelihood functions) while computing the mode
probability. Thus, the accuracy of the mode probability is
affected greatly by the likelihood function. The state estimate
(4) is

x̂(k + 1) =
∑N

i=1 x̂i(k + 1)
[

1
c(k+1)Λi(k + 1)

∑N
l=1 πilp(ml(k)|Z(k))

] (7)

(6)-(7) is referred to as the Multiple Model Adaptive Es-
timation (MMAE) algorithm [1]. In the MMAE, all indi-
vidual Kalman filters run independently at every time step.
(7) shows that the state estimate depends on the likelihood
function; the performance of the hybrid estimator thus greatly
depends on the behavior of the likelihood function.
We now describe the general structure of the IMM algo-
rithm [2]. The IMM has the same structure as the MMAE
except that it has theMixing/Interactingstep at the start of
the estimation process which adjusts the initial conditions
for each Kalman filter at the beginning of every time step,
using a weighted sum of the state estimates from the previous
time step, as shown in Fig. 1. The optimal hybrid estimator
which minimizes the mean-square estimation error has to
keep track of all the mode histories up to the current time,
and the number of such histories grows exponentially with
time, making it impossible to implement in practice. The
IMM is a suboptimal algorithm which, at each time step,
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Fig. 1. Structure of the IMM algorithm (two mode) from [13]

keeps information fromN2 mode histories (whereN is the
number of modes) with lower complexity, by mixing theN
mode histories of the previous time step into inputs to the
estimators that produce theN mode histories of the current
time step. It thus performs nearly as well as more complex
algorithms that keepN2 mode histories [2].

IV. PERFORMANCE ANALYSIS

In this section, we first analyze the performance of the hy-
brid estimation algorithm (either the MMAE or the IMM) by
analyzing the steady-state mean residuals. Since the steady-
state analysis gives only necessary conditions on the perfor-
mance of hybrid estimation, we then analyze the transient
behavior of mode probabilities, which are functions of the
likelihoods and therefore the residuals.

A. Analysis for the steady-state mean residuals

Motivated by Caputi [11], we derive the steady-state mean
residual for each modei for the hybrid system (1)-(2). Using
the notation in [14], we define:

∆Ai := AT − Ai

∆Bi := BT − Bi

∆Ci := CT − Ci

∆uiss
:= uTss

− uiss
:= lim

k→∞
uT (k) − lim

k→∞
ui(k)

x̂iss
:= lim

k→∞
x̂i(k)

ēiss
:= lim

k→∞
E[ei(k)] = lim

k→∞
E[(x(k) − x̂i(k))]

where the subscriptT ∈ {1, · · · , N} represents the true
mode. Following a procedure similar to the one adopted by
Hanlon et al. [14], we can express the steady-state mean
residual for modei (riss

) in terms of the above defined

quantities. We assume that[I−(I−KiCT )AT ] is invertible.
If mode i is the correct mode (i = T ), then r̄iss

= 0. If
r̄jss

6= 0 (∀j 6= i), then the correct mode can be detected.
However, even if modei is not the correct mode (i 6= T ), the
steady-state mean residual for modei is zero if the following
is true: (I − KiCT )∆Ai − Ki∆CiAi = 0

∧

(CT ∆Ai +
∆CiAT −∆Ci∆Ai) = 0

∧

(I −KiCT )∆Bi −Ki∆CiBi =
0
∧

(CT ∆Bi + ∆CiBT −∆Ci∆Bi) = 0
∧

∆uiss
= 0. This

means that if at least two models are identical and the cor-
responding control inputs are the same, then the steady-state
residuals of both the corresponding modes are zero. In this
case, the hybrid estimator will not work. In other words, the
performance of the hybrid estimation algorithm depends on
the differences between the residuals which in turn arise from
model differences and input differences. In the above con-
dition, the first four equalities come from model differences
and the last equality comes from input differences. This sup-
ports Maybeck’s heuristic observation that the performance
of the MMAE depends on a significant difference between
the residual characteristics [1].

