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Abstract

This paper involves the development of an algorithm
which can simultaneously track and manage identities
of multiple targets in a sensor network, for the pur-
pose of air traffic control. We propose a logical integra-
tion of Joint Probabilistic Data Association (JPDA) [1],
used for associating measurements with targets, and the
Identity Management (IM) [2] algorithm for sensor net-
works, which utilizes target attribute information from
local sensors to maintain the target’s identity correctly.
For target tracking, we use a modified version of the
Interacting Multiple Model (IMM) algorithm called the
Residual-Mean IMM (RMIMM) which we developed [3].
The proposed algorithm incorporates target state esti-
mate information from the tracking algorithm into the
evolution of a doubly-stochastic belief matrix for the
target identities, and also assimilates any local informa-
tion available. The algorithm has been shown not only
to converge, but also to not increase the uncertainty in
our belief.

INTRODUCTION

The multiple-target tracking problem deals with cor-
rectly tracking several targets given noisy sensor mea-
surements at every instant, while the identity manage-
ment problem tries to associate target identities with
the state estimates available at every instant in a sen-
sor network. Although closely related, the two prob-
lems have so far only been studied independently. Most
multiple-target data association and tracking algorithms
proposed until now do not attempt to use local at-
tribute information about targets to improve their per-
formance. While they emphasize the need to track sev-
eral targets simultaneously, they do not address the
necessity to distinguish between the different targets,
and indeed, often lead to target-swapping while track-
ing. In practice, given a network of sensors, in addition
to the continuous state measurements, we frequently
also receive local sensor information about identities,
which can be exploited to reduce target-swapping dur-
ing tracking. In this paper, we develop an algorithm
that solves these two related problems at the same time
by efficiently incorporating signature information from
local sensors into data association. The algorithm is a
mathematically consistent way of combining the JPDA
algorithm for data association, the IM algorithm for

multiple-target identity management, and the RMIMM
algorithm for target tracking.

Multiple-tar get Identity Management (MIM) algorithm[2]
A scalable distributed algorithm for computing and main-
taining multi-target identity information has been de-
veloped using Identity-Mass Flow which overcomes the
exponential computational complexity in managing multi-
target identity. This algorithm maintains information
about who is who over time given target position es-
timates. The main results are: the introduction of
the tdentity belief matrix, a doubly stochastic matrix,
that describes how the identity information of each tar-
get is represented, and the development of a distributed
algorithm for computing and updating the identity be-
lief matrix.

This algorithm assumes that the target position esti-
mates are given, but in practice, it is difficult to get the
target position state estimates accurately enough for
the MIM algorithm to work in the multi-target track-
ing environment. Thus, data association and MIM are
closely related since both algorithms compute and up-
date the relation between tracks and targets, and the
MIM can be used in the data association step of the
multi-target tracking algorithm.

DATA ASSOCIATION ALGORITHMS

We consider the problems of associating measurements
with targets and tracking one or more targets. A de-
tailed description of this problem and the issues therein
are presented in [1]. The key step in this process is the
validation of measurements, it is also the reason why we
believe this algorithm would apply easily to distributed
systems.

Measurement validation: Denote z(k) as a measure-
ment at time k and Z(k + 1]k) as a predicted measure-
ment at time k + 1 using information up to time k. As-
sume p[z(k +1)|Z%] = N[z(k+ 1)|2(k|k + 1), S(k + 1)].
Let there be T targets. The validation region (or gate)
is defined as:

Vigr(7) = {zlrT (b + 1)S ™1k + Dr(k +1) < 7%} (1)

where r(k + 1) = z(k + 1) — 2(k + 1|k) is the residual,
S is its covariance, and ~ is a design parameter. If
measurements that lie inside the gate are considered
valid, the set of validated measurements at time k is



given by:
Z(k) := {z:(k) 1y (2)

where my, is a random variable. In the case of multi-
target tracking, if there is always a one to one mapping
from targets to measurements, i.e., Zk my = 1. The
measurement sequence up to time k is defined as:

78 = {Z(j)}j= (3)
The problem of associating each validated measurement
with an appropriate target is known as data association,
measurement association, or data correlation. The set
of validated measurements for a given target consists
of both the potentially correct and incorrect measure-
ments.

