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Abstract

Continued growth of air travel and recent advances in new technologies for navigation,

surveillance, and communication have led to proposals by the Federal Aviation Adminis-

tration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in

performing their tasks. The current ATC has a rigid and centralized structure: aircraft fly

along predefined airways between waypoints, and ground controllers direct aircraft using

radar track and flight information from plan view displays and voice communication over ra-

dio channels. New technologies such as the Global Positioning System (GPS) for navigation

and Automatic Dependent Surveillance-Broadcast (ADS-B) for communication, will enable

automation of some of the ATC functions. These functions include multiple-target tracking

and identity management for air traffic surveillance, and conflict detection and resolution

between aircraft for air traffic control. In this thesis, we address four problems frequently

encountered in air traffic surveillance and control. We develop a set of algorithms and tools

with provable properties: these algorithms may be used either in a fully autonomous way,

or as supporting tools to increase controllers’ situational awareness and to reduce their work

load.

Firstly, we develop a multiple-maneuvering-target tracking and identity management (MTIM)

algorithm which can keep track of maneuvering aircraft in noisy environments and of their

identities. The algorithm uses a modified approximate Joint Probabilistic Data Associ-

ation algorithm for associating measurements with targets, an Identity Management al-

gorithm based on Identity-Mass Flow, and a multiple-target tracking algorithm based on

the Residual-Mean Interacting Multiple Model algorithm for hybrid state estimation. The

MTIM algorithm incorporates suitable local information, when available, in a manner that
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decreases the uncertainty, as measured by system entropy. In situations in which local in-

formation is not explicitly available, a version of local information incorporation based on

Multiple Hypothesis Tracking is included to improve identity management.

Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple

aircraft which uses flight mode estimates as well as aircraft current state estimates. Our

algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics

and discrete mode switching. As such, the algorithm can provide advantages over existing

conflict detection algorithms which use current state estimates from continuous dynamics

only. This algorithm can also be used for blunder detection, that is, the detection of a

possible incursion maneuver of another aircraft into the path of the first.

Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance.

The algorithm is based on a closed-form analytic solution. Heading change is the main con-

trol input for conflict resolution, yet velocity change may be also used. Constructing a

finite partition of the airspace around the possible conflict and using our analytic solu-

tion, we derive a protocol for resolving the worst-case conflict within each partition. The

result is a multiple-aircraft conflict resolution protocol: a simple rule which is easily un-

derstandable and implementable by all aircraft involved in the conflict, and which provides

guarantees of safety. We show that this solution is robust to uncertainties in the aircraft’s

position, heading, and velocity, as well as to small changes in the aircraft trajectory, and

asynchronous maneuvers. We present simulation results using a dynamic aircraft model for

various multiple aircraft conflict scenarios derived from actual air traffic data (Enhanced

Traffic Management System data).

Finally, we consider the problem of safety verification of control laws for safety critical

systems, with application to air traffic control systems. We approach safety verification

through reachability analysis, which is a computationally expensive problem. We develop

an over-approximate method for reachable set computation using polytopic approximation

methods and dynamic optimization. We also successfully solve a two aircraft conflict prob-

lem in real time.
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Chapter 1

Introduction

The Air Traffic Control (ATC) system is responsible for safe air traffic operations of both

commercial and general aviation within the nation’s airspace. Even though the ATC has

managed air traffic with a strong safety record over the past several decades, the system

does suffer from the occasional serious accident. Based on projections in the 1990’s of the

United States and world economic growth, total passenger traffic between the United States

and the rest of the world is expected to grow from 132 million in 1999 to 466.8 million in

2025, an increase of more than 250%. Passenger traffic is expected to be strongest in the

Latin American and Pacific markets, growing by almost 350% over the forecast period.

Passenger traffic is projected to grow 180% in Atlantic markets and 140% in transborder

Canadian markets [5]. After September 11, 2001, the air traffic growth rate declined, yet it

is now expected to return to the rate of the expected growth forecasted before 9/11 after

2004 [6].

Due to this continued growth of air traffic, airborne delays and ground holds have become

common today and will increase rapidly in the near future unless there are changes to the

equipment and structure of the current ATC. For example, air traffic control equipment such

as the plan view displays used by controllers to look at radar tracks and flight information

are based on displays designed in the early 1970s and microprocessors developed in the

1980s. Even if the introduction of new equipment for air traffic control alleviates the

problems caused by failing equipment, more automation and structural changes in the ATC

system will be required [7]. The pressure for changes in the ATC system originates from
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2 CHAPTER 1. INTRODUCTION

three primary sources: the need for improved safety and efficiency; the availability of new

technology; and the desire to support the controllers. Even given the current low accident

rate in commercial and general aviation, there remains a need to strive for even greater

safety levels.

The current airspace has a rigid, centralized structure, and aircraft are required to follow

predefined airways or instructions given by controllers. Due to recent advances in navigation

and data communication technologies such as the Global Positioning System (GPS), and a

new data link between aircraft and between aircraft and controllers known as Automatic

Dependent Surveillance-Broadcast (ADS-B), it may be plausible in the near future for

aircraft to fly their own trajectories instead of predefined paths in the National Airspace

System (NAS) [8, 9, 7, 10]. The idea of decentralizing some of the ATC functionality to

individual aircraft is a part of the Free Flight concept, which has been studied by various

research groups in the last several years [11, 12, 3, 13, 14, 15, 16]. In Free Flight, each aircraft

could optimally choose its own trajectory to minimize fuel consumption and time delay. This

requires clear and unambiguous methods for maintaining safe separation between aircraft.

Therefore, conflict detection and resolution (CD&R) emerges as a critical issue for the

implementation of Free Flight.

In this thesis, we consider the air traffic surveillance and control problems of multiple-

aircraft tracking in clutter, and conflict detection and resolution, and propose tools to aid

ATC, and thus potentially improve the efficiency as well as safety of the current system.

In air traffic control, accurate tracking (state estimation) of aircraft is important because all

traffic advisories are based on the aircraft’s current state estimates. However, even tracking

a single maneuvering aircraft is not a trivial problem. Not only are the continuous state

measurements noisy, the aircraft may also be switching flight modes; either changing from

straight flight to turning mode, or vice versa. In reality, precision tracking of the continuous

state estimate when the aircraft makes an unanticipated change of flight mode is a difficult

task. The challenge in aircraft tracking thus lies in the ability to provide high quality state

estimates of the aircraft in such situations. The current algorithms in use for ATC tracking

are based on constant gain Kalman filters, known as α − β or α − β − γ filters [17, 18].

However, a single Kalman filter tuned to a flight mode such as a straight flight mode cannot

provide good estimates when an aircraft changes its flight mode from a straight flight mode

to a coordinated turn mode. The trajectory of an aircraft is composed of straight lines
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and circular arcs that represent the flight modes of the aircraft and its flight mode changes

are dependent on the pilot’s (or autopilot’s) input. However, this input is unknown to the

surveillance system in target tracking problems. The way a pilot controls an aircraft is

generally restricted to a choice of a control input from a finite set of possible control inputs,

including inputs such as left turn, right turn, speed up and speed down. The control input

selected by the pilot determines the flight mode of the aircraft. Thus, the dynamics of an

aircraft can be easily modelled as a hybrid system which has a finite set of discrete states

corresponding to the pilot’s input, that is, the flight mode of the aircraft; and each discrete

state has its own continuous dynamics that describes the behavior of the aircraft for a given

pilot’s input. The surveillance system does not know the pilot’s intention, that is, when the

pilot changes the control input or what control input the pilot chooses. Thus, the unknown

pilot’s input (maneuver command or flight mode change command) can be modelled as a

random process which selects a control input from a finite set of possible control inputs

at any time. Therefore, we model the dynamics of an aircraft for target tracking as a

stochastic linear hybrid system. A stochastic linear hybrid system has discrete states and

each discrete state has its own continuous dynamics. A transition between the discrete states

is governed by a finite Markov chain which models the unknown pilot’s input, that is, flight

mode changes of an aircraft. Therefore, a hybrid estimation algorithm for such stochastic

linear hybrid systems could provide more accurate state estimates than a single Kalman

filter. It also gives additional information in the form of discrete state estimates (flight

mode estimates), which could be useful for other applications such as maneuvering-target

tracking and conflict detection.

In order to derive a new hybrid estimation algorithm which gives accurate hybrid state

estimates (both the continuous and discrete state estimates), we first derive observability

conditions for discrete-time stochastic linear hybrid systems and analyze the performance

of hybrid estimation algorithms for such observable hybrid systems. Based on the analysis

results, we propose a hybrid state estimation algorithm called the Residual-Mean Interacting

Multiple Model (RMIMM) algorithm [19], which is a modified version of the Interacting

Multiple Model (IMM) algorithm [20]. The RMIMM could provide more accurate state

estimates than the IMM. The algorithms and tools for air traffic surveillance and control

developed in this thesis are based on the RMIMM algorithm.

Firstly, we consider air traffic surveillance problems, that is, tracking multiple aircraft in

clutter and managing their identities at the same time. The current ATC system is based on
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a surveillance system that uses data from radar measurements to track aircraft. In the early

versions of this system, human operators manually followed the blips on the video displays,

but the increasing number of aircraft necessitated the development of automated tracking

algorithms. In spite of a substantial improvement in technology, the radar system is still

vulnerable to several problems, such as extraneous measurements from clouds, birds and

other objects, as well as “phantom” blips [17, 21], all made worse with larger numbers of

aircraft. Another issue that poses danger is the growing number of general aviation aircraft.

These aircraft do not transmit their identities unless their transponders are switched on, and

even then, the transponders can be fraught with problems [22]. Since air traffic controllers

are instructed not to issue orders to aircraft unless they are certain of their identity [23],

it becomes essential that controllers have access to reliable track data with identities, so

that they can maintain safety. Thus, we propose a Multiple-Target Tracking and Identity

Management (MTIM) algorithm, which can keep track of multiple-aircraft in clutter and of

their identities at the same time. The applications of multiple-target tracking are: land, sea,

air and space surveillance for military uses; and collision avoidance, navigation, and image

processing for civilian uses. There are several issues that need to be tackled while solving this

problem. For tracking a maneuvering aircraft, we use the RMIMM algorithm to get accurate

state estimates of aircraft. The next level of difficulty is in simply tracking multiple targets,

given their measurements. This problem has been addressed by several data association

algorithms, which associate measurement data with targets [17]. In addition, [24] developed

an identity-management algorithm for sensor networks, but did not use the knowledge of

system dynamics to improve their belief in the identity of the different targets. In this

thesis, we propose a combination of the modified approximate Joint Probabilistic Data

Association (MAJPDA) algorithm and the Identity Management (IM) algorithm for sensor

networks [24], and utilize target attribute information from local sensors to maintain the

target’s identity correctly, when there are extraneous measurements or “phantom” blips in

the measurements. We refer to this algorithm as the Multiple-Target Tracking and Identity

Management (MTIM) algorithm.

Secondly, we consider conflict detection problems and propose a new conflict detection

algorithm, which would be relevant in a decentralized air traffic control environment. To the

best of our knowledge, all existing conflict detection algorithms are based on the continuous

state information of the aircraft (see Kuchar and Yang [11] for a comprehensive survey).

The performance of these algorithms depends strongly on the accuracy of state estimates.
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Since we develop a hybrid estimation algorithm which provides accurate state estimates, we

propose a hybrid probabilistic conflict detection algorithm which uses both the continuous

and discrete state estimates of aircraft, as computed by the RMIMM algorithm. This conflict

detection algorithm can be applicable to both ground and airborne control scenarios in ATC

– to ground control using radar information, and airborne control using information from

ADS-B data [25]. We validate the proposed conflict detection algorithm with real air traffic

data called Enhanced Traffic Management System (ETMS) data in the Oakland Center

airspace.

Thirdly, we consider multiple-aircraft conflict resolution problems. Many previous algo-

rithms [11] either consider two aircraft only, or are based on solving optimization schemes

which are not guaranteed to converge in real time. It is easy to show, for example [26],

that the successive application of pairwise resolution cannot guarantee safety for a multiple-

aircraft conflict. In this thesis, we consider 2D conflict resolution; aircraft are assumed to

fly at the same altitude with varying velocities. An aircraft’s position, velocity, and head-

ing are assumed to be available to all other aircraft which are involved in the conflict; this

assumption can be justified with the proposed availability of GPS [9] and a new datalink

ADS-B [25]. We propose a new algorithm denoted as the Protocol-Based Conflict Reso-

lution (PBCR) algorithm for multiple-aircraft conflict resolution. While other rule-based

algorithms require as many rules as possible conflict cases, the proposed algorithm is simple

and easily understandable since the protocol is obtained from a closed-form analytic solu-

tion. Thus, it can be implemented in airborne systems for real-time conflict resolution, as

well as in ATC ground systems. Most of all, though our method may not be optimal in the

sense that some conflicts can be resolved with smaller deviations from the desired trajectory

than the solution produced by our protocol, the proposed algorithm is provably-safe within

the limits of the model used. This is the main difference from many other currently avail-

able multiple aircraft conflict resolution methods. We show that the solution is robust to

uncertainties in the aircraft’s position, velocity, and heading, and that the method remains

safe when sharp corners on the resolution trajectories are replaced by circular arcs. Though

a kinematic model is used to design the protocol, a dynamic model is used for validation

and to simulate real situations. Finally, we validate our conflict detection and resolution

algorithms using real air traffic data (ETMS data).

Finally, we consider safety verification problems for air traffic control. It has been shown

that reachability analysis for continuous and hybrid systems is important for the automatic
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verification of safety properties and for the synthesis of safe controllers for these systems

[27, 28]. Convergent approximations of reachable sets for such systems can be computed by

solving the exact Hamilton-Jacobi partial differential equation (PDE). Numerical methods

have been devised to do this [29, 4] which work well in up to three continuous variable

dimensions, yet these methods are not practical for solving high dimensional problems.

Therefore, we propose to use polytopic approximation for computing reachable sets for real

time computation. To do this, we use the method proposed by Varaiya [30] to compute

reachable sets for linear time invariant systems using dynamic optimization. Inspired by

Kurzhanski and Varaiya [31, 32, 33, 34], we then extend it to more general dynamical

systems such as feedback linearizable nonlinear systems, linear dynamic games, and norm-

bounded nonlinear systems.