B. Transient analysis for mode probability

A steady-state Kalman filter is assumed to be used as the
state estimator for each mode. For the sake of notational
simplicity, we defineµ−

i (k) :=
∑N

l=1 πilµl(k − 1). The
condition for correct mode detection at timek is:

µT (k) > µi(k), ∀i 6= T (8)

Using µi(k) := p(mi(k)|Z(k)) in (6), since Λi(k) =
(2π)−n/2|Si|−1 exp[− 1

2 r̄i(k)T S−1
i r̄i(k)] (Si = ST

i > 0),
where r̄ is the mean residual, (8) becomes

0 ≤ r̄T (k)T S−1
T r̄T (k) (9)

< r̄i(k)T S−1
i r̄i(k) + 2 ln

(

|Si|

|ST |

)

+ 2 ln

(

µ−
T (k)

µ−
i (k)

)

To detect the correct mode exactly for anyk ∈ N, (9) must
hold for all k ∈ N (∀i 6= T ). If there is a time delay (δT ) for
correct mode detection when a mode transition into modeT
occurs at timekl (l ∈ N

+), (9) holds fork ∈ [kl + δT , kl+1).
For the existence of an̄rT (k) satisfying (9), using the prop-
erties of the eigenvalues of positive definite matrices [15],
we derive the following:

Proposition 1: The correct mode can be detected inδT

time steps after a mode transition at timekl if there exists
δT ∈ N

+ such that fork ∈ [kl +δT , kl+1) (l ∈ N
+, ∀i 6= T ),

Condition 1 holds, and either Condition 2 or Condition 3 is
true.

1) r̄i(k)T S−1
i r̄i(k) + 2

[

ln
(

|Si|
|ST |

)

+ ln
(

µ−

T
(k)

µ−

i
(k)

)

]

> 0

2) r̄T (k)T S−1
T r̄T (k) < r̄i(k)T S−1

i r̄i(k)

+2
[

ln
(

|Si|
|ST |

)

+ ln
(

µ−

T
(k)

µ−

i
(k)

)

]

3) ‖r̄T (k)‖2 <
λmin(S−1

i
)

λmax(S−1

T
)
‖r̄i(k)‖2

+ 2
λmax(S−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(µ−

T
(k)

µ−

i
(k)

)

]
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Condition 3 is a sufficient condition only, and might be a
very conservative test for correct mode detection. However,
it gives valuable insight into the performance of hybrid es-
timation. Fast mode detection is dependent not only on the
magnitudes of the residuals produced by each Kalman filter

but also on the residual covariances. Ifλmin(S−1

i
)

λmax(S−1

T
)

is small

and/or |Si|
|ST | is small, it is difficult for Condition 3 to hold

and thus to detect the correct mode. Therefore, by checking
the eigenvalues and determinant ofS−1

i , we can tell which
mode transitions are more detectable than the others. This
is similar to the idea of the observability grammian as a
measure of which states are more observable than others [16].
If we consider the steady-state residual mean, Condition 3
becomes,∀i 6= T ,

‖r̄Tss
‖2 <

λmin(S−1

i
)

λmax(S−1

T
)
‖r̄iss

‖2

+ 2
λmax(S−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(µ−

Tss

µ−

iss

)]

(10)

Therefore, if the asymptotic behavior of the residuals sat-
isfies (10) and the sojourn times are long enough for the
residuals to converge to their steady-state values, then the
MMAE is guaranteed to estimate hybrid states correctly.

C. Mode estimation delay

In this section, we derive the mode estimation delayδi

using Condition 3 in Proposition 1. The mean residual of
the correct filter at timekl + δi (l ∈ N

+), wheni = T , is
r̄T (kl + δT ) = CT AT [(I − KT CT )AT ]δT −1ēT (kl), where
ēT (kl) is the mean of the estimation error of the correct
filter at time kl. For the sake of notational simplicity, we
define
FT := (I − KT CT )AT , Fi := (I − KiCT )AT

Hx
i := CT ∆Ai + ∆CiAT − ∆Ci∆Ai

Hu
i := CT ∆Bi + ∆CiBT − ∆Ci∆Bi

Gx
i := (I − KiCT )∆Ai − Ki∆CiAi

Gu
i := (I − KiCT )∆Bi − Ki∆CiBi

Li :=
[

CT AT Hx
i Hu

i

]

(11)

At kl + δT , the correct filter has a (norm) mean residual

‖r̄T (kl + δT )‖ = ‖CT AT F δT −1
T ēT (kl)‖ (12)

≤ σ̄(CT AT )σ̄(FT )δT −1‖ēT (kl)

where σ̄(·) denotes the maximum singular value. Similarly,
we can show that the norm of the mean residual of the
incorrect filter at timekl + δT is

‖r̄i(kl + δT )‖ ≥ σ(Li)‖ēi(kl + δT − 1)‖ (13)

≥ σ(Li)σ ([Fi Gx
i Gu

i ])
δT −1 ‖ēi(kl)‖

where σ(·) denotes the minimum singular value, and
ēi(kl) is the mean estimation error of the incorrect fil-

ter at time kl. We defineα :=
λmin(S−1

i
)