Figure 1. Validation Gate

For example, Figure 1 shows that measurements z; and
zo are both validated for both target Z; and for target
Z2, giving two possible associations, only one of which
is correct.

Nearest-Neighbor Standard Filter (NNSF)

The NNSF selects the validated measurement closest to
the predicted measurement and uses it for state estima-
tion. The distance measure is

d(z)* =17 (k)S~"r (k) (4)

Since the filter-calculated covariance matrix S does not
account for the possibility of processing incorrect mea-
surement associations, the performance of the NNSF
might be poor in some cases, resulting in the incorrect
association of measurements to targets.

Joint Probabilistic Data Association Filter (JPDAF):
a sub optimal Bayesian algorithm

If there are several targets in the same neighborhood,
measurements from one target can fall in the validation
gates of a neighboring target persistently. Thus the

performance of a tracking algorithm could degrade sig-
nificantly in such a situation, due to wrong association
of measurement to target.

The key to the JPDAF algorithm is the evaluation of the
conditional probabilities of the following joint events:

T
©=()0y, j=1,---T; t=0,1,---,T  (5)
j=1

where 0j;, := {measurement j originated from target
t} and ¢; is the index of the target to which measure-
ment j is associated in the event under consideration.
A joint event association matrix can be represented by
the permutation matrix

0 = [6;4(0)], where @y,(©) = { b 0O

(6)

We first define the following notation:

Target detection indicator:

0:(0) =327 Wi (©) < 1,

Measurement association indicator:
T .

75(0) =321 ©¢(0),

Number of unassociated measurements in event © :

$(0) =371 [1 — 75(0)]
Pp : target detection probability

(7)

Then, the marginal association probability is

Bit = Yo P{0]Z"}0;:(0)

P{O|Z*} = 25 TITING, (2 () TTi—y (Ph)% (Ph) 0

(8
where Vi, [z (k)] := Nz;(k); 2% (k|k—1), S% (k)], P, =
1— P}, and 2% (k|k — 1) denotes the predicted measure-
ment for target ¢; with an associated residual covari-
ance S%. In the case of a one-one association of tar-
gets to measurements (as in the case under study here),

$(©) = 0.

~—

HYBRID STATE ESTIMATION ALGORITHM: RESIDUAL-

MEAN INTERACTING MULTIPLE MODEL (RMIMM)
ALGORITHM [3]

We use a hybrid estimation algorithm for state estima-
tion for multiple-maneuvering-target tracking. In this
section, we describe the general structure of the Inter-
acting Multiple Model (IMM) algorithm and propose a
modified IMM algorithm which uses information about
the mean of the residual. We call this modified IMM
algorithm the Residual-Mean IMM (RMIMM).

We consider a stochastic linear hybrid system with discrete-

time, continuous-state dynamics:

z(k+1) = Ajz(k)+w,;(k) )
(k) = Cyuk) +ov,(k)

and a Markov transition of the discrete state (mode)



given by:

Plj(k + 1)|i(k)] = H;; iwjeM={1,2,---,N}
(10)
where z € R" and z € R?P are the state and the output
respectively. M is the set of discrete states. The terms
w and v are respectively the mode-dependent, uncorre-
lated, white Gaussian process noise and measurement
noise with zero means and covariances Q; and R;. H;;
is the Markov mode transition probability from mode i
to mode j. Thus, given the above system parameters,
hybrid estimation is to estimate both the continuous
state and the discrete state at time k from the mea-
surement sequence up to time k —1 (k =1,2,---). The

%, (k-1lk-1), P,(k-1lk-1) R,(k-1]k-1), P,(k-1[k-1)

| |

‘ Mixing/Interacting ‘% H(k-1]k-1)

I>\(°1(k-1|k-1), P (k-1]k-1) xgz(k-1|k-1), P o, (k-1lk-1)
z(k) —» KF, — A, (k) z(k) —» KF, > A,(k)

X, (KIK), P, (K|k) X, (KIK), P,(KIK)
A
A (K)—> Mode — u(klk) %, (klk), P, (klk) State estimate Q(klk)
Probability >A<2(k|k), P, (k|k) —» and covariance —» PKIK)
Ay (k) —> Update i — p(k) combination
u(k) —*|

Q‘(k|k), P](k|k): state estimate of Kalman filter j at time k and its covariance
Quj(k|k), Pu,(k|k): mixed initial condition for Kalman filter j at time k

Q(k|k), P (k|k): combined state estimate and its covariance (output)
H(k): mode probability at time k
p(klk): mixing probability at time k

Al(k): likelihood function of Kalman filter j

Figure 2. Structure of the IMM algorithm (for two modes)
[4].