The contributions of this thesis are thus summarized as follows: First, we derive observ-

ability conditions for discrete-time stochastic linear hybrid systems [35] and analyze the

performance of hybrid estimation algorithms for those observable stochastic linear hybrid

systems [36]. Using the performance analysis results, we develop a new hybrid estimation al-

gorithm called the Residual-Mean Interacting Multiple Model (RMIMM) algorithm

based on a multiple-model-based state estimation algorithm called the Interacting Multiple

Model (IMM) algorithm, which performs better than the IMM [19]. Next, we develop a

Multiple-Target Tracking and Identity Management (MTIM) algorithm [37] which

can keep track of multiple targets (aircraft) in clutter and also maintain a record of their

identities at the same time, so that it can not only improve controllers’ situational aware-

ness but can also significantly reduce their workload. We propose a Flight-Mode-Based

Conflict Detection (FMBCD) algorithm for conflict detection [19]. This algorithm uses

not only continuous state estimates but also flight mode estimates in conflict detection, and

can therefore detect conflicts with good accuracy, especially in congested airspace around

airports and waypoints. We develop a Protocol-Based Conflict Resolution (PBCR)

algorithm for multiple-aircraft conflict resolution [38, 39]. The resulting algorithm is sim-

ple to understand and implement, and is provably-safe to within the limits of the model

used. Finally, for safety verification and safe controller synthesis, we use polytopic approx-

imations, based on optimal control theory, to compute over-approximate reachable sets for

linear systems as well as feedback linearizable nonlinear systems, linear dynamic games,

and norm-bounded nonlinear systems [40, 41, 42].

A detailed literature review for each topic can be found in the corresponding chapter.



1.1. OVERVIEW 7

1.1 Overview

Part I: Hybrid Estimation Algorithm
(Residual-Mean Interacting Multiple Model Algorithm)

Multiple-Target Tracking
and Identity Management

Flight-Mode-Based
Conflict Detection

Protocol-Based Conflict Resolution
(cooperative conflict resolution)

Part III: Safety Verification
(Application to Air Traffic Control:

non-cooperative conflict resoltuion)

conflict points

aircraft's state estimates/identity

Part II: Air Traffic Surveillance

 and Control

hybrid state estimates

Figure 1.1: Organization of this thesis.

This thesis is composed of three main parts as shown in Figure 1.1: hybrid estimation, air

traffic surveillance and control, and safety verification. In the hybrid estimation part, we

derive observability conditions for discrete-time stochastic hybrid systems and analyze the

performance of hybrid estimation algorithms for those observable discrete-time stochastic

hybrid systems. Based on the analysis results, a new hybrid estimation algorithm which

is a modified version of the Interacting Multiple Model (IMM) algorithm [20] called the

Residual-Mean Interacting Multiple Model (RMIMM) is developed, which can provide more

accurate estimates of both the continuous and discrete states than the IMM. We will use

this hybrid estimation algorithm for multiple-target tracking for air traffic surveillance and

conflict detection and resolution for air traffic control.

The air traffic surveillance and control part is composed of three chapters: Multiple-Target

Tracking and identity management (MTIM), Flight-Mode-Based Conflict Detection (FM-

BCD), and Protocol-Based Conflict Resolution (PBCR). Chapter 3 presents the MTIM

algorithm which can keep track of multiple targets (in this thesis, aircraft) in clutter using

the RMIMM as a state estimator, and also maintain belief of their identities at the same
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time. Thus, both the accurate continuous and discrete state estimates of aircraft, as well

as their identities, are available for conflict detection and resolution in air traffic control.

In Chapter 4, we develop a probabilistic conflict detection algorithm using the aircraft’s

continuous state estimates as well as discrete state (flight mode) estimates computed by the

RMIMM. Chapter 5 presents a protocol-based conflict detection algorithm which is based

on a closed-form analytic solution and thus can be implemented for both on-board real-time

applications and ground control applications.

In the safety verification part, we approach the safety verification problems of dynamical sys-

tems through reachability analysis and develop an over-approximate computation method

of reachable sets of the given systems using polytopic approximations. Since the evolution

of the faces of the polytope is based on an analytic equation, our method can be imple-

mented in real-time applications. Our method always guarantees an over-approximation

of the exact reachable set, and thus if the system satisfies the over-approximate polytopic

constraints computed by our algorithm, it is guaranteed to be safe.
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Hybrid Estimation
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Chapter 2

Hybrid Estimation Algorithm

For air traffic surveillance and control applications such as multiple-target tracking, and con-

flict detection and resolution, we need a state estimation algorithm which can estimate the

current states of an aircraft accurately. However, state estimation of a maneuvering aircraft

is difficult when the aircraft changes its flight mode unexpectedly. This is because a single

linear (or nonlinear) dynamic model with constant system parameters cannot accurately

represent the behavior of an aircraft over all of its flight regime. Since the performance

of a Kalman filter (or extended Kalman filter, respectively) is strongly dependent on the

accuracy of the model used, it might not provide accurate state estimates for the aircraft

when the actual dynamics of the aircraft deviates from the valid region of the model used.

For example, if a single linear (or nonlinear) continuous model is used for aircraft tracking,

the process noise covariance in the model has to be large in order to account for model in-

accuracy. This large process noise covariance leads to poor state estimates. Hybrid models

with multiple modes (discrete states) that represent the flight regimes of an aircraft could

represent the dynamics of the aircraft more accurately than one continuous model, and thus

each continuous model could have a small process noise covariance that would give accurate

state estimates. The flight mode changes of an aircraft depend on the pilot’s input, and in

the tracking problems we will consider, this input is usually unknown to the surveillance

system. This unknown pilot’s input makes the flight mode changes of an aircraft nondeter-

ministic because we cannot tell a priori when the pilot changes the control input and what

control input the pilot takes. Thus, the unknown pilot’s input (flight mode change) can be

11
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modelled as a random process. In this thesis, we model the dynamics of an aircraft as a

discrete-time stochastic linear hybrid system whose discrete states (or modes) correspond

to the flight modes of the aircraft. The flight mode logic of the aircraft is represented by

the discrete-state dynamics governed by a finite Markov chain. Each discrete state has its

own discrete-time continuous linear dynamics that describes the motion of the aircraft in

the corresponding flight mode. In this way, a discrete-time stochastic linear hybrid system

may be used to represent the behavior of an aircraft over all of its flight regime. In this

chapter, we develop a new hybrid estimation algorithm, called the Residual-Mean Interact-

ing Multiple Model (RMIMM) algorithm (as shown in Figure 2.1), which provides accurate

discrete and continuous state estimates of discrete-time stochastic linear hybrid systems.

Before deriving the RMIMM algorithm, we address the following problem about hybrid es-

timation: Under what conditions can the hybrid state of the given discrete-time stochastic

linear hybrid system be reconstructed uniquely from an output data sequence? In order to

answer this question, we derive conditions for the observability of discrete-time stochastic

linear hybrid systems by exploiting the information obtained from system noise charac-

teristics. We then study performance analysis of hybrid estimation algorithms, and derive

conditions under which the state estimation error of hybrid estimation algorithms converges

exponentially to zero.

The observability of continuous systems [43] or discrete systems [44, 45], leading to the full

state reconstruction from the output signal is a well-known problem and has been studied in-

tensively. However, the observability of hybrid systems has only recently been investigated.

For deterministic linear hybrid systems, Alessandri and Coletta [46] propose a Luenberger

observer design method, which guarantees that the estimation error converges if the discrete

state evolution is known. Balluchi and Benvenuti [47] suggest a methodology for design-

ing a location observer for discrete state estimation as well as a Luenberger observer for

continuous state estimation and also provide a condition under which the estimation error

converges exponentially. Vidal et al. [48] derive observability conditions for continuous-time

linear hybrid systems, which are rank conditions similar in form to those for the observ-

ability of continuous-time linear systems. Bemporad et al. [49] propose the concept of

incremental observability of linear hybrid systems. The algorithm requires the solution of a

mixed-integer linear program. Baram and Kailath [50] propose the concept of estimability

as a criterion to gauge stochastic linear systems. For stochastic linear hybrid systems, Costa
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and do Val [51] present a new observability concept for discrete-time Markov jump linear

systems with finite Markov states with the observability condition that the solution to the

coupled algebraic Riccati equation associated to the quadratic control problem is a stabi-

lizing solution. Estimation algorithms for discrete-time Markov jump linear systems have

been widely used for various applications such as multiple-target tracking [52] and speech

recognition [53]. Vidal et al. [54] propose the notion of indistinguishability : a hybrid system

is indistinguishable if two different initial conditions give the same output sequence. The

observability conditions for jump linear systems are based on rank tests, similar to those

for deterministic linear hybrid systems. Since output sequences of stochastic systems could

be different from the same initial condition, a new definition of indistinguishability is pro-

posed, and based on this definition, we derive more general conditions for the observability

of discrete-time stochastic linear hybrid system than those proposed in [54], thus enabling

us to treat a larger subclass of these systems.

We then consider the performance of hybrid estimation algorithms for such observable

discrete-time stochastic linear hybrid systems. The problem of being able to estimate both

the discrete and continuous states of a hybrid system given only the continuous output

sequence is a difficult one, and while algorithms [55, 56] exist for this purpose, little has been

proved on the limitations of these algorithms, or even the dependence of their performance

on system parameters (even though the performance of hybrid estimators has been studied

for several decades). Magill [57] provides sufficient conditions for the convergence of the

adaptive weights in a multiple model adaptive estimation algorithm of a specific class of

systems, in which a constant parameter vector is unknown and there is a single output over

all the modes. Lainiotis et al. [58, 59, 60] extend the results in [57] to multiple outputs

and derive the recursive form of the optimal adaptive estimator as well as its exact error

covariance. Hawkes et al. [61] examine the asymptotic behavior of the adaptive weights

in hybrid estimation algorithms, which in turn determines the performance of the hybrid

estimators. The authors show, using the Kullback information function [62], that the weight

corresponding to the true model converges almost surely to unity and that the other weights

converge to zero. Many other approaches to the performance analysis of adaptive estimation

can be found in the references cited in [61]. Baram et al. [63] provide conditions under which,

for a set of systems driven by stationary white Gaussian inputs and no discrete transitions,

the mode probability of the true model converges to unity, that is, the probability that the

estimated model is the true model converges asymptotically to unity. Baram [64] shows
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that for the hybrid system in [63], the uniqueness of the prediction error covariance matrix

is a sufficient condition for the true model to be estimated asymptotically. However, the

system in [63, 64] is a set of stochastic, stationary Gaussian models which do not interact

with each other. Thus, the conditions in [63, 64] are more relevant to the observability

of stochastic linear hybrid systems [35]. Caputi [65] derives a necessary condition for the

performance of hybrid estimation algorithms through the analysis of steady state residuals

and shows that the performance of the hybrid estimator depends on the DC gains of the

linear systems. This condition is only valid for a specific class of hybrid systems in which

the continuous dynamics for all the modes is the same, but the inputs are distinct and

consist of a constant bias vector and zero-mean white Gaussian random noise. The research

summarized above analyzes hybrid estimation in several special classes of systems, yet

general analytical techniques for the performance of hybrid estimation algorithms have not

been investigated in detail. Maybeck [55] gives qualitative reasons for the performance of

hybrid estimators but adds that no rigorous general proofs are available for the (asymptotic

convergence) properties of the hypothesis conditional probabilities.

Mode Mixing

Mode matched filter

(KF
1
)

Mode matched filter

(KF
2
)

Mode Probability Update

Output

new initial conditions

State estimates,

Likelihood function

mode probability

hybrid state

estimates

State estimates,

Likelihood function

Hybrid state

estimates

Figure 2.1: Structure of the Residual-Mean Interacting Multiple Model (RMIMM) algo-
rithm (for two-mode systems).

In this chapter, we first derive observability conditions for stochastic linear hybrid systems.

We then analyze the properties of hybrid estimation algorithms and derive conditions under
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which the computed hybrid estimates converge exponentially to the exact hybrid states. The

results of this analysis give some insight into which mode transitions are more detectable

than others and also into how to improve the performance of hybrid estimators. (We say

that a mode transition is more detectable than another if the time taken for the mode esti-

mate to converge to the true mode is less for the former transition than for the latter).

From performance analysis, we show that the mean of the residual computed by an in-

dividual Kalman filter in the hybrid estimation algorithm is not zero. Using this fact, we

derive the RMIMM algorithm which provides more accurate mode estimates and thus more

accurate continuous state estimates than previous algorithms. The RMIMM algorithm has

four main blocks as shown in Figure 2.1. The Mode Mixing block computes new initial

conditions for each mode matched filter (Kalman filter in this thesis) using a weighted sum

of the state estimates from the previous time step. The optimal hybrid estimator which

minimizes the mean-square estimation error has to keep track of all the mode histories up

to the current time, and the number of such histories grows exponentially with time. The

optimal estimator is therefore impossible to implement in practice. The RMIMM algorithm

is a suboptimal algorithm which, at each time step, keeps information from N2 mode his-

tories (where N is the number of modes) in just N mode histories by mixing the N mode

histories of the previous time step into inputs to the estimators that produce the N mode

histories of the current time step. Its complexity involves just N discrete histories, but

its performance is close to that of more complex algorithms that keep N2 mode histories

[56]. Then each Kalman filter computes its own state estimates and likelihood function

that denotes how likely the model used in the Kalman filter is the correct one. The Mode

Probability Update block computes the mode probability of each mode using the likelihood

functions computed by the individual Kalman filter. The Output block computes both the

continuous and mode (discrete state) estimates. The mode estimate is defined to be the

mode which has the maximum mode probability.

This chapter is organized as follows: Section 2.1 presents observability conditions for

stochastic linear hybrid systems. In Section 2.2, we derive conditions under which the

state estimation error of hybrid estimation algorithms converges exponentially. Section 2.3

presents the Residual-Mean Interacting Multiple Model algorithm.
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2.1 Properties of Discrete-Time Stochastic Linear Hybrid

Systems

In this section, we extend the concepts of indistinguishability, observability of the hybrid

initial state, and discrete transition times as defined in [54] and derive an observability

condition for discrete-time stochastic linear hybrid systems using the knowledge of noise

covariances.

2.1.1 Observability of discrete-time stochastic linear hybrid systems

We consider a discrete-time stochastic linear hybrid system

Hd :





x(k + 1) = A(q(k))x(k) + B(q(k))u(k) + wk(qk)

z(k) = C(q(k))x(k) + vk(q(k))

q(k + 1) = δ(q(k), γ(k))

, k ∈ {0, 1, · · · } (2.1)

where k is a non-negative integer (k ∈ N); x(k) ∈ Rn, u(k) ∈ Rl and z(k) ∈ Rp are

the continuous state, continuous control input, and output variables respectively; q(k) ∈
{1, 2, · · · , N} is the discrete state, γ(k) ∈ {γ1, · · · , γm} is a discrete control input, and δ(·, ·)
is a deterministic discrete transition relation which governs the discrete state evolution.