λmax(S−1

T
)
, and β(k) :=

2
λmax(S−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(µ−

T
(k)

µ−

i
(k)

)

]

. Substituting this along
with (12) and (13) in Condition 3 of Proposition 1, we obtain

the following condition:

σ̄(CT AT )2σ̄(FT )
2(δT −1)‖ēT (kl)‖

2 < β(k + δT )

+ασ(Li)
2σ

([

Fi Gx
i Gu

i

])2(δT −1)
‖ēi(kl)‖

2 (14)

To find δT explicitly, we try a different approach. We can
alternatively write the mean residual of the incorrect filter at
time kl + δT , r̄i(kl + δT ) as:

CT AT F δT −1
i ēi(kl) + Hx

i x̂i(kl + δT − 1)

+ CT AT [F δT −2
i Gx

i x̂i(kl) + · · · + Gx
i x̂i(kl + δT − 2)]

+ CT AT [F δT −2
i Gu

i u(kl) + · · · + Gu
i u(kl + δT − 2)]

+ Hu
i u(kl + δT − 1) (15)

We denote the last four terms of (15) bybi(kl + δT − 1) and
Ji(kl + δT ) := α‖bi(kl + δT − 2)‖2 +β(kl + δT ). Using this
in Condition 3 of Proposition 1 and combining it with (14),
we get:

Proposition 2: The correct mode can be detectedδT time
steps after a mode transition if Condition 1 of Proposition 1
holds and there existsδT ∈ N

+, δT < kl+1 − kl, l ∈ N
+,

∀i 6= T , such that either of the following conditions is true.

1) σ̄(CT AT )2σ̄(FT )
2(δT −1)‖ēT (kl)‖

2 < β(k + δT )

+ασ(Li)
2σ

([

Fi Gx
i Gu

i

])2(δT −1)
‖ēi(kl)‖

2

2) δT >1 +
{

2 ln
[

σ(Fi)
σ̄(FT )

] }−1
{

− lnα

+2 ln
[

σ̄(CT AT )
σ(CT AT )

]

+ 2 ln
[

‖ēT (kl)‖
‖ēi(kl)‖

]

}

,

whenJi(kl + δT ) ≥ 0.

Note: Although the actual value of

β(kl + δT ) = 2
λmax(S−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(µ−

T
(kl+δT )

µ−

i
(kl+δT )

)

]

might be negative, its magnitude is usually not big because
it is in a logarithmic scale. Thus,Ji(kl + δT ) ≥ 0 is easily
satisfied.

In addition, for a two-mode system, if we assume that the
estimator converges between transitions and that the mode
transition matrixΠ is diagonally dominant, we obtain the
following condition:

Proposition 3: For a hybrid system with two discrete
modes, the correct mode can be detectedδT time steps after
a mode transition if there existsδT ∈ N

+, δT < kl+1 − kl,
l ∈ N

+, i 6= T , such that

ασ(Li)
2σ

([

Fi Gx
i Gu

i

])2(δT −1)
‖ēi(kl)‖

2

+
2

λmax(S−1
T )

[

ln

(

|Si|

|ST |

)

− ln

(

πii

1 − πii

)]

> σ̄(CT AT )2σ̄(FT )
2(δT −1)‖ēT (kl)‖

2 (16)

Proposition 3 implies that if (16) is satisfied, then the mode
probability of the correct mode is definitely greater than those
of the other modes afterδT time steps after a mode transition
at timekl. Thus, the correct mode is detectedδT time steps
after a mode transition.
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D. Instantaneous Mode Estimation

Assuming that the time between discrete transitions is suf-
ficient to allow the Kalman filters and mode probabilities to
converge, we follow a procedure similar to Section IV-C, and
obtain, for a system withN modes (N ≥ 2):

Proposition 4: The correct mode is detected instanta-
neously if the following condition holds:

ασ(Li)
2σ

([

Fi Gx
i Gu

i

])2
‖ēi(kl − 1)‖2

+ 2
λmax(S−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(πjT

πjj

)

min

]

> σ̄(CT AT )2‖ēT (kl − 1)‖2

where
(πjT

πjj

)

min
is the smallest ratio of off-diagonal to di-

agonal elements in any row of theN ×N transition matrix.
Some of the expressions in the preceding results may ap-

pear intimidating at first sight. They are, however, a sourceof
intuition on the performance of hybrid estimation algorithms,
as will be explained in Section V.