IMM algorithm is a multiple-model-based state estima-
tion algorithm which computes the state estimate using
a weighted sum of estimates from a bank of Kalman
filters matched to different modes of the system. The
general structure of the IMM algorithm as shown in
Figure 2[4] is as follows:

Mixing probability: This is the probability that

the system is in mode ¢ at time k — 1, given that

it is in mode j at time k:

1
pij(k — 1k —1) = o ijti(k —1) (11)
j

where c¢; is a normalization constant, and where
pi(k) is the mode probability of mode i at time
k, i.e., a measure of how probable it is that the
system is in mode 7 at time k. The initial condition
1i(0) is assumed given, and is usually obtained
from properties of the system.

New initial states and covariances: The input
to each Kalman filter is adjusted by weighting the
output of each Kalman filter with the mixing prob-
ability as the weight:

Toj(k =1k =1) = >, &(k — [k — V)i (k — 1|k — 1)
Poj(k =1k —1) =3 {Fi(k - 1|k - 1)
HEa (k= Lk — 1)
—&o;(k — 1k — 1)][#;
—&o;(k — 1|k — 1)]T

(k—1]k—1)
pij(k — 1|k — 1)
(12)
where #;(k—1|k—1) and P;(k—1|k—1) are the state
estimate and its covariance produced by Kalman
filter 7 at time k—1 after the measurement update.
Kalman Filter: N Kalman filters run in parallel
(multiple-model-based (hybrid) estimation).
Mode likelihood functions: The likelihood func-
tion of mode j is a measure of how likely it is that
the model used in Kalman filter j is the correct
one; it is computed with the residual and its co-
variance produced by Kalman filter j:

Aj(k) = N(r;(k); 0,5;(k)) (13)

where r;(k) := z(k) — C;2;(k|k —1) is the residual
of Kalman filter j, Z;(k|k—1) is a state estimate by
Kalman filter j at time k before the measurement
update, and S;(k) is its covariance.

Mode probabilities: The probability of mode j is
a measure of how probable it is that the system is
in mode j:

i 6) = Ay () Y ol — 1) =5 A, () (1)
l (14)

where ¢ is a normalization constant. The proba-
bility of each mode is updated using the likelihood
function.

Combination (output of the IMM): The state
estimate is a weighted sum of the estimates from
N Kalman filters and the mode estimate is the
mode which has the highest mode probability:

#(klk) = Z 5 (k) s (k)

P(klk) = Z{Pj(k\k) + [2; (k|k) — 2(K|K)]

[ (k|k) — & (K[R)]" 1 (k)
m(klk) = argm]axuj(k)

where m(k|k) is the mode estimate at time k.



As can be seen from the standard IMM algorithm, the
mode probability in (14) depends on the likelihood func-
tion A;. Thus, if the likelihoods of the modes are close
to each other, the mode estimate may be inaccurate.
Inaccurate mode estimates could produce poor state es-
timates, degrading the tracking accuracy. Because we
are interested in using this for aircraft tracking, we pro-
pose a method which reduces false mode estimation by
increasing the difference between the likelihood of the
correct mode and the likelihoods of the other modes,
using the fact that if the Kalman filter corresponding
to mode j is the correct one, then the residual in (13)
should be a white Gaussian process with a zero mean.
Otherwise, its mean should not be zero. Therefore, we
propose a new likelihood function:

if fj(k) #0

(15)
otherwise

N, (k)A; (k)
A;Lew(k) — Zi‘;l N;(k)Aq (k)
Aj(k)

where

gy - { P01 im0 £0

1 otherwise

Proposition 1. The differences between the new likeli-
hood function (15) for the correct mode and those for
the incorrect mode, is greater than the corresponding
differences using the previous likelihood function from
(13).

Proof: See [3].