We assume the event time at which a discrete transition occurs is unknown. The system

parameters A(q(k)) ∈ Rn×n, B(q(k)) ∈ Rn×l, and C(q(k)) ∈ Rp×n for q(k) ∈ {1, 2, · · · , N}
are real matrices. We assume that the initial state x(k0) is a white Gaussian random

variable with an unknown mean and a known covariance E[x(k0)x(k0)T ] = π0, and that

the process noise wk(q(k)) and the measurement noise vk(q(k)) are uncorrelated, zero-mean

white Gaussian sequences with the covariance matrices E[wk(q(k))wk(q(k))T ] = Q(q(k))

and E[vk(q(k))vk(q(k))T ] = R(q(k)) respectively. These random sequences are assumed

to be uncorrelated with the initial state, i.e., E[x(k0)wk(q(k))T ] = E[x(k0)vk(q(k))T ] = 0.

Here, system parameters (A(q(k)), B(q(k)) and C(q(k))), noise covariances (Q(q(k)) and

R(q(k))), and the covariance of the initial continuous state (π0) are known, while the mean

of the initial continuous state and the discrete transition times are unknown. Since the

state evolution of a hybrid system has continuous trajectories as well as discrete jumps, we

define a hybrid time trajectory:
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Definition 1. (Hybrid time trajectory) A hybrid time trajectory is a sequence of intervals

[k0, k1−1][k1, k2−1] · · · [ki, ki+1−1] · · · where ki (i ≥ 1) is the time at which the i-th discrete

state transition occurs.

Before deriving the observability conditions, we review the definition of observability for

discrete-time stochastic linear hybrid systems [54]:

Definition 2. (Observability of discrete-time stochastic linear hybrid systems) A discrete-

time stochastic linear hybrid system Hd is observable on [k0, k0 + K] if the hybrid state

(q(k), x(k)) for k ∈ [k0, k0 + K] is uniquely determined (in the case of x(k), meaning it

converges to a unique probability distribution in the sense of the minimum mean-square

error), from the output sequence ZK = [z(k0)T · · · z(k0 + K)T ]T , where K ∈ N.

For stochastic systems, different realizations of the system could have different means and

covariances, but the distribution of a set of realizations of the system converges to a unique

solution in the minimum mean-square error sense as the number of realizations goes to

infinity. Vidal et al. [54] developed rank tests for the observability of stochastic jump linear

systems using the notion of indistinguishability. Since we know the noise covariances as

well as the system dynamics for a stochastic system, we use this additional knowledge to

obtain a more general condition than that in [54]. Since the output sequences of stochas-

tic systems could be different from the same initial condition, we extend the notion of

indistinguishability in [54] as follows:

Definition 3. (Indistinguishability of discrete-time stochastic linear hybrid systems) A

discrete-time stochastic linear hybrid system Hd is indistinguishable on [k0, k0 + K] if there

exist output sequences ZK and Z ′K on k ∈ [k0, k0+K] starting from any two different hybrid

states (q(k0), x(k0)) and (q(k0)′, x(k0)′), which are identically distributed.

Without loss of generality, we consider stochastic linear hybrid systems which do not have a

continuous (deterministic) control input, to derive observability conditions for discrete-time

stochastic linear hybrid systems. The presence of a known control input would not affect

observability of the system. We derive observability conditions for discrete-time stochastic

linear systems in two steps: observability of the initial state and observability of discrete

transition times.
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2.1.1.1 Observability of the initial state

Using a procedure similar to that in [54], we derive the conditions under which the hybrid

initial state (q(k0), x(k0)) can be uniquely determined from the output sequence on [k0, k1−
1] (k1−1 ≤ k0 +K), i.e., before the first discrete transition occurs. We define ti = ki+1−ki

(i ≥ 0) as the sojourn time, which denotes how long the system stays in a discrete state

after the i-th discrete transition. Based on Definition 2 and Definition 3, we get the

following lemma:

Lemma 1. The hybrid initial state of a discrete-time stochastic linear hybrid system Hd is

observable if and only if it is distinguishable.

In order to check if the hybrid initial state is distinguishable, we need to compare the

distributions of the output sequences. In the case of a linear system with Gaussian noise,

this task is greatly simplified, since the distributions are uniquely determined by their

means and covariances. A difference in the mean between two output sequences reduces

to observability in the corresponding deterministic case, in which the noise terms in the

equations are removed, and we can test this in several ways; in particular, [54] presents

elegant rank conditions for this purpose, henceforth referred to as the Vidal-Chiuso-Soatto

(VCS) conditions.

Lemma 2. The hybrid initial state of a discrete-time linear stochastic hybrid system is

observable if the corresponding deterministic system is observable, i.e, the VCS conditions

are satisfied.

If the VCS conditions are not satisfied, the hybrid system may still be observable, by

Definition 2; we can compute the covariances (higher moments) of the output sequence

Zt0 on [k0, k1− 1]. The output sequence starting from the hybrid initial state (q(k0), x(k0))

on [k0, k1 − 1] is

Zt0(q(k0)) = Ot0(q(k0))x(k0) + Tt0(q(k0))Wt0(q(k0)) + Vt0(q(k0)) (2.2)



2.1. PROPERTIES OF DISCRETE-TIME STOCHASTIC LINEAR HYBRID SYSTEMS 19

where

Ot0(q(k0)) = [C(q(k0))T (C(q(k0))A(q(k0)))T · · · ((C(q(k0))A(q(k0)))k1−1)T ]T

Tt0(q(k0)) =




0 0 0 · · · 0

C(q(k0)) 0 0 · · · 0

C(q(k0))A(q(k0)) C(q(k0)) 0 · · · 0
...

C(q(k0))A(q(k0))k1−k0−2 C(q(k0))A(q(k0))k1−k0−3 · · · C(q(k0)) 0




Wt0(q(k0)) = [wk0(q(k0))T wk0+1(q(k0))T · · ·wk1−1(q(k0))T ]T

Vt0(q(k0)) = [vk0(q(k0))T vk0+1(q(k0))T · · · vk1−1(q(k0))T ]T

Oti(q(ki)) ∈ Rpti×n is the extended observability matrix for a linear system (A(q(ki)), C(q(ki)))

[54] and Tt0(q(k0)) is a Toeplitz matrix.

If rank[Ot0(q(k0))] = n, i.e., the linear system (A(q(k0)), C(q(k0))) is observable and t0 ≥ n,

then the minimum mean-square error solution (which we denote by x̂k0(q(k0))) to (2.2) can

be determined uniquely.

x̂k0(q(k0)) = O†t0(q(k0))Zt0(q(k0))

= x(k0) +O†t0(q(k0))Tt0(q(k0))Wt0(q(k0)) +O†t0(q(k0))Vt0(q(k0))
(2.3)

where O†t0(q(k0)) = (OT
t0(q(k0))Ot0(q(k0)))−1OT

t0(q(k0)). The last two terms represent the

estimation error due to the process and the measurement noise.

Similarly, the output from another initial state (q′(k0), x′(k0)) before the first discrete tran-

sition is

Zt0(q
′(k0)) = Ot0(q

′(k0))x′(k0) + Tt0(q
′(k0))Wt0(q

′(k0)) + Vt0(q
′(k0)) (2.4)

From Lemma 1, in order that the initial state of a discrete-time stochastic linear hybrid

system be observable, it should be distinguishable, i.e., if Lemma 2 is not satisfied, the

covariances of Zt0(q(k0)),

E[Zt0(q(k0))Zt0(q(k0))T ] = Ot0(q(k0))π0Ot0(q(k0))T

+Tt0(q(k0))Q(q(k0))T T
t0 (q(k0)) + R(q(k0))

(2.5)
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and the covariance of Zt0(q(k0)′),

E[Zt0(q
′(k0))Zt0(q

′(k0))T ] = Ot0(q
′(k0))π0Ot0(q

′(k0))T

+Tt0(q
′(k0))Q(q′(k0))T T

t0 (q′(k0)) + R(q′(k0))
(2.6)

should be different for any distinct (q(k0), x(k0)) and (q′(k0), x′(k0)). Then, the discrete

initial state can be uniquely determined from the covariance of the output sequence, and

the continuous initial state can also be uniquely determined using (2.3). Since the condition

t0 ≥ n for observability of the linear system (A(q(k0)), C(q(k0))) is conservative, we relax

this condition by introducing τq(k), the minimum integer which satisfies rank[Oτq(k)
(q(k))] =

n (∀q(k) ∈ {1, 2, · · · , N}), and τ̄ = maxq(k) τq(k) (similar to the joint observability index

used in [54]). Then, we have the following condition for the observability of the hybrid

initial state:

Lemma 3. (Observability of the hybrid initial state) If (A(q(k)), C(q(k))) are observable

for each q(k) ∈ {1, · · · , N} and t0 ≥ τ̄ , the hybrid initial state (q(k0), x(k0)) is observable

if and only if either the hybrid initial state of the corresponding deterministic system is

observable, or

Oτ̄ (q(k0))π0Oτ̄ (q(k0))T + Tτ̄ (q(k0))Q(q(k0))T T
τ̄ (q(k0)) + R(q(k0))

6= Oτ̄ (q′(k0))π0Oτ̄ (q′(k0))T + Tτ̄ (q′(k0))Q(q′(k0))T T
τ̄ (q′(k0)) + R(q′(k0))

for all q(k0) 6= q′(k0) ∈ {1, · · · , N}.

We show through a following simple example how a noise free unobservable discrete-time

linear hybrid system may be rendered observable, if each discrete state is endowed with

different measurement noise covariances.

Example: Consider a discrete-time linear hybrid system with two discrete states

q1 :

{
x(k + 1) = x(k)

z(k) = c1x(k) + v1

q2 :

{
x(k + 1) = x(k)

z(k) = c2x(k) + v2

where c1 6= c2 6= 0. The covariance of the initial state E[x0x
T
0 ] = π0; v1 and v2 are

uncorrelated, zero-mean white Gaussian sequences with covariances E[v1v
T
1 ] = σ1 6= 0, and

E[v2v
T
2 ] = σ2 6= 0 respectively.
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If there is no random noise, i.e., v1 = v2 = 0, the hybrid system is unobservable: it is

easy to see that two different initial states (q1, x0) and (q2,
c1
c2

x0) generate the same output

sequences [48]. However, if there is random noise, (q1, x0) and (q2,
c1
c2

x0) generate distinct

output sequences. If the random noise v1 and v2 have different covariances, then we can

uniquely determine the initial state. If we consider the case in which the actual initial state

is (q1, x0), the output and its covariance are

z = c1x0 + v1, E[zzT ] = π0c1c
T
1 + σ1 (2.7)

Next, if we consider the case in which the actual initial state is (q2,
c1
c2

x0), the output and

its covariance are

z = c2( c1
c2

x0) + v2, E[zzT ] = π0c1c
T
1 + σ2 (2.8)

Thus, if σ1 6= σ2, we can determine from which discrete state the output comes because

the output covariances in (2.7) and (2.8) are different and since c1 6= 0 and c2 6= 0, the

initial state can be determined uniquely. For instance, if the output comes from q1, then

the estimate of the continuous initial state is x̂0 = x0 + v1
c1

.

2.1.1.2 Observability of the discrete transition times

Lemma 3 gives the condition for the hybrid initial state to be observable, over a time

interval up to, but not including the first transition. In this section, we focus without loss

of generality on deriving the conditions under which the first discrete transition time k1 can

be uniquely determined from the output sequence ZK on [k0, k0 + K]; similarly, the times

of the ensuing transitions ki(i ∈ {2, . . . }) can be computed. We define observability of the

first discrete transition time as follows:

Definition 4. (Observability of the first discrete transition time) The first discrete transi-

tion time of a discrete-time stochastic linear hybrid system Hd is observable on [k0, k0 + K]

if it can be determined uniquely from the output sequence ZK = [z(k0)T · · · z(k0 + K)T ]T .

If there is a discrete transition at time k1 ∈ [k0, k0 + K], the output at time k1 and its
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covariance are

z(k1) = C(q(k1))A(q(k0))k1−k0x(k0)

+C(q(k1))Ft0(q(k0))Wt0(q(k0)) + vk1(q(k1))

E[z(k1)z(k1)T ] = C(q(k1))A(q(k0))k1−k0π0(A(q(k0))k1−k0)T C(q(k1))T

+C(q(k1))Ft0(q(k0))Q(q(k0))Ft0(q(k0))T C(q(k1))T

+R(q(k1))

(2.9)

where Ft0(q(k0)) := [A(q(k0))k1−k0−1 A(q(k0))k1−k0−2 · · · I]. If there is not a state transi-

tion at time k1, the measurement at time k1 and its covariance are

z(k1) = C(q(k0))A(q(k0))k1−k0x(k0)

+C(q(k0))Ft0(q(k0))Wt0(q(k0)) + vk1(q(k0))

E[z(k1)z(k1)T ] = C(q(k0))A(q(k0))k1−k0π0(A(q(k0))k1−k0)T C(q(k0))T

+C(q(k0))Ft0(q(k0))Q(q(k0))Ft0(q(k0))T C(q(k0))T

+R(q(k0))

(2.10)

In order that the transition at time k1 be observable, either means (deterministic observ-

ability) or the covariances of z(k1)’s in (2.9) and (2.10) should be different. Thus, the

observability condition of the first discrete transition time is:

Lemma 4. (Observability of the first discrete transition time) The first discrete transition

time is observable if and only if either the first discrete transition time of the corresponding

deterministic hybrid system is observable, or

C(q(k1))A(q(k0))k1−k0π0(A(q(k0))k1−k0)T C(q(k1))T

+C(q(k1))Fκ0(q(k0))Q(q(k0))Fκ0(q(k0))T C(q(k1))T + R(q(k1))

6= C(q(k0))A(q(k0))k1−k0π0(A(q(k0))k1−k0)T C(q(k0))T

+C(q(k0))Fκ0(q(k0))Q(q(k0))Fκ0(q(k0))T C(q(k0))T + R(q(k0))

for all q(k) 6= q′(k) ∈ {1, · · · , N}.

Therefore, from Lemma 3 and Lemma 4, the hybrid initial state and the first discrete

transition time can be uniquely determined. The remaining state trajectories can be deter-

mined by repeating the procedure. For ki (i ≥ 1), the x̂(ki) will be given from the initial

state estimate. Thus, we have the following observability condition:
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Theorem 1. A discrete-time stochastic linear hybrid system Hd with Gaussian noise is

observable if and only if it satisfies both Lemma 3 and Lemma 4.

The observability conditions in Theorem 1 are intrinsic to the system, i.e., the observabil-

ity conditions can be tested without using measured output data since they depend on only

the system parameters and noise characteristics. This test needs the operations of multipli-

cation and addition of matrices (which are system parameters and noise covariances): the

computation is straightforward with computational complexity depending on data size.