E. Exponential convergence of hybrid estimators

Finally, to present a complete picture, we refer to the au-
thors’ previous work [17], in which conditions were derived
under which, given a discrete decision timeδ, the sojourn
time (∆̃) is long enough for the error convergence during the
period of correct detection (̃∆−δ) to balance the divergence
of the error during the mode mismatch. The discrete decision
time in [17] is in fact the mode detection delay that we have
derived in the present work. Therefore, combining the two
results, we can evaluate the performance of a given hybrid
estimator and also find the minimum sojourn time required
in each mode to guarantee exponential convergence of the
mean square error.

V. PERFORMANCE COMPARISONS

We use the mode estimation delay as a performance metric
for comparison of the MMAE and IMM algorithms since
a small mode estimation delay usually corresponds to a
small estimation error. Analyzing Condition 2 of Proposi-
tion 2, we can explain the performance of hybrid estima-
tion algorithms qualitatively. For a small mode estimation
delay, the following must be small ifJi(kl + δT ) ≥ 0:
(∀T ∈ {1, · · · , N}, ∀i 6= T ),

1

2
log

(

λmax(S−1
T )

λmin(S−1
i )

)

+ log

[

σ̄(CT AT )

σ(CT AT )

]

+ log

[

‖ēT (kl)‖

‖ēi(kl)‖

]

(17)

where modeT is the correct mode after the mode transition
at timekl (l ∈ N

+). Firstly, λmax(S−1

T
)

λmin(S−1

i
)

must be small. Here,
the pre-computed residual covarianceSi and the steady-state
error covariance matrixP ss

i computed by Kalman filteri

satisfy the algebraic Riccati equation. Therefore,λmax(S−1

T
)

λmin(S−1

i
)

depends only on the system parametersAi, Ci, Qi, Ri and
AT , CT , QT , RT . Thus, by checking the residual covariance
matrices for each Kalman filter (which can be done without
any measurements), we can tell which mode transition is

more detectable than the others. In addition, sinceQi, Ri,
QT and RT are design parameters for the Kalman filters

i and T , we can makeλmax(S−1

T
)

λmin(S−1

i
)

small by adjusting these
parameters (Kalman filtertuning) and thus reduce the mode
estimation delay. Secondly, if the condition number ofCT AT

is close to 1, the second term in (17) becomes small. Thus,
we also say which mode is more easily estimated than the
others by checking the condition number ofCT AT for all T .
Thirdly, ‖ēT (kl)‖

‖ēi(kl)‖
must be small,i.e. the mean state estimation

errors produced by mode-mismatched Kalman filters should
be small (and close to the error produced by the correct
Kalman filter).
The mixing step was originally devised to reduce the com-
plexity of the algorithm, yet it also keeps the estimation errors
due to filter mismatch small. At the mixing step at each time
instant, the IMM shifts the initial conditions for each Kalman
filter closer to the (correct) estimate computed by the IMM
at the previous time step. Therefore the means of the state
estimation errors produced by the incorrect Kalman filters
are close to that of the correct Kalman filter. The mode esti-
mation delay of the IMM is therefore smaller than that of the
MMAE (which does not have this mixing mechanism), and
translates to better performance. Maybeck [1] proposes two
ad hoc methods to improve adaptability of the MMAE: en-
forcing a lower bound on the mode probabilities and adding
pseudonoise to the the Kalman filter models. The IMM does
both inherently. We now illustrate this through examples.

VI. EXAMPLES

We first consider mode detection in a simple, one-
dimensional system such as the one in [12]. The dynamics
is of the formx(k) = aix(k − 1) + biu(k) + wi(k), y(k) =
cix(k) + vi(k), and u(k) = 5cos(2πt/100), where the state
variables and model parameters are scalar, there are 2 discrete
modes, and the input is deterministic and sinusoidal. We
estimate the hybrid state sequence from the output sequence
using both the MMAE and the IMM. We first check for
instantaneous mode detection at a switch using Proposition
5. We then compute the maximum mode detection delay
(or the minimum sojourn time needed to guarantee correct
mode detection) using Propositions 3 and 4. We perform this
experiment for various values of the model parameters and
compare our predictions with the simulations (Table I-A). As
expected, the IMM performs better than the MMAE. Also,
since we only compute a conservative estimate of the mode
detection delay, it is quite possible that the observed delay is
less than the computed bound (as in cases 2 and 3). Fig. 2
shows the mode probabilities and estimates for case 2. The
reason for the difference in the performance of the MMAE
and IMM algorithms is clear when we consider the estimation
errors in Fig. 3. At the mode transition times, the errors of
the matched and mismatched filters of the IMM are almost
equal, therefore the mode detection delay is small. In our