Thus, the RMIMM algorithm uses (15) instead of (13)
as a mode likelihood.

MULTIPLE-TARGET TRACKING AND IDENTITY MAN-
AGEMENT (MTIM) ALGORITHM

We consider multiple-target tracking and identity man-
agement problems in a no-clutter environment.

No-clutter environment
We assume that there is no clutter, i.e. there are T

targets and T" measurements at each time. Then, Pp =
1, (©) =0, and 7;(0) = 1. (8) becomes

Bie(k Zﬁ

After making the association matrix A(k) := [3;:(k)]
a doubly-stochastic matrix A’(k), we use A’(k) as the
mixing matrix M (k) in the MIM. Then, the evolution
of the belief matrix is

B(k) = B(k — 1)M (k) (18)

k))w;i(©)] (17)

Entropy of Mixing Process

We define the entropy of the system as the average en-
tropy over the distributions of our beliefs of the iden-
tities of the targets. In the belief matrix, since the
columns represent the probabilities of identity belief
for each target, the probability distribution of belief

for each target is given by the corresponding column.
Using this definition, we can rederive Lemma 1 from
(12). )

Lemma 1: Let H(B(k)) be the average entropy over all
the columns of the belief matrix B(k), where the en-
tropy of a column is the statistical entropy of its proba-
bility mass function. Then, H(B(k)) > H(B(k — 1)), if
B(k) = M(k)B(k—1); that is, mixing does not decrease
the average entropy.

Proof: From the definition of average entropy of the
systemn,

N
H(B®) = %ZH(bxk)) (19)

_ZH “1) (0)
%ZH([Z :®;B(k —1)];) (21)
! .Z H(Z ail®;B(k —1)];) (22)

N N!

LSS e

j=11i=1

v

— D) (23)

(24)

But premultiplying by a permutation matrix simply
permutes the rows, so the set of values in the column
does not change.

= H([®:B(k—1)];) = H(bj(k —1))  (25)
Therefore, we get

N N!

HBH) > 3 S aH(b(k—1) (26)

j=1i=1
1 N!

= =S H®b;(k - 1)),si .= (@7
n; (b;( ))75111(36;&1 ®27)

(B(k—1)) (28)

Corollary 1: Since H(B(k)) = %E;\Ll H(bj(k)) (sum
over columns) = 1 Zjvzl H(bj(k)) (sum over rows), the

same proof of no decrease of entropy holds for mixing
of the form B(k) = B(k — 1)M (k).

2

]

Incorporation of Local Information
In the IM algorithm, we assume that local information
arrives in the form of column updates to the correspond-
ing columns. We then preserve that specific column and
scale the rest of the belief matrix to make it doubly-
stochastic, using Sinkhorn scaling.
Identity — type local information: This is local
information which gives with certainty the identity



of one of the targets. In the implementation, this
corresponds to local information in the form of a
column unit-vector.

Conjecture 1: Identity-type local information al-
ways reduces the entropy of the system.

General forms of local information: In gen-
eral, local information is in the form of a stochas-
tic (elements sum to 1) column vector. In this
case, clearly, the effect on the entropy depends
on the elements of the column (related in some
way to the relative entropies) and need not nec-
essarily decrease the entropy. Consider, for exam-
0.8 0.2
0.2 0.8
entropy of this matrix is 0.5004. If local infor-

ple, the belief matrix The average

mation arrives at column 2 in the form { 83 ]

(corresponding to information that Target 2 has
Identity 2 with 70 % probability) , then the corre-
sponding doubly stochastic matrix after Sinkhorn
0.7 0.3
0.3 0.7
the updated matrix is 0.6109, that is, the entropy
increases when we incorporate information of this
form.
The above statements have important implications in
the incorporation of local information. We know that if
the system were conducive to Bayesian normalization,
then the average entropy of the system could only de-
crease with the incorporation of local information. The
Sinkhorn iteration is only an approrimate algorithm to
obtain a doubly-stochastic matrix, and there may be
situations in which the incorporation of local informa-
tion would increase our uncertainty in belief. However,
we are justified in always incorporating identity-type in-
formation. Since it is computationally quite simple to
compute the average entropy, we only incorporate gen-
eral local information if the doubly-stochastic matrix
after the Sinkhorn scaling has a smaller average entropy
than before the incorporation of the local information.