2.1.2 Exponential convergence condition for hybrid estimation algorithms

Based on conditions for the observability of stochastic linear hybrid systems, we would like

to design estimators for those observable systems, and also quantify values of system param-

eters that would guarantee performance (exponential convergence, in our case). We extend

the design methods proposed by Balluchi et al. [47] for hybrid systems with continuous-time,

continuous state dynamics to encompass discrete-time stochastic hybrid systems.

A hybrid estimator finds estimates q̂ and x̂ for the current discrete state q and the con-

tinuous state x respectively. In this section, we first describe the structure of the hybrid

estimator, and then analyze the continuous component of the estimator in detail to obtain

bounds on the time between discrete transitions of state which would guarantee exponential

convergence of our hybrid estimator. Throughout this section, all norms, unless specified

otherwise, are 2-norms.

Definition 5. (Exponential convergence of a hybrid estimator) Given a hybrid system Hd

with N discrete modes, we say that a hybrid estimator is exponentially convergent if its dis-

crete state estimate q̂ exhibits correct identification of the discrete-state transition sequence

of the original system after a finite number of steps; the continuous state estimate at any

instant has a unique mean and convergent covariance in the sense of the minimum mean-

square error; and the mean of the estimation error, ζ̄ = E[x̂− x] converges exponentially

to the set ‖ζ̄‖ ≤ M0 with a rate of convergence µ, where M0 is the given steady-state error

bound, and |µ| < 1. In other words, the estimator is convergent if, for any switching time

ki,

q̂(k) = q(k), ∀k > K, K ∈ N+ (2.11)

‖ζ̄(k)‖ ≤ µ(k−ki)‖ζ̄(ki)‖+ M0, ∀k > ki (2.12)
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We design the hybrid estimator as a combination of a discrete observer to detect the discrete

state switches, and an estimator to estimate the continuous dynamics, as proposed in [47].

In the rest of this section, we assume that we have a discrete observer that correctly identifies

the discrete state, either immediately after a switch takes place, or with a known maximum

time delay δ after a discrete transition. A discrete observer could be constructed using a

bank of N estimators as a residual generator [52, 47] – even in this case, we could further

increase the probability of correct discrete-state identification by enforcing a discrete state

(or mode) estimation delay δ on the discrete observer. This would be possible only if the

system were observable in the sense of a stochastic hybrid system, as explained earlier.

In this section, we design a least-square estimator in the form of N Kalman filters for the

continuous state estimate. Although the underlying system in [47] is continuous-time and

deterministic, the design methodology of [47] adapts well to discrete-time stochastic hybrid

systems, as we show here.

We consider a hybrid system of the form described in (2.1). For the sake of simplicity of

notation, we replace A(qk) and C(qk) with Al and Cl, where l ∈ {1 . . . N}. We can then

write the equations for the least-square estimator of a linear stochastic system as

x̂(k + 1) = (Al −Kk,lCl)x̂(k) + Kk,lz(k), k ≥ 0 (2.13)

where l is the estimated discrete state, and Kk,l is the optimal Kalman filter gain for mode

l, given by Kk,l = AlP (k)CT
l (Rl + ClP (k)CT

l )−1 and P (k) satisfies the discrete Riccati

recursion,
P (k + 1) = AlP (k)AT

l + Ql −Kk,l(Rl + ClP (k)CT
l )KT

k,l

P (0) , π0

The Discrete Algebraic Riccati Equation (DARE) has a stabilizing solution that is unique

if and only if {Al, Cl} is detectable and {Al, Q
1/2
l } is controllable on the unit circle. Any

such solution is positive definite [66]. If these conditions are satisfied for every discrete state

l ∈ {1 . . . N}, we can design a bank of N steady-state, exponentially convergent Kalman

filters to estimate the continuous state of the system. We can then show that, for a given

discrete state l, correctly identified,

x̂(k + 1) = (Al −KlCl)x̂(k) + Klz(k)

ζ̂(k + 1) = (Al −KlCl)ζ̂(k)
(2.14)
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where Kl is a steady-state Kalman filter gain for mode l. Clearly, ζ̂ is exponentially con-

vergent if

(Al −KlCl) is stable (2.15)

We now follow the methodology of [47] to determine the evolution of the estimation error

across the discrete transition sequence. Let us consider two consequent discrete transitions

of Hd, occurring at times ki and ki+1. Suppose the transition at time ki+1 was from discrete

state m to l, and was detected at time k′i+1 such that k′i+1−ki+1 ≤ δ. Similarly, k′i−ki ≤ δ.

This is illustrated in Figure 2.2. We are interested in the region k ∈ {k′i, k′i + 1, . . . , k′i+1}.

k k’ ’

switch detect switch detect

q = m

q = m q = m~ ~ ~

q = l q = l

q = l

i ki i+1i+1 k

q = m

Figure 2.2: Illustration of the transition sequence.

Since we assume that by time-step k′i the discrete state has been identified correctly, for the

exponential convergence of the estimation error on k′i to k′i+1, we require that:

1. The error converges exponentially between k′i and ki+1;

2. The error divergence between ki+1 and k′i+1 due to wrong discrete state estimation

does not upset the exponential convergence of the error on k′i to k′i+1.

Following the methodology of [47], dividing the time interval between k′i and k′i+1 into two

regions, we get the error dynamics of the form (i ∈ {0, 1, · · · })

ζ̄(k + 1) = (Am −KmCm)ζ̄(k), k ∈ {k′i, . . . , ki+1 − 1}
ζ̄(k + 1) = (Am −KmCm)ζ̄(k) + [(Am −Al)

− Km(Cm − Cl)]x̄(k), k ∈ {ki+1, . . . , k
′
i+1 − 1}

(2.16)

where x̄ = E[x]. The second term in (2.16) arises because a Kalman filter designed for the

discrete state m is being used to estimate the dynamics of the discrete state l. Combining
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(2.16), we express the error dynamics by ζ̄(k + 1) = (Am − KmCm)ζ̄(k) + y(k), k ∈
{k′i, . . . , k′i+1 − 1} where (i ∈ {0, 1, · · · })

y(k) =

{
0, for k ∈ {k′i, . . . , ki+1 − 1}
((Am −Al)−Km(Cm − Cl))x̄k, for k ∈ {ki+1, . . . , k

′
i+1 − 1}

(2.17)

From this, we get:

∥∥ζ̄(k + 1)
∥∥ ≤

∥∥∥(Am −KmCm)k+1−k′i ζ̄(k′i)
∥∥∥ +

∥∥∥∑k−k′i
l=0 (Am −KmCm)k−k′i−ly(k′i + l)

∥∥∥
(2.18)

where k ∈ {ki+1, . . . , k
′
i+1 − 1}.

Lemma 5. Given a matrix A ∈ Rn×n with all distinct eigenvalues,

‖At‖ ≤ k(A)αt(A), ∀t ≥ 0 (2.19)

where α(A) is the maximal absolute value of the eigenvalues of A, and k(A) = ‖Γ‖‖Γ−1‖,
the condition number of A under the inverse, where Γ−1AΓ = J , the Jordan canonical form.

Further simplification of (2.18) using Lemma 5 gives us

∥∥ζ̄(k + 1)
∥∥ ≤ k(Am − Cm)[α(Am −KmCm)]k+1−k′i

∥∥ζ̄(k′i)
∥∥

+k(Am − Cm)max ‖y(k)‖ (k − ki+1) (2.20)

where k ∈ {ki+1, . . . , k
′
i+1}. Since k′i+1 − ki+1 ≤ δ, if

‖y(k)‖∞ ≤ U = max ‖(Am −Al)−Km(Cm − Cl)‖1 X (2.21)

such that X ≥ ‖x‖∞, X > 0, we can write

∥∥ζ̄(k + 1)
∥∥ ≤ k(Am − Cm)[α(Am −KmCm)]k+1−k′i

∥∥ζ̄(k′i)
∥∥ +

√
nUδk(Am − Cm)

(2.22)

Lemma 6. Consider a hybrid system with a single discrete state, in which the discrete-time

evolution of the continuous state variable is given by x(k + 1) = ηx(k), |η| < 1. Suppose

the state x is subject to resets x(ts) = aηx(ts − 1) + b, occurring at switching times {ts},
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with a ≥ 1 and b ≥ 0. Then the evolution of x can be described by

x(k) = ηk−ts−1x(ts−1), k ∈ {ts−1, . . . , ts − 1}, s ∈ {2, 3, · · · } (2.23)

x(ts) = aηts−ts−1x(ts−1) + b (2.24)

Let us also assume there exists a lower bound β on the time between resets, i.e., ts− ts−1 ≥
β ≥ 1, for all s > 1. Then, if xt0 > 0 and µ = η

(
logη a

β
+1) such that |µ| < 1, x(k) converges

exponentially to the set [0, b
1−ηβ ] with a rate of convergence greater than or equal to µ.

Using (2.15), (2.21) and (2.22) with Lemma 5 and Lemma 6, we arrive at the following

theorem:

Theorem 2. Consider a stochastic linear hybrid system of the form in (2.1), a steady-

state error bound M0 and rate of convergence µ, |µ| < 1, |α(Am − KmCm)| ≤ |µ| for all

m ∈ {1, · · · , N}, where α(A) is the maximal absolute value of the eigenvalues of A. Let

k(A) = ‖Γ‖‖Γ−1‖, the condition number of A under the inverse, where Γ−1AΓ = J , the

Jordan canonical form. Suppose the following five conditions are satisfied:

1. The system is observable under Definition 2;

2. {Am, Cm} couples are observable, {Am, Q
1/2
m } couples are controllable, and (Am −

KmCm) is stable with all distinct eigenvalues, for all m ∈ {1, · · · , N};

3. There exists X > 0, ‖x(k)‖∞ ≤ X, k = 1, 2, ... such that

‖y(k)‖∞ ≤ U = max ‖(Am −Al)−Km(Cm − Cl)‖1 X

4. The maximum discrete state estimation delay, δ satisfies the relation

δ ≤ M0√
nUmaxm[k(Am −KmCm)]

(2.25)

5. The minimum time between switching events, β, known as the minimum sojourn time,

satisfies the conditions

β > β̄ + δ, where

β̄ > max
[

1
| log µ| log

∣∣∣
(
1−

√
nUδ maxm[k(Am−KmCm)]

M0

)∣∣∣ , maxm
log[k(Am−KmCm)]
| log[α(Am−KmCm)]|

]



28 CHAPTER 2. HYBRID ESTIMATION ALGORITHM

Then, a hybrid estimator can be designed that converges to within the steady-state bound

M0 with a rate of convergence greater than or equal to µ.

Corollary 1. If Conditions (1)-(4) of Theorem 2 are satisfied, then, given a steady-state

error bound M0 and a rate of convergence µ, an estimator can be designed that converges

exponentially to M0 with a rate of at least µ if the time between switching events is at least

β = β̄ + δ, where

β̄ = max
[

1
| log µ| log

∣∣∣
(
1−

√
nUδk(Am−KmCm)

M0

)∣∣∣ , max log[k(Am−KmCm)]
| log[α(Am−KmCm)]|

]

Theorem 2 and Corollary 1 provide conditions on switching times to guarantee expo-

nential convergence of hybrid estimators for stochastic linear hybrid systems. That is, for

exponential convergence of hybrid estimators for a stochastic linear hybrid system in (2.1),

the system must remain in a given discrete state long enough (i.e., it must satisfy the in-

equality in Condition 5 in Theorem 2) so that the estimation error divergence due to

the discrete estimation delay cannot destroy the exponential convergence when the discrete

estimation is correct.

2.1.3 Aircraft model for tracking

We test the exponential convergence condition for hybrid estimation algorithms in Theo-

rem 2 using aircraft tracking examples. For this purpose, in this section, we first derive

aircraft models for aircraft tracking in the plane. These models will be used throughout this

dissertation unless otherwise stated. Since an aircraft trajectory is composed of straight

lines and circular arcs, we model the dynamics of an aircraft as a discrete-time stochastic

hybrid system with two discrete modes: a constant velocity (CV) mode in which the aircraft

flies with constant velocity and constant heading so that its trajectory is a straight line,

and a coordinated turn (CT) mode in which the aircraft flies with constant yaw rate so that

its trajectory is a circular arc. The CV mode could correspond to different constant veloc-

ities, i.e., two different constant velocities could constitute the same CV mode. Similarly,

different yaw rates could correspond to the same CT mode. In other words, the CV mode

is parameterized with the aircraft’s velocity and the CT mode with the aircraft’s yaw rate.

In this way, two discrete modes can describe all possible values of the velocity and yaw rate

of aircraft.
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We use the coordinated turn model with one CT mode parameterized by a yaw rate instead

of multiple CT modes with different constant yaw rates, since a coordinated turn model

composed of a finite set of CT modes with known constant yaw rates could not estimate the

actual yaw rate and flight mode accurately, if the aircraft’s actual yaw rate is not matched

to one of the values of those used in the models. This is because the yaw rate estimate

comes from the finite set of predetermined yaw rates. To solve this problem, the yaw rate

is included as a state component, to be estimated. Thus, a new model has an additional

equation for the yaw rate ω:

ω(k + 1) = ω(k) + wω(k) (2.26)

where wω(k) is zero-mean white Gaussian noise. This model is nonlinear, so an extended

Kalman filter must be used for state estimation. However, the accuracy of yaw rate estimates

is sensitive to the design parameters used for state estimation. The estimate of yaw rate

oscillates severely around the true rate at the start of a maneuver. This model has been

used for aircraft tracking widely [1, 67, 18], however, because it has produced good position

and velocity estimates.

In order to obtain accurate yaw rate estimates, we use the Wiener-sequence acceleration

model [68] as the aircraft model for the coordinated turn mode. It assumes that the

acceleration increment is an independent, zero-mean, white Gaussian noise process, i.e.,

a(k) − a(k − 1) = w(k) (where a is an acceleration and w is a zero-mean, white Gaussian

noise). Standard Kalman filters are used for state estimation because this model is linear.

A radar is assumed to be used for measurements and thus we use only aircraft’s position

information. However, Automatic Dependent Surveillance-Broadcast (ADS-B) is assumed

to be used for measurements, both the aircraft’s position and velocity information are used

to estimate the aircraft’s current states.

If the state of an aircraft is defined as x = [x ẋ ẍ y ẏ ÿ]T , the aircraft model for constant

velocity (CV) mode is

x(k) =




1 T 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 T 0

0 0 0 0 1 0

0 0 0 0 0 0




x(k − 1) +




T 2/2 0

T 0

0 0

0 T 2/2

0 T

0 0




wcv(k) (2.27)
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y(k) =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
x(k) + vcv(k) (2.28)

For the coordinated turn (CT) mode, the aircraft model (Wiener-sequence acceleration

model) is

x(k) =




1 T T 2/2 0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T T 2/2

0 0 0 0 1 T

0 0 0 0 0 1




x(k − 1) +




T 2/2 0

T 0

1 0

0 T 2/2

0 T

0 1




wct(k) (2.29)

y(k) =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
x(k) + vct(k) (2.30)

where T is the sampling interval and wcv, wct, vcv, and vct are zero-mean, uncorrelated, white

Gaussian process noise and measurement noise for CV mode and CT mode, respectively.