5



A. Two-Mode Example: MMAE and IMM Performance vs. Parameters (Monte Carlo Simulation, 100 trials)

Case Algorithm Mode Parameters
Instant Detection Mode detection delay λmax(S

−1

T
)

λmin(S
−1

i
)

(b1 = b2 = 1) Condition Predicted Observed

a1 a2 c1 c2 2 →1 1 →2 δ∗
1

δ∗
2

δ1 δ2 T=1 T=2

1 MMAE 0.95 0.25 1 0.80
√ × 0 2 0 2 0.48 2.09

IMM
√ × 0 2 0 2

2 MMAE 0.85 0.85 0.80 0.2 × × 6 2 4 0 1.29 0.77

IMM × √
2 0 0 0

3 MMAE 0.95 0.85 1.0 0.40 × × 10 2 5 1 1.13 0.89

IMM
√ √

0 0 0 0

B. Three-Mode Example: MMAE and IMM Performance vs. Parameters (Monte Carlo Simulation, 100 trials)

Case Algorithm Mode Parameters
Mode detection delay

max

λmax(S
−1

T
)

λmin(S
−1

i
)

(b1 = b2 = b3 = 1) Predicted Observed

a1 a2 a3 c1 c2 c3 δ∗
1

δ∗
2

δ∗
3

δ1 δ2 δ3 T=1 T=2 T=3

1 MMAE 1.2 0.25 0.95 0.80 1.0 0.80 2 0 7 1 0 5 1.2 0.80 1.26

IMM 1 0 5 1 0 4

TABLE I

(A) TWO MODE AND (B) THREE MODE EXAMPLES

example, (17) simply reduces toλmax(S−1

T
)

λmin(S−1

i
)

in the case of
the IMM, and Table I-A shows that as predicted, the smaller
the value of (17),the smaller the mode detection delay. The
biggest advantage of this result is that given a system and
its error bounds, this gives us a way to determinea priori
transitions to which modes are the most detectable. Results
for a three-mode example are shown in Table I-B.
We now consider an aircraft tracking example, with two

discrete modes, the constant velocity (CV) mode and the
coordinated turn (CT) mode. The dynamics of both modes is
given in the Appendix. The mode changes occur at time=45
seconds(CV to CT) and at time=56 seconds( CT to CV).
Using Proposition 2 for the IMM, we find that the mode
estimation delay for the mode switching from CV to CT
is δct = 1, and from CT to CV isδcv = 2. We therefore
expect the mode switching from mode CV to CT to be more
detectable than the mode switching from mode CT to CV.
Similarly, we obtainδct = 7 and δcv = 12 for the MMAE.
Fig. 4 shows that the simulations validate these predictions
well. The IMM performs better than the MMAE; and the
mode estimation delays for both the IMM (1 for CV to CT;
2 for CT to CV) and the MMAE (6 for CV to CT; 10 for CT
to CV) are close to those predicted, and within the bounds.

VII. C ONCLUSIONS

Although several hybrid estimation algorithms have ex-
isted for many years, the issues of their performance and
limitations have not been addressed in much detail. In this pa-
per, we have performed a detailed steady-state and transient
analysis of these algorithms and derived necessary conditions
for correct mode detection, bounds on their performance in
terms of the mode detection delay and the minimum sojourn
time, and also proposed a way to predicta priori which

mode transitions are the easiest to detect, and validated our
results using simulated experiments. Most importantly, our
results give a mathematical yet intuitive explanation for why
the IMM algorithm achieves its high levels of performance
in the estimation of stochastic linear hybrid systems.
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APPENDIX

AIRCRAFT KINEMATIC MODEL:

x(k + 1) =







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1






x(k) +









T
2

2
0

T 0

0 T
2

2

0 T









ui(k)

+wi(k)

y(k) =

[

1 0 0 0
0 0 1 0

]

x(k) + vi(k), (i ∈ {CV, CT})

wherex = [x1 ẋ1 x2 ẋ2]T wherex1 andx2 are the position coordinates,

u = [u1 u2]T where u1 and u2 are the acceleration components. The

control input is given by:uCV = [0 0]T in CV mode,uCT = [1.5 1.5]T

in CT mode,T is the sampling interval,wi is the process noise, andvi is

the sensor noise. We choose an operating velocity of 150 knots.
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Fig. 3. Estimation error by (top) IMM and (bottom) MMAE: 100 trial MC
simulation results.
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Fig. 4. Aircraft mode estimates by (top) IMM and (bottom) MMAE: 100
trial MC simulation results (mode CV = 0, mode CT = 1).
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