scaling is The average entropy of

Algorithm 1: Multiple-target Tracking and Identity Man-
agement algorithm
For target t, t € {1,---,T},
e  Step 1: mixing/interaction: Zo;(k — 1|k — 1) and
Poi(k — 1|k — 1)
e  Step 2: Kalman Filter ¢ (i € {1,---,N})
- State propagation/prediction

Zi(klk—1) = Ajzoi(k— 1]k —1)
Pi(klk —1) = A;Poi(k—1]k — 1)AT + Q;
(29)
Measurement Validation

rT-Sfl(k)rij(k) <2 (30)

171

where Tij(k) = Zj(k> — Czi'i(k'|k — 1) (] €

{1,---,mi}) and mi is the number of vali-
dated measurements for target ¢ at time k.
- Measurement Update

* Compute an association matrix using (17)
and a mixing matrix.
Update the belief matrix using (18).
If local information arrives, then update
the column corresponding to the local
information, and scale the rest of the
matrix (using Sinkhorn Scaling) to make
it doubly-stochastic.

* Update continuous state estimate and
its covariance

Ti(klk) = Zi(klk—1)

FKG (k) Y Ba(k)ra(k)
Pi(klk) = [I - Ki(k)Ci]Pi(k— 1]k — 1)

+Ki(k)[27j°1 B (k)ra(k)ra (k)T

—(57 Ba(k)ra(k)).

(202 Bu(k)ra (k) T1EG (k)T
(31)
where a Kalman filter gain is given by:

Ki(k) = Py(k|lk—1)CT [C; P(k|k—1)CT +R;] ™"

(32)

° Step 3: Compute the mode likelihood functions

Ai(k) = N (ri(k); 0, Si(k)) (33)

where r; (k) := "% Bu(k)ru (k).
Step 4: Compute the mode probabilities: p; (k).
Step 5: Compute the outputs: Z(k|k), P(k|k), and
B(k).
The outputs &(k|k) and P(k|k) correspond to the hybrid
state estimate (continuous state estimate and discrete
mode estimate) of target ¢ at time k. B(k) corresponds
to the the belief matrix, which reflects the probabilities
of the identities of the different targets.

EXAMPLE: AIRCRAFT TRACKING EXAMPLE

In this section, we consider the tracking and identity
management of multiple aircraft which interact with
each other over a period of time. We consider a three-
aircraft scenario, and the results are shown in Figures
3 and 4. We plot the estimated trajectories with the
managed identities, and also provide the propagation
of the belief matrix. In this example, local information
of the identity-type is obtained at ¢ = 59, as seen from
the immediate improvement of the beliefs. It is evident
from the figure that the algorithm we have proposed
maintains an accurate estimate of the track as well as
the identities in the presence of multiple possible as-
sociations of measurements to targets, provided there
are sources of local information. Such a decrease in be-
lief usually corresponds to interactions between targets,
due to their proximity. This is seen in comparing the
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trajectories and belief matrix plots in Figures 3 and 4
respectively.

CONCLUSIONS

The results presented in this paper are a first step in
the development of an algorithm that can simultane-
ously track and maintain identities of multiple targets.
Although proposed for an Air Traffic Control scenario,

Actual (noise-added) and estimated flight trajectories (IMM)
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Figure 3. Tracking and identity management of three
aircraft. Estimated trajectories and Identities (given by
the legends)

we believe that these methods are easily extendable to
the problem of tracking in other sensor networks. The
Radar Surveillance System of the Air Traffic Control
System can easily be replaced by any other network of
sensors, for different applications. The algorithm ex-
ploits local interactions in both tracking (using valida-
tion gates) and identity-management (using the proper-
ties of Sinkhorn iterations), thus making it a promising
candidate for tracking in distributed sensor networks.
The same property of these algorithms also make them
applicable to very large scale networks.
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Figure 4. Tracking and identity management of three
aircraft. Belief matrix propagation.

Current target classification and tracking algorithms
depend on signal processing as a means of determining
identity [5]. We believe that it might be power-efficient
and computationally less expensive to use such signal-
processing algorithms as a source of local information
when necessary, and use algorithms such as the one we
have proposed for tracking and identity management.
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