The yaw rate estimate ω̂ is computed with a state estimate from (2.29) as follows:

ω̂(k) = sign(ˆ̇x(k)ˆ̈y(k)− ˆ̈x(k)ˆ̇y(k))

√
ˆ̈x(k)2 + ˆ̈y(k)2

ˆ̇x(k)2 + ˆ̇y(k)2
(2.31)

To get a smooth estimate of ω, we design a first-order, low-pass filter G(s) = 1
11.9s+1 .

Therefore, for aircraft tracking, we use a stochastic linear hybrid system model with two

modes which are parameterized with the velocity and yaw rate of the aircraft.

Example: Exponential convergence of hybrid estimation algorithms

We apply the hybrid estimator design criteria in Theorem 2 derived in Section 2.1.2 to

the design of an estimator for the switched, linearized trajectory of an aircraft. We consider

two discrete states, both coordinated turns, but with different angular velocities, one with a

turn rate of 2◦ per second, and the other with a turn rate of 5◦ per second, which represent

aircraft trajectories composed of slow turns and sharp turns. Here we use a simpler aircraft
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Figure 2.3: (a) Exponential convergence of error. (b) Convergence of error when modes have
same dynamics but different noise characteristics. The triangles denote discrete transition
times (µ = 0.99, M0 = 0, and T = 2sec).

model for a coordinated turn mode than that in Section 2.1.3, given by

xk =




1 sin ωT
ω 0 −1−cos ωT

ω

0 cosωT 0 − sinωT

0 1−cos ωT
ω 1 sin ωT

ω

1 sinωT 0 cosωT




xk−1 +




T 2

2 0

T 0

0 T 2

2

0 T




uk−1 + wk

yk =

[
1 0 0 0

0 0 1 0

]
xk + vk

(2.32)

where x = [ x1 ẋ1 x2 ẋ2 ]T with x1 and x2 the position coordinates, u = [ u1 u2 ]T

with u1 and u2 the velocity components, ω is the turn rate, T is the sampling interval, w

is the process noise, and v is the sensor noise. The yaw rate is fixed in the coordinated

turn model in (2.32), yet (2.29) can represent infinitely many yaw rates. We choose an

operating velocity of 150 knots. We find that for an instantaneous discrete decision time,

the time between discrete transitions should be at least 8 seconds to guarantee exponential

convergence with a rate of 0.99. The comparison of the bounds is shown in Figure 2-(a). We
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also note that by Lemma 5, the norm of the mean error does not have to be monotonic, but

if the conditions explained above are satisfied, it will be bounded by an exponential of rate

µ. This is also seen in the example. From Theorem 1, identical dynamics with different

noise characteristics in each discrete state can still make the system observable in the

stochastic hybrid context. We demonstrate this by designing an exponentially convergent

hybrid estimator for a switched aircraft trajectory - the two discrete states correspond to

2◦ per second turns with different process noise covariances. This is shown in Figure 2-(b).

2.2 Performance analysis of hybrid estimation algorithms

Discrete-time stochastic hybrid systems with the Markov discrete state dynamics have been

extensively used for many applications, such as multiple-target tracking problems [56] and

speech recognition problems [53]. Since we have established conditions for the observability

of the stochastic linear hybrid systems in Section 2.1, in this section, we analyze the perfor-

mance of hybrid estimators for a class of observable discrete-time stochastic linear hybrid

systems in which the discrete transitions are governed by finite-state Markov chains.

2.2.1 Discrete-time stochastic linear hybrid systems with the Markov dis-

crete state dynamics

For the sake of notational simplicity, in this section, we replace A(q(k)), B(q(k)), C(q(k)),

wk(q(k)), and vk(q(k)) in (2.1) with Ai, Bi, Ci, wi(k), and vi(k) respectively. We consider a

discrete-time stochastic linear hybrid system with the Markov discrete state dynamics [20]

defined as:

H :

{
x(k + 1) = Aix(k) + Biu(k) + wi(k)

z(k) = Cix(k) + vi(k)
, k ∈ N (2.33)

where x ∈ Rn, u ∈ Rl and z ∈ Rp are the continuous state, control input, and output

variables respectively. The index i ∈ {1, 2, · · · , N} represents the discrete state whose

evolution is governed by the finite state Markov chain

µ(k + 1) = Πµ(k) (2.34)
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where Π = {πij} ∈ RN×N is the mode transition matrix whose elements represent mode

transition probabilities, and µ(k) ∈ RN is the mode probability at time k. We denote the

process noise covariance and the measurement noise covariance as E[wi(k)wi(k)T ] = Qi ∈
Rn×n and E[vi(k)vi(k)T ] = Ri ∈ Rp×p respectively. We define Z(k) = {z(0), · · · , z(k)} as

the measurement sequence up to time k.

For aircraft tracking, we model the dynamics of an aircraft as a stochastic linear hybrid

system whose discrete state denotes the aircraft’s flight mode, since the flight mode changes

of an aircraft depend on the pilot’s input which is unknown to the surveillance system. This

unknown pilot’s input could be modelled as a random process, and we model the discrete

state dynamics as a finite Markov chain. Thus, we use the discrete-time stochastic linear

hybrid system in (2.33)-(2.34) as an aircraft model for tracking throughout this dissertation.

2.2.2 Multiple Model Adaptive Estimation (MMAE) algorithm

In this section, we consider a generic hybrid estimation algorithm for the discrete-time

stochastic linear hybrid system (2.33)-(2.34). Following the Bayesian estimation derivation

in [55], the state estimate of hybrid estimation is the conditional mean:

x̂(k + 1) = E[x(k + 1)|Z(k + 1)] =
∫ ∞

−∞
x(k + 1)p(x(k + 1)|Z(k + 1))dx(k + 1) (2.35)

where p(·|·) is the conditional probability density function, given by:

p(x(k + 1)|Z(k + 1)) =
p(x(k + 1), Z(k + 1))

p(Z(k + 1))
=

∑N
i=1 p(x(k + 1), Z(k + 1),mi(k + 1))

p(Z(k + 1))
(2.36)

Thus, the state estimate (2.35) is

x̂(k + 1)

=
∫∞
−∞ x(k + 1)

∑N
i=1 p(x(k + 1)|Z(k + 1),mi(k + 1))p(mi(k + 1)|Z(k + 1))dx(k + 1)

=
∑N

i=1 x̂i(k + 1)p(mi(k + 1)|Z(k + 1))
(2.37)

where x̂i(k + 1) =
∫∞
∞ x(k + 1)p(x(k + 1)|Z(k + 1),mi(k + 1))dx(k + 1) is the mode-

conditioned state estimate of x(k + 1) given mi(k + 1). x̂i(k + 1) is computed by the

state estimator matched to mode i. Therefore, the state estimate (2.37) is a weighted sum
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of N mode-conditioned state estimates produced by each Kalman filter with the weight

p(mi(k + 1)|Z(k + 1)). The weight can be expressed by

p(mi(k + 1)|Z(k + 1)) = p(z(k+1)|mi(k+1),Z(k))p(mi(k+1)|Z(k))
p(z(k+1)|Z(k))

= Λi(k+1)p(mi(k+1)|Z(k))
p(z(k+1)|Z(k))

(2.38)

where Λi(k+1) := N (ri(k+1); 0, Si(k+1)) is the likelihood function of mode i (a measure of

how likely the model used in Kalman filter i is the correct one), ri(k+1) = z(k+1)−Cix̂i(k+

1) is the residual produced by the Kalman filter i, Si(k + 1) ∈ Rp×p is the corresponding

residual covariance, and N (a; b, c) is the probability at a of a normal distribution with mean

b and covariance c. p(mi(k +1)|Z(k)) is the mode probability estimate at time k +1. If the

mode transitions are governed by a finite Markov chain, the mode probability estimate is

p(mi(k + 1)|Z(k)) =
∑N

l=1 p(mi(k + 1)|ml(k))p(ml(k)|Z(k))

=
∑N

l=1 πilp(ml(k)|Z(k))
(2.39)

Thus, the weight (mode probability) (2.38) is

p(mi(k + 1)|Z(k + 1)) =
1

c(k + 1)
Λi(k + 1)

N∑

l=1

πilp(ml(k)|Z(k)) =: µi(k + 1) (2.40)

where c(k + 1) is a normalization constant. The mode estimate at time k is chosen to be

the mode which has the maximum mode probability at that time. The mode probability

depends not only on the finite Markov chain but also on the likelihood produced by each

Kalman filter. The state estimate (2.37) is

x̂(k + 1) =
N∑

i=1

x̂i(k + 1)
[ 1
c(k + 1)

Λi(k + 1)
N∑

l=1

πilp(ml(k)|Z(k))
]

(2.41)

Equations (2.40)-(2.41) are referred to as the Multiple Model Adaptive Estimation (MMAE)

algorithm [55]. In MMAE, all individual Kalman filters run independently at every time

step (which is different from the Interacting Multiple Model (IMM) algorithm that will be

described next). Equation (2.41) shows that the state estimate depends on the likelihood

function, the performance of the hybrid estimator thus greatly depends on the behavior of

the likelihood function.
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Figure 2.4: Structure of the IMM algorithm (for two modes) from [1].

The Interacting Multiple Model (IMM) algorithm [56] (on which RMIMM is based) has the

same structure as MMAE except that it has a Mixing/Interacting step at the beginning of

the estimation process, which computes new initial conditions for mode-matched Kalman

filters at each time step. Detailed analysis of IMM will be discussed in a later section.

2.2.3 Sojourn time analysis for stochastic linear hybrid systems

In Section 2.1.2, we derived a condition under which hybrid estimation algorithms converge

exponentially to the true hybrid state, given the maximum mode estimation delay and the
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minimum sojourn time (β = minN
i=1 βi where βi is the minimum sojourn time at mode i).

Intuitively, until the correct mode is detected after a transition, the estimator is mismatched

and its mean-square error diverges (for the maximum mode estimation delay δ in the worst

case) and therefore it needs enough time (β̄: the time between mode changes required for the

convergence of the Kalman filters) in the correct mode after the correct mode detected for

the mean-square error to decrease before the next transition occurs. Therefore, β ≥ β̄ + δ

is the required minimum sojourn time of the system in order to guarantee exponential

convergence of the hybrid estimator. Since the sojourn time of the stochastic linear hybrid

system is governed by a finite Markov chain, we cannot compute the minimum sojourn time

exactly, rather with some probability. The probability of the system being in mode j at

time k + βi given that it is in mode i at time k (i.e. no mode transition in (k, k + βi)) is:

P (mj(k + βi)|mi(k)) = πβi−1
ii πji (2.42)

where mi(k) denotes the event that the mode at time k is mode i. Thus, the probability

that the sojourn time at mode i is greater than or equal to βi is

P (t ≥ βi) =
∞∑

t=βi

πt−1
ii (1− πii) = πβi−1

ii (2.43)

Proposition 1. Let β = mini βi (i ∈ {1, · · · , N}) be the minimum sojourn time for the

stochastic linear hybrid system (2.33)-(2.34) and j = arg mini βi. If β ≥ β̄ + δ, then hybrid

estimation algorithms for the stochastic linear hybrid system (2.33)-(2.34) in Section 2.2.2

can be guaranteed to converge exponentially to the true hybrid state with probability πβ−1
jj .

Proof. The proof follows from (2.43) and Theorem 2.

However, the probability in (2.43) becomes small rapidly as the required minimum sojourn

time β becomes large. In this case, the hypothesis of Proposition 1 holds with very small

probability and we can obtain very little useful information about the performance of hybrid

estimation algorithms through sojourn time analysis alone. This is because the sojourn time

analysis based on a finite Markov chain takes into account only the discrete dynamics of the

hybrid system. Therefore, we need to incorporate knowledge from the continuous dynamics

to get accurate performance analysis results of hybrid estimation algorithms.
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2.2.4 Steady-state and transient analysis for hybrid estimation

In this section, we first analyze the performance of hybrid estimation (either MMAE or

IMM) by analyzing steady-state mean residuals. Since steady-state analysis gives only

necessary conditions on the performance of hybrid estimation, we then analyze the transient

behavior of mode probabilities, which are functions of the likelihoods and therefore of the

residuals.

Motivated by Caputi [65], we first derive the steady-state mean residual for each mode i of

the hybrid system (2.33)-(2.34). We define the following quantities:

∆Ai := AT −Ai

∆Bi := BT −Bi

∆Ci := CT − Ci

∆uiss := uTss − uiss := limk→∞ uT (k)− limk→∞ ui(k)

x̂iss := limk→∞ x̂i(k)

ēiss := limk→∞E[ei(k)] = limk→∞E[(x(k)− x̂i(k))]

(2.44)

where the subscript T ∈ {1, · · · , N} represents the true mode. Following a procedure similar

to the one adopted by Hanlon et al. [69], the steady-state mean residual for mode i is

r̄iss = CT AT ēiss + (CT ∆Ai + ∆CiAT −∆Ci∆Ai)x̂iss + CT BT ∆uiss

+(CT ∆Bi + ∆CiBT −∆Ci∆Bi)uiss

= {CT AT [I − (I −KiCT )AT ]−1[(I −KiCT )∆Ai −Ki∆CiAi]

+(CT ∆Ai + ∆CiAT −∆Ci∆Ai)}x̂iss

+{CT AT [I − (I −KiCT )AT ]−1(I −KiCT )BT + CT BT }∆uiss

+{CT AT [I − (I −KiCT )AT ]−1[(I −KiCT )∆Bi −Ki∆CiBi]

+(CT ∆Bi + ∆CiBT −∆Ci∆Bi)}uiss

(2.45)

where Ki is the steady-state Kalman filter gain for mode i. We assume that the matrix

inverse in (2.45) exists. If mode i is the correct mode (i = T ), then r̄iss = 0. If r̄jss 6= 0

(∀j 6= i), then the correct mode can be detected. However, even if mode i is not the correct

mode (i 6= T ), the steady-state mean residual for mode i is zero if the following is true:

(I −KiCT )∆Ai −Ki∆CiAi = 0
∧

(CT ∆Ai + ∆CiAT −∆Ci∆Ai) = 0
∧

(I −KiCT )∆Bi −
Ki∆CiBi = 0

∧
(CT ∆Bi + ∆CiBT −∆Ci∆Bi) = 0

∧
∆uiss = 0. This means that if at least
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two models are identical and the corresponding control inputs are the same, then the steady-

state residuals of both the corresponding modes are zero. In this case, a hybrid estimation

algorithm will not work, as its performance depends on the differences between residuals,

which in turn arise from model differences and input differences. In the above condition,

the first four equalities come from model differences and the last equality comes from input

differences. From this condition, we know that the model differences and/or the input

differences should be large enough for hybrid estimation to work; this supports Maybeck’s

heuristic observation that the performance of MMAE depends on a significant difference

between the residual characteristics [55]. We now study the transient characteristics of the

mode probability (a function of the residuals) in detail to estimate the mode estimation

delay, which is a good measure of the performance of hybrid estimation.

We now consider the transient mean behavior of a hybrid estimator, and analyze its perfor-

mance in the sense of exponential convergence as defined in Definition 5. A steady-state

Kalman filter is assumed to be used as the state estimator for each mode. For the sake of

notational simplicity, we define a predicted mode probability of mode i at time k as

µ−i (k) :=
∑N

l=1 πilµl(k − 1) (2.46)

Using µi(k) := p(mi(k)|Z(k)) in (2.40), the condition for correct mode detection at time k

is: ∀i 6= T

µT (k) > µi(k)

⇐⇒ 1
c(k)ΛT (k)µ−T (k) > 1

c(k)Λi(k)µ−i (k)

⇐⇒ ΛT (k) > Λi(k)µ−i (k)

µ−T (k)

(2.47)

Since Λi(k) = N (r̄i(k); 0, Si(k)) = (2π)−n/2|Si|−1 exp[−1
2 r̄i(k)T S−1

i r̄i(k)] (Si = ST
i > 0)

where r̄ is the mean residual, (2.47) becomes

0 ≤ r̄T (k)T S−1
T r̄T (k) < r̄i(k)T S−1

i r̄i(k) + 2 ln
( |Si|
|ST |

)
+ 2 ln

(
µ−T (k)
µ−i (k)

)
(2.48)

To detect the correct mode exactly for any k ∈ N, (2.48) must hold for all k ∈ N (∀i 6= T ).

If there is a time delay (δT ) for correct mode detection when a mode transition into mode

T occurs at time kl (l ∈ N+), (2.48) holds for k ∈ [kl + δT , kl+1). For the existence of a

r̄T (k) satisfying (2.48), the right-hand-side in (2.48) must be greater than or equal to zero.



2.2. PERFORMANCE ANALYSIS OF HYBRID ESTIMATION ALGORITHMS 39

The following condition holds for a positive definite matrix S−1
i [70]:

λmin(S−1
i )r̄i(k)T r̄i(k) ≤ r̄i(k)T S−1

i r̄i(k) ≤ λmax(S−1
i )r̄i(k)T r̄i(k) (2.49)

where λmin(S−1
i ) and λmax(S−1

i ) are the minimum and the maximum eigenvalues of S−1
i

respectively. Thus, we have the following condition:

Proposition 2. The correct mode can be detected in δT time steps after a mode transition

at time kl if there exists δT ∈ N+ such that for k ∈ [kl + δT , kl+1) (l ∈ N+, ∀i 6= T ),

Condition 1 holds and either Condition 2 or Condition 3 is true.

1. r̄i(k)T S−1
i r̄i(k) + 2 ln

( |Si|
|ST |

)
+ 2 ln

(
µ−T (k)

µ−i (k)

)
> 0.

2. r̄T (k)T S−1
T r̄T (k) < r̄i(k)T S−1

i r̄i(k) + 2 ln
( |Si|
|ST |

)
+ 2 ln

(
µ−T (k)

µ−i (k)

)
.

3. ‖r̄T (k)‖2 <
λmin(S−1

i )

λmax(S−1
T )
‖r̄i(k)‖2 + 2

λmax(S−1
T )

[
ln

( |Si|
|ST |

)
+ ln

(µ−T (k)

µ−i (k)

)]
.

Condition 3 in Proposition 2 is a sufficient condition on, and might be a very conser-

vative test for, the correct mode detection. However, Condition 3 gives valuable insight

into the performance of hybrid estimation. Fast mode detection is dependent not only on

the magnitudes of the residuals produced by each Kalman filter but also on the residual

covariances. If λmin(S−1
i )

λmax(S−1
T )

is small and/or |Si|
|ST | is small, it is difficult for Condition 3 to hold

and thus to detect the correct mode. Therefore, by checking the eigenvalues of S−1
i and

the determinant of its inverse, we can tell which mode transitions are more detectable than

the others. This is similar to the idea of the observability grammian as a measure of which

states are more observable than others [43]. If we consider the steady-state mean of the

residual, Condition 3 becomes

‖r̄Tss‖2 <
λmin(S−1

i )
λmax(S−1

T )
‖r̄iss‖2 +

2
λmax(S−1

T )

[
ln

( |Si|
|ST |

)
+ ln

(µ−Tss

µ−iss

)
]

, ∀i 6= T (2.50)

Therefore, if the asymptotic behavior of the residuals satisfies (2.50) and the minimum

sojourn time is long enough for the residual to converge to its steady-state value, then

MMAE is guaranteed to estimate hybrid states correctly.
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We then derive the mode estimation delay δi using Condition 3 in Proposition 2. The

mean residual of the correct filter at time kl + δi (l ∈ N+), when i = T , are:

r̄T (kl + δT ) = CT AT [(I −KT CT )AT ]δT−1ēT (kl) (2.51)

The mean residual and the mean estimation error of the incorrect filter i (i 6= T ) at time k

are

r̄i(k) = CT AT ēi(k − 1) + [CT ∆Ai + ∆CiAT −∆Ci∆Ai]x̂i(k − 1)

+[CT ∆Bi + ∆CiBT −∆Ci∆Bi]u(k − 1)

=
[

CT AT CT ∆Ai + ∆CiAT −∆Ci∆Ai CT ∆Bi + ∆CiBT −∆Ci∆Bi

]

·
[

ēi(k − 1) x̂i(k − 1) u(k − 1)
]T

ēi(k) = (I −KiCT )AT ēi(k − 1) + [(I −KiCT )∆Ai −Ki∆CiAi]x̂i(k − 1)

+[(I −KiCT )∆Bi −Ki∆CiBi]u(k − 1)

=
[

(I −KiCT )AT (I −KiCT )∆Ai −Ki∆CiAi (I −KiCT )∆Bi −Ki∆CiBi

]

·
[

ēi(k − 1) x̂i(k − 1) u(k − 1)
]T

(2.52)

For the sake of notational simplicity, we define

FT := (I −KT CT )AT

Fi := (I −KiCT )AT

Hx
i := CT ∆Ai + ∆CiAT −∆Ci∆Ai

Hu
i := CT ∆Bi + ∆CiBT −∆Ci∆Bi

Gx
i := (I −KiCT )∆Ai −Ki∆CiAi

Gu
i := (I −KiCT )∆Bi −Ki∆CiBi

Li :=
[

CT AT Hx
i Hu

i

]

(2.53)

The norm of the mean residual of the correct filter at time kl + δT is

‖r̄T (kl + δT )‖ = ‖CT AT F δT−1
T ēT (kl)‖ ≤ σ̄(CT AT )σ̄(FT )δT−1‖ēT (kl)‖ (2.54)

where σ̄(·) denotes the maximum singular value. Similarly, from (2.52), the norm of the
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mean residual of the incorrect filter at time kl + δT is

‖r̄i(kl + δT )‖ ≥ σ(Li)‖ēi(kl + δT − 1)‖ ≥ σ(Li)σ
([

Fi Gx
i Gu

i

])δT−1
‖ēi(kl)‖ (2.55)

where σ(·) denotes the minimum singular value. We define

α := λmin(S−1
i )

λmax(S−1
T )

β(k) := 2
λmax(S−1

T )

[
ln

( |Si|
|ST |

)
+ ln

(µ−T (k)

µ−i (k)

)] (2.56)

Using (2.54), (2.55), and (2.56) in Condition 3 of Proposition 2, we obtain the following

condition:

σ̄(CT AT )2σ̄(FT )2(δT−1)‖ēT (kl)‖2 < ασ(Li)2σ
([

Fi Gx
i Gu

i

])2(δT−1)
‖ēi(kl)‖2

+β(k + δT )
(2.57)

Even though we cannot find the mode estimation delay δT explicitly from (2.57), (2.57)

will be used to derive a condition for instantaneous mode estimation. To find δT explicitly,

we try a different approach. From (2.52), the mean residual of the incorrect filter at time

kl + δT can be written as:

r̄i(kl + δT ) = CT AT F δT−1
i ēi(kl) + Hx

i x̂i(kl + δT − 1)

+CT AT [F δT−2
i Gx

i x̂i(kl) + · · ·+ Gx
i x̂i(kl + δT − 2)] + Hu

i u(kl + δT − 1)

+CT AT [F δT−2
i Gu

i u(kl) + · · ·+ Gu
i u(kl + δT − 2)]

(2.58)

We define

bi(kl + δT − 1) := Hx
i x̂i(kl + δT − 1) + CT AT [F δT−2

i Gx
i x̂i(kl) + · · ·+ Gx

i x̂i(kl + δT − 2)]

+Hu
i u(kl + δT − 1) + CT AT [F δT−2

i Gu
i u(kl) + · · ·+ Gu

i u(kl + δT − 2)]
(2.59)

Then, Condition 3 of Proposition 2 becomes

σ̄(CT AT )2σ̄(FT )2(δT−1)‖ēT (kl)‖2 < ασ(CT AT )2σ(Fi)2(δi−1)‖ēi(kl)‖2 + Ji(kl + δT )

(2.60)

where Ji(kl + δT ) := α‖bi(kl + δT − 2)‖2 + β(kl + δT ).

β(kl + δT ) = 2
λmax(S−1

T )

[
ln

( |Si|
|ST |

)
+ ln

(µ−T (kl+δT )

µ−i (kl+δT )

)]
might be negative, yet its magnitude is
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usually not large because it is in a logarithmic scale. Thus, Ji(kl +δT ) ≥ 0 is easily satisfied.

If Ji(kl + δT ) ≥ 0, we can have the following condition:

δT > 1 +
{

2 ln
[

σ(Fi)
σ̄(FT )

] }−1 {
− ln α + 2 ln

[
σ̄(CT AT )
σ(CT AT )

]
+ 2 ln

[‖ēT (kl)‖
‖ēi(kl)‖

]}
(2.61)

Proposition 3. The correct mode can be detected δT time steps after a mode transition if

Condition 1 of Proposition 2 holds and there exists δT ∈ N+, δT < kl+1 − kl, l ∈ N+,

∀i 6= T , such that either of the following conditions is true.

1. σ̄(CT AT )2σ̄(FT )2(δT−1)‖ēT (kl)‖2 < ασ(Li)2σ
([

Fi Gx
i Gu

i

])2(δT−1)
‖ēi(kl)‖2

+ β(k + δT )

2. δT > 1 +
{

2 ln
[

σ(Fi)
σ̄(FT )

] }−1 {
− lnα + 2 ln

[
σ̄(CT AT )
σ(CT AT )

]
+ 2 ln

[‖ēT (kl)‖
‖ēi(kl)‖

]}
,

when Ji(kl + δT ) ≥ 0.

For a system with only two discrete modes, we can further simplify (2.60) and also relax

the condition that Ji(kl + δT ) ≥ 0. To do this, we first consider (2.47). For a system with

two modes, for any time k ∈ [kl, kl+1), if T is the true mode in the interval [kl, kl+1),

µi(k + 1)
µT (k + 1)

=
Λi(k + 1)
ΛT (k + 1)

(
πiiµi(k) + (1− πTT )µT (k)
(1− πii)µi(k) + πTT µT (k)

)
(2.62)

Let Ω(k) = µi(k)
µT (k) . Then, for a diagonally dominant transition matrix Π,

Ω(k + 1) = Λi(k+1)
ΛT (k+1)

(
πiiΩ(k)+(1−πTT )
(1−πii)Ω(k)+πTT

)
≈ Λi(k+1)

ΛT (k+1)

(
πiiΩ(k)

(1−πii)Ω(k)+πTT

)
(2.63)

We assume that the estimator converges before the transition takes place, which gives us

µi(kl − 1) ≈ 1 (2.64)

µT (kl − 1) ≈ 0 (2.65)

Ω(kl) =
Λi(kl)
ΛT (kl)

(
πii

1− πii

)
(2.66)

After the transition at time kl and before detection,

1 ≤ Ω(k) ≤ ∞
=⇒ Λi(k+1)

ΛT (k+1)

(
πii

(1−πii)+πTT

)
≤ Ω(k + 1) ≤ Λi(k+1)

ΛT (k+1)

(
πii

1−πii

) (2.67)
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Detection occurs at the smallest δT when Ω(kl + δT ) < 1. Thus we try to find the smallest

δT such that

Λi(kl+δT )
ΛT (kl+δT )

(
πii

1−πii

)
< 1

=⇒ r̄T (kl + δT )T S−1
T r̄T (kl + δT ) < r̄i(kl + δT )T S−1

i r̄i(kl + δT ) + 2 ln
( |Si|
|ST |

)

−2 ln
(

πii
1−πii

) (2.68)

Using (2.54), (2.55), and (2.56), we obtain the following condition:

Proposition 4. For a hybrid system with two discrete modes, the correct mode can be

detected δT time steps after a mode transition if there exists δT ∈ N+, δT < kl+1 − kl,

l ∈ N+, i 6= T , such that

σ̄(CT AT )2σ̄(FT )2(δT−1)‖ēT (kl)‖2 < ασ(Li)2σ
([

Fi Gx
i Gu

i

])2(δT−1)
‖ēi(kl)‖2

+ 2
λmax(S−1

T )

[
ln

( |Si|
|ST |

)
− ln

(
πii

1−πii

)]

(2.69)

Proposition 4 implies that if (2.69) is satisfied, then the mode probability of the correct

mode is greater than those of the other modes, δT time steps after a mode transition at

time kl. Thus, the correct mode is detected δT time steps after a mode transition.

Now, we consider the conditions under which the mode change detection is instantaneous.

Consider the case of a system with two modes. Assuming that the time between discrete

transitions is sufficient to allow the Kalman filters to converge, we can assume that the

mode probabilities before the transition have converged. Following a procedure similar to

(2.62)-(2.69), we obtain

σ̄(CT AT )2‖ēT (kl − 1)‖2 < ασ(Li)2σ
([

Fi Gx
i Gu

i

])2
‖ēi(kl − 1)‖2

+ 2
λmax(S−1

T )

[
ln

( |Si|
|ST |

)
− ln

(
πii

1−πii

)] (2.70)

We can extend this to the instantaneous detection of a transition in a system with n modes.

Proposition 5. The correct mode is detected instantaneously if the following condition

holds (∀kl, l ∈ N+):

σ̄(CT AT )2‖ēT (kl − 1)‖2 < ασ(Li)2σ
([

Fi Gx
i Gu

i

])2
‖ēi(kl − 1)‖2

+ 2
λmax(S−1

T )

[
ln

( |Si|
|ST |

)
+ ln

(πjT

πjj

)
min

] (2.71)
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where
(πjT

πjj

)
min

is the smallest ratio of off-diagonal to diagonal elements in any row of the

transition matrix.

Along with Theorem 2, Propositions 2-5 present the conditions under which, in the

event of a mode detection delay δ, the sojourn time is long enough for the error convergence

during the period of correct detection (β−δ) to balance the divergence of the error during the

mode mismatch. From the present results, we now have a way of determining δ. Therefore,

combining the two results, we can evaluate the performance of a given hybrid estimator

and also find the minimum sojourn time required in each mode to guarantee exponential

convergence of the mean-square error.

2.2.5 Performance comparison between hybrid estimation algorithms

In this section, we discuss the performance of hybrid estimation and also compare the

performance of the MMAE and the IMM algorithms. We focus on the mode estimation

delay since usually, the smaller the mode estimation delay, the smaller the estimation error.

By investigating (2.61), we can explain the performance of hybrid estimation algorithms

qualitatively. For the mode estimation delay to be small, the following must be small if

Ji(kl + δT ) ≥ 0:

{
log

(
λmax(S−1

T )
λmin(S−1

i )

)
+ 2 log

[
σ̄(CT AT )
σ(CT AT )

]
+ 2 log

[‖ēT (kl)‖
‖ēi(kl)‖

]}
, (∀T ∈ {1, · · · , N}, ∀i 6= T )

(2.72)

where mode T is the correct mode after the mode transition at time kl (l ∈ N+). Firstly,
λmax(S−1

T )

λmin(S−1
i )

must be small. Here, the pre-computed residual covariance Si = CiP
ss
i Ci + Ri,

and P ss
i (the steady-state error covariance matrix computed by Kalman filter i) satisfies the

algebraic Riccati equation. Therefore, λmax(S−1
T )

λmin(S−1
i )

depends only on the system parameters

Ai, Ci, Qi, Ri and AT , CT , QT , RT . Thus, by checking the residual covariance matrices for

each Kalman filter (which can be done without any measurements), we can tell which mode

transition is more detectable than the others. In addition, since Qi and Ri are design

parameters for the Kalman filter i, and QT and RT are design parameters for the Kalman

filter T , we can make λmax(S−1
T )

λmin(S−1
i )

small by adjusting these parameters (also known as Kalman

filter tuning) and thus reduce the mode estimation delay. Secondly, if the condition number

of CT AT is close to 1, the second term becomes small. Thus, we also say which mode
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is more easily estimated than the others by checking the condition number of CT AT for

all T . Thirdly, ‖ēT (kl)‖
‖ēi(kl)‖ must be small, i.e., the mean state estimation errors produced by

mode-mismatched Kalman filters should be small (and close to the error produced by the

correct Kalman filter).

The mixing step in IMM was originally devised to reduce the complexity of the algorithm,

yet it also keeps the estimation errors produced by mismatched Kalman filters small. The

IMM algorithm readjusts, through the mixing step at each time instant, the initial condi-

tions for each Kalman filter, and shifts them closer to the (correct) estimate computed by

IMM at the previous time step. Therefore, the means of the state estimation errors produced

by the incorrect Kalman filters are close to that of the correct Kalman filter. Thus, the mode

estimation delay of IMM is smaller than that of MMAE (which does not have this mixing

mechanism). The smaller time delay translates to better estimation performance of IMM

compared to MMAE. Maybeck [55] proposes two ad hoc methods to improve adaptability of

MMAE: enforcing a lower bound on the mode probabilities and adding pseudonoise to the

the Kalman filter models. IMM does both inherently. We illustrate this through examples

in the next section.

2.2.5.1 Examples

MMAE and IMM Performance vs. Parameters (Monte Carlo Simulation, 100 trials)

Case Algorithm Mode Parameters
Instant Detection Mode detection delay λmax(S−1

T
)

λmin(S−1
i )

(b1 = b2 = 1) Condition Predicted Observed
a1 a2 c1 c2 2 → 1 1 → 2 δ∗1 δ∗2 δ1 δ2 T=1 T=2

1 MMAE 0.95 0.25 1 0.8
√ × 0 2 0 2 0.48 2.09

IMM
√ × 0 2 0 2

2 MMAE 0.85 0.85 0.8 0.2 × × 6 2 4 0 1.29 0.77
IMM × √

2 0 0 0
3 MMAE 0.95 0.85 1 0.4 × × 10 2 5 1 1.13 0.89

IMM
√ √

0 0 0 0

Table 2.1: Performance comparison between hybrid estimation algorithms: two mode ex-
ample

MMAE and IMM Performance vs. Parameters (Monte Carlo Simulation, 100 trials)

Case Algorithm Mode Parameters
Mode detection delay

max
λmax(S−1

T
)

λmin(S−1
i )

(b1 = b2 = b3 = 1) Predicted Observed
a1 a2 a3 c1 c2 c3 δ∗1 δ∗2 δ∗3 δ1 δ2 δ3 T=1 T=2 T=3

1 MMAE 1.2 0.25 0.95 0.8 1.0 0.8 2 0 7 1 0 5 1.2 0.80 1.26
IMM 1 0 5 1 0 4

Table 2.2: Performance comparison between hybrid estimation algorithms: three mode
example
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We first consider mode detection in a simple, one-dimensional system such as the one in

[20]. The dynamics is of the form

x(k) = aix(k − 1) + biu(k) + wi(k)

y(k) = cix(k) + vi(k)

u(k) = 5cos(
2πt

100
)

where the state variables and model parameters are scalar, there are 2 discrete modes,
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Figure 2.5: Mode estimates by (a) IMM and (b) MMAE: 100 trial Monte Carlo simulation
results. The asterisks denote mode estimation delay.

and the input is deterministic and sinusoidal. We estimate the hybrid state sequence from

the output sequence using both the MMAE and the IMM algorithms. We first check for

instantaneous mode detection at a switch using (2.70). We then compute the maximum

mode detection delay (or the minimum sojourn time needed to guarantee correct mode

detection) using (2.61) and (2.69). We perform this experiment for various values of the

model parameters and compare our predictions with the simulations. Clearly, IMM performs
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Figure 2.6: Estimation error by (a) IMM and (b) MMAE: 100 trial Monte Carlo simulation
results.

better than MMAE, especially in cases 2 and 3. Also, since we only compute a conservative

estimate of the mode detection delay, it is quite possible that the observed delay is less than

the computed bound (as in cases 2 and 3). Figure 2.5 shows the mode probabilities and

estimates for case 2. The reason for the difference in the performance of the MMAE and

IMM algorithms is clear when we consider the estimation errors in Figure 2.6. At the mode

transition times, the errors of the matched and mismatched filters of IMM are almost equal,

thus keeping (2.72), and therefore the mode detection delay, small. In our example, (2.72)

simply reduces to λmax(S−1
T )

λmin(S−1
i )

in the case of IMM estimation. Comparing these values for the

different transitions with the values of the delay in Table 2.1, it is seen that as predicted,

the smaller the value of (2.72), the smaller the mode detection delay. The biggest advantage

of this result is that given a system and its error bounds, this gives us a way to determine

a priori transitions to which modes are the most detectable. We also try a three-mode

example for the same system. The results are as expected, and are shown in Table 2.2.

We now consider an aircraft tracking example and recall the aircraft model derived in Section

2.1.3 which has two discrete states, the constant velocity (CV) mode and the coordinated

turn (CT) mode. This represents flight trajectories composed of straight lines and circular

arcs. For brevity, we only include the two mode example but the performance analysis
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Figure 2.7: Mode estimates by (a) IMM and (b) MMAE: 100 trial Monte Carlo simulation
results (mode CV = 0, mode CT = 1).

conditions can be applied to multiple-mode cases. In this example, we use a simpler version

of the aircraft model in Section 2.1.3 for simple analysis. The dynamics of both modes is

given by

x(k + 1) =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




x(k) +




T 2/2 0

T 0

0 T 2/2

0 T




ui(k) + wi(k) (2.73)

y(k) =

[
1 0 0 0

0 0 1 0

]
x(k) + vi(k), (i ∈ {CV, CT}) (2.74)

where x = [ x1 ẋ1 x2 ẋ2 ]T where x1 and x2 are the position coordinates, u = [ u1 u2 ]T

where u1 and u2 are the acceleration components. The control input has a different constant

value for each mode:

uCV =

[
0

0

]
for CV mode, uCT =

[
1.5

1.5

]
for CT mode (2.75)

T is the sampling interval, wi is the process noise, and vi is the sensor noise. We choose an

operating velocity of 150 knots. We design a flight trajectory such that the mode change
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from CV mode to CT mode occurs at time=45 seconds and the mode change CT mode

to CV mode occurs at time=56 seconds. Using Proposition 3 for IMM, we find that the

mode estimation delay for the mode switching from mode CV to mode CT is δct = 1 and

the mode estimation delay for the mode switching from mode CT to mode CV is δcv = 2.

Thus, we expect the mode switching from mode CV to CT to be more detectable than the

mode switching from mode CT to CV. Similarly, we obtain δct = 7 and δcv = 12 for MMAE.

Figure 2.7-(a) shows that IMM detects the mode change from mode CV to mode CT after

a 1 time step delay and the mode change from mode CT to mode CV after a 2 time step

delay. Similarly, Figure 2.7-(b) shows that MMAE detects the mode change from mode CV

to mode CT after a 6 time step delay and the mode change from mode CV to mode CT

after a 10 time step delay. The performance analysis predicts that IMM performs better

than MMAE and the simulation results support this.

2.3 Residual-Mean Interacting Multiple Model Algorithm

(RMIMM)

In this section, using the results of the performance analysis of hybrid estimation algorithms,

we propose a modified IMM algorithm called the Residual-Mean Interacting Multiple Model

(RMIMM), which has a likelihood function that uses the properties of the mean of the

residual produced by each Kalman filter. Using the idea proposed in Hanlon and Maybeck

[69] that the residual produced by each Kalman filter in the IMM algorithm should have a

non-zero mean if the Kalman filter is not the correct one, we design a likelihood function

that gives clearer and sharper differences between the correct mode and the other modes,

so that the number of false mode estimates decreases when compared to the standard

IMM algorithm. This property is useful since the standard IMM algorithm may frequently

produce incorrect mode estimates as the number of modes in the model increases. In this

section, we consider an autonomous discrete-time stochastic linear system (2.33)-(2.34), i.e.,

a system without control input (u(k) ≡ 0).

First, we investigate the IMM algorithm discussed briefly in Section 2.2.2 (as shown in

Figure 2.4) in detail. The components of IMM are defined as follows:
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1. Mixing probability: This is the probability that the system is in mode i at time

k − 1, given that it is in mode j at time k (i, j ∈ {1, · · · , N}):

µij(k − 1|k − 1) =
1
cj

πjiµi(k − 1) (2.76)

where cj is a normalization constant, and where µi(k) is the mode probability of mode

i at time k, i.e., a measure of how probable it is that the system is in mode i at time k.

The initial condition µi(0) is assumed given, and is usually obtained from properties

of the system.

2. New initial states and covariances: The input to each Kalman filter is adjusted

by weighting the output of each Kalman filter with the mixing probability as the

weight:

x̂0j(k − 1) =
∑

i

x̂i(k − 1)µij(k − 1|k − 1)

P0j(k − 1) =
∑

i

{Pi(k − 1) + [x̂i(k − 1)−x̂0j(k − 1)][x̂i(k − 1)

−x̂0j(k − 1)]T }µij(k − 1|k − 1)

where x̂i(k − 1) and Pi(k − 1) are the state estimate and its covariance produced by

Kalman filter i after the measurement update at time k − 1.

3. Kalman Filter: N Kalman filters run in parallel (multiple-model-based (hybrid)

estimation).

4. Mode likelihood functions: The likelihood function of mode j is a measure of how

likely it is that the model used in Kalman filter j is the correct one; it is computed

with the residual and its covariance produced by Kalman filter j:

Λj(k) = N (rj(k); 0, Sj(k)) (2.77)

5. Mode probabilities: The probability of mode j is a measure of how probable it is

that the system is in mode j:

µj(k) =
1
c
Λj(k)

∑

i

πjiµi(k − 1) (2.78)
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where c is a normalization constant. The probability of each mode is updated using

the likelihood function.

6. Combination (output of the IMM algorithm): The state estimate is a weighted

sum of the estimates from N Kalman filters and the mode estimate is the mode which

has the highest mode probability:

x̂(k) =
∑

j x̂j(k)µj(k)

P (k) =
∑

j{Pj(k) + [x̂j(k)− x̂(k)][x̂j(k)− x̂(k)]T }µj(k)

m̂(k) = arg maxj µj(k)

(2.79)

where m̂(k) is the mode estimate at time k.

As can be seen from the IMM algorithm and the performance analysis of hybrid estimation

algorithms in Section 2.2, the mode probability in (2.78) strongly depends on the likelihood

function Λj . Thus, if the likelihoods of the modes are close to each other, the mode estimate

may be inaccurate. Inaccurate mode estimates could produce poor state estimates, degrad-

ing the tracking accuracy. Because we are interested in using this for conflict detection, we

propose a method which reduces false mode estimation by increasing the difference between

the likelihood of the correct mode and the likelihoods of the other modes, using the fact

that if the Kalman filter corresponding to mode j is the correct one, then the residual in

(2.77) should be a white Gaussian process with a zero mean. Otherwise, its mean should

not be zero.

If we consider a discrete-time stochastic linear hybrid system (2.33) without the control

input (u(k) ≡ 0), from (2.52), the mean of the residual is

r̄j(k) = CT AT ēj(k − 1) + (CT ∆Aj + ∆CjAT −∆Cj∆Aj)x̂j(k − 1) (2.80)

and the mean of estimation error is

ēj(k) = (I −Kj(k)CT )AT ēj(k − 1)

+((I −Kj(k)CT )∆Aj −Kj(k)∆CjAj)x̂k(k − 1)
(2.81)

where Kj(k) is the Kalman filter gain for Kalman filter j. This is a recursive equation with

respect to the state estimation error. Thus, the mean of the residual is computed from

(2.80) and (2.81).
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To the best of our knowledge, all multiple-model-based estimation and learning algorithms

including various IMM algorithms use a likelihood function whose mean is zero to determine

the current mode in which the system lies [71, 52, 72]. We propose RMIMM, which uses

the mean of the residual to increase the difference between the likelihood of the correct

mode and those of the other modes, thereby decreasing the number of false mode estimates.

Since in the IMM framework there is no true model for sure, i.e., with probability 1, we

propose a new definition of the mean of the residual: a weighted sum of the mean of the

residual computed by each Kalman filter with the mode probability estimate in (2.78) as

the weight. Similarly, a new definition of the mean of the state estimation error is proposed

as a weighted sum of the mean of the state estimation error corresponding to Kalman filter

j with the same weight.

r̄j(k) :=
∑N

j=1{CT AT ēj(k − 1) + (CT ∆Aj + ∆CjAT −∆Cj∆Aj)x̂j(k − 1)}µ−j (k)

ēj(k) :=
∑N

j=1{(I −Kj(k)CT )AT ēj(k − 1)

+((I −Kj(k)CT )∆Aj −Kj(k)∆CjAj)x̂k(k − 1)}µ−j (k)
(2.82)

If the mode probability of mode j is large, the mean of the residual becomes small (i.e.,

close to zero) because the other mode probabilities µi(k) for ∀i 6= j are small (the residual

has a zero mean if the Kalman filter is the correct one). Since the proposed mean of the

residual is small if the mode probability of the corresponding Kalman filter is small, and

large if the mode probability of the corresponding Kalman filter is large, we can use the

mean of the residual in (2.82) to make the likelihood of the correct mode more distinct

from those of the other modes. Therefore, using the mean of the residual provided by each

Kalman filter, we propose a new likelihood function:

Λnew
j (k) =





Nj(k)Λj(k)∑N
i=1 Ni(k)Λi(k)

if r̄j(k) 6= 0

Λj(k) otherwise
(2.83)

where

Ni(k) =

{
‖r̄i(k)‖−1 if r̄i(k) 6= 0

1 otherwise

Proposition 6. The difference between the new likelihood function (2.83) for the correct

mode and those for the incorrect mode, is greater than the corresponding difference using

the previous likelihood function from (2.77).
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Proof. If the model in Kalman filter j is incorrect, the mean of residual is not zero and

the likelihood of mode j from the new likelihood function in (2.83) is less than that of

the standard likelihood function in (2.77). If the model in Kalman filter j is correct, the

likelihood of mode j from the new likelihood function is the same as that of the standard

likelihood function in (2.77). Thus, the differences between the likelihood of the correct

mode and those of incorrect modes are greater and the result follows.

2.3.1 Example: Tracking a single aircraft

We demonstrate the performance of the proposed RMIMM algorithm through an aircraft

tracking example, using the aircraft model described in (2.73)-(2.29) in Section 2.1.3. The

following Markov discrete state (mode) transition matrix defined in (2.34) is used

Π =

[
0.95 0.05

0.05 0.95

]
(2.84)

Here, the first column and the first row correspond to the CV mode and the second column
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Figure 2.8: 100 times Monte Carlo simulation results using IMM and RMIMM for the
aircraft tracking example. (a) Likelihood of each mode. (b) Mode probability of each
mode.
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and the second row correspond to the CT mode. For example, π12 represents the mode

transition probability from the CT mode to the CV mode. The discrete transition matrix

is a system parameter which represents the discrete dynamics of the system. However, we

could use this as a design parameter for hybrid estimation. The large diagonal values in

Π produce a large peak estimation error at the start of a maneuver but a small estimation

error when an aircraft stays in a certain mode. This can be expected from (2.78). Large

diagonal elements mean that the probabilities that an aircraft stays in a certain mode are

high and thus mode transition probabilities are low. Thus, hybrid estimation algorithms

using this discrete transition matrix tend to predict the aircraft will stay in the current

mode with a high probability. The mode transition probability matrix in (2.84) has been

chosen after many simulations. We design a test flight trajectory with constant aircraft
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Figure 2.9: A simulation result using IMM for the aircraft tracking example. (a) Likelihood
of each mode. (b) Mode probability and mode estimate of each mode.

speed v = 480 knots (kn), composed of seven segments: straight flight from 0 to 30 seconds,

a coordinated turn with ω = 3o/sec from 31 to 50 seconds, straight flight from 51 to 70

seconds, a coordinated turn with ω = 1.5o/sec from 71 to 90 seconds, straight flight from

91 to 110 seconds, a coordinated turn with ω = −4.5o/sec from 111 to 130 seconds, and

straight flight from 131 to 150 seconds. 100 trial Monte Carlo simulation results in Figure

2.8 show that RMIMM gives more distinct likelihoods of modes than those of the standard
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Figure 2.10: A simulation result using RMIMM for the same aircraft tracking example. (a)
Likelihood of each mode. (b) Mode probability and mode estimate of each mode.

IMM algorithm. In addition, a single simulation result in Figure 2.9 and Figure 2.10 shows

how RMIMM reduces the number of false mode estimates. The RMS estimation errors of

position and velocity using RMIMM are 15m and 2.1m/sec. The RMS estimation errors

of position and velocity using IMM are 18m and 2.3m/sec. The RMS estimation errors

of RMIMM are slightly better than those of IMM, yet both algorithms give smaller RMS

errors than those of the raw measurements. Thus, the main advantage of RMIMM – that

it gives better mode estimates than those of IMM – is demonstrated.
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Part II

Air Traffic Surveillance and

Control

57



58



Chapter 3

Multiple-Target Tracking and

Identity Management

In the previous chapter, we studied hybrid estimation algorithms for discrete-time stochas-

tic linear hybrid systems and have developed a new hybrid estimation algorithm, called the

Residual-Mean Interacting Multiple Model (RMIMM) algorithm. Now, we would like to

solve problems of tracking multiple aircraft and managing their identities in a noisy envi-

ronment for Air Traffic Control (ATC), using the RMIMM algorithm as a state estimator.

Figure 3.1-(a) shows such noisy measurements, called clutter, from a radar surveillance

system for ATC. Clutter is defined as measurements originated from non-targets, such as

nearby objects, weather, and electromagnetic interference, that are generally random in

number, location and intensity. From the noisy measurements shown in Figure 3.1-(a), we

cannot tell how many aircraft are in the surveillance region and what the trajectories of

aircraft look like. Thus, the goal of multiple-aircraft tracking and identity management in

a noisy environment is to keep track of the trajectories of aircraft and their identities simul-

taneously from the noisy measurements. Figure 3.1-(b) shows the estimated trajectories of

aircraft from the raw radar measurements.

In order to develop an algorithm for conflict detection and resolution for ATC, we need

a state estimation algorithm which can track the trajectories of all the aircraft in the

surveillance region of the sensors used (radars in the case of the current ATC) as shown in

Figure 1.1. This is because conflict resolution is based on conflicts detected by a conflict

59
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(a) (b)

Figure 3.1: (a) Clutter in raw radar measurements. (b) Estimated trajectories of aircraft
from raw radar measurements [2].

detection algorithm, and conflict detection is in turn based on estimates of an aircraft’s

current state such as position and velocity. Thus, for conflict detection and resolution,

it is crucial to develop an accurate state estimation algorithm which can track multiple

aircraft from potentially noisy measurements. In order to resolve conflicts, the current

ATC requires the individual identities of all aircraft. This is to enable a ground controller

to issue instructions for conflict resolution. For aircraft identification, most aircraft are

equipped with transponders which automatically transmit their own identities. However,

some general aviation aircraft are not equipped with transponders and it is reported that a

transponder itself may frequently malfunction [21]. When a controller detects a conflict but

does not know the identity of the aircraft involved in the conflict, he/she tries to identify the

aircraft through voice communications. This adds more load on the already congested voice

communication channels. The current aircraft identification procedures not only take time

but also increase the ground controller’s work load and distract his/her attention from other

aircraft in his/her region of responsibility. Therefore, we consider identity management

problems along with multiple-target (aircraft in this dissertation) tracking problems.

The multiple-target tracking problem deals with correctly tracking several targets given

noisy sensor measurements at every instant, while the identity management problem tries

to associate target identities with the state estimates available at every instant in a sensor
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network. Although closely related, the two problems have so far only been studied indepen-

dently. We foresee the application of such algorithms to tracking in sensor networks [24],

or to Air Traffic Control [1]. The chief emphasis of this work is in the development of an

advisory tool for Air Traffic Controllers, although with fairly simple modifications, it could

be applied to networks of sensors.

Most multiple-target data association and tracking algorithms proposed until now do not

attempt to use local attribute information about targets to improve their performance.

While they emphasize the need to track several targets simultaneously, they do not address

the necessity to distinguish between the different targets, and indeed, often lead to target-

swapping while tracking. In practice, given a network of sensors (or a radar system), in

addition to the continuous state measurements, we frequently also receive local sensor infor-

mation about identities, which can be exploited to reduce target-swapping during tracking.

In the case of radar systems, these may be derived from either the physical attributes of an

aircraft or from establishment of communication with one of the aircraft.

In reality, the multiple-target tracking and identity management (MTIM) problem is compli-

cated by several problems in the quality of available information about the targets. Firstly,

the surveillance system makes measurement errors assumed to be Gaussian and may miss

measurements entirely. In certain environments, the surveillance system may also measure

extraneous signals, known as clutter. The behavior of the targets also presents complex-

ity to the problem: many targets may be interacting in a small spatial region, and these

interactions increase the entropy (a measure of uncertainty) of the system. These issues

motivate the extension of the MTIM algorithm to cluttered environments and solving the

problems that arise in these larger, more complex systems.

For multiple-target tracking in clutter, we have to decide which measurement is associated

to which target and which measurements are clutter. This problem has been addressed by

several data association algorithms, which associate measurement data with targets [17].

One such algorithm is the Joint Probabilistic Data Association (JPDA) algorithm in which

a target kinematic information (position and velocity) is used for associating measurements

with targets. However, JPDA is computationally expensive, and might not work for tracking

many aircraft in clutter [73]. For this purpose, many modified versions of JPDA have been

proposed [74, 75, 73]. The approximate JPDA proposed in [73] is useful for tracking many

aircraft, but unfortunately does not give a stochastic association matrix whose elements
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represent measurement-target association probabilities, thus losing some of the physical

constraints imposed by the system. Assignment algorithms have also been used to overcome

the computational complexity of data association for multiple-target tracking problems [76,

77]. These assignment algorithms minimize the sum of all probabilistic distances between

measurements and expected target positions. This means that the assignment algorithms

select the measurement that is closest to the predicted measurement without considering

measurement-target correlation like nearest neighbor data association. Therefore, they

lose the advantage of the JPDA algorithm which considers all possible correlation between

measurements and targets.

In this chapter, for data association, we develop a modified approximate JPDA (MAJPDA)

which is more computationally efficient than JPDA and provides a stochastic association

matrix as JPDA. In order to overcome the defects of the previously proposed assignment

algorithms, we use data association probabilities computed by the MAJPDA algorithm as

weighting coefficients for the assignment problem and use the extended Munkres algorithm

[78, 79] in order to maximize the overall data association probability. In this way, we

can consider measurement-data correlation as JPDA does. The Munkres algorithm is an

assignment algorithm which computes an optimal assignment of N workers to N jobs,

assuming that numerical ratings are given for each worker’s performance on each job [78];

an extended Munkres algorithm works for the case in which the numbers of men and jobs

are different. We also develop a method of generating local information on the system when

such information is not explicitly available. For this, we use a Multiple Hypothesis Testing

(MHT) algorithm [20, 80] to correct the identities of the targets when targets are close and

thus their identities are mixed. By logically combining these algorithms, we develop the

MTIM algorithm which can keep track of multiple-aircraft in clutter and their identities.

3.1 Multiple-Target Tracking and Identity Management al-

gorithm

In this section, we consider the problem of associating time series of measurements to the

tracks and identities of one or more targets in the presence of clutter. The MTIM algorithm

approaches this problem using the structure shown in Figure 3.2 at each time step. This

section details the algorithms used to implement each of the three stages. Because these
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algorithms are independent of each other, their inputs and outputs do not interface exactly.

Other stages exist which process the outputs of any of these stages into a form that can be

input into another primary stages.

Data Association

Tracking/Hybrid

Estimation
Identity management

New Hybrid state Estimates Belief matrix

measurements Hybrid State Estimates

Figure 3.2: General Multiple-Target Tracking and Identity Management (MTIM) structure.

The first stage is Data Association, which consists of matching incoming measurements

to the targets. Given state estimates of T targets from the previous time step and M

measurements from the current time step, the Data Association block is used to generate

an M×T matrix of association probabilities. Entries in this matrix represent the probability

of a given measurement having originated from a given target.

The Tracking/Hybrid State Estimation block of MTIM performs the tracking of T targets

in parallel. The tracking algorithm for each target takes as input the hybrid state estimate

from the previous time k − 1 and a single measurement from the current time k. The

measurement input comes from the Data Association block. The hybrid state estimate

comprises position and velocity estimates, their covariances, and a flight mode estimate.

The output of the Tracking/Hybrid State Estimation block is the hybrid state estimate at

time k.

The Identity Management block takes as input the belief matrix from time k − 1 and the

T × T association probability matrix. Entries in the belief matrix represent the probability

that a given target (column) has a corresponding given identity (row). For example, the
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belief matrix is initialized to the identity matrix, since it is assumed that all targets initially

uniquely identified. The Identity Management stage outputs the belief matrix at time k.

The following sections discuss each structural block and the algorithms used to implement

the stages.

3.1.1 Data association algorithms

This section gives an overview of data association algorithms [17]. Consider the problems

of associating measurements and tracking one or more targets in the presence of random

noise (clutter). Denote z(k) as a measurement at time k and ẑ(k + 1|k) as a predicted

measurement at time k + 1 using information up to time k. Assume p(z(k + 1)|Zk) =

N (z(k + 1); ẑ(k + 1|k), S(k + 1)), where N (x; a, b) denotes a Gaussian random variable x

with mean a and covariance b. The validation gate is defined as:

Ṽk+1(γ) := {z(k + 1)|[z(k + 1)− ẑ(k + 1|k)]T S(k + 1)−1[z(k + 1)− ẑ(k + 1|k)] ≤ γ2}
= {z(k + 1)|rT (k + 1)S(k + 1)−1r(k + 1) ≤ γ2}

(3.1)

where r(k + 1) = z(k + 1)− ẑ(k + 1|k) is the residual, S(k + 1) is its covariance, and γ is a

design parameter which determines the size of the validation gate. Measurements that lie

inside the gate are considered valid. The set of validated measurements at time k is denoted

as:

Z(k) := {zi(k)}mk
i=1 (3.2)

where mk is a random variable. The measurement sequence up to time k is defined as:

Zk := {Z(j)}k
j=1 (3.3)

Thus, the problem of associating each validated measurement with an appropriate target

or identifying it as clutter and discarding it is known as data association, measurement

association, or data correlation. The set of validated measurements consists of both the

potentially correct and incorrect measurements.

Nearest-Neighbor Standard Filter (NNSF)

Consider tracking a target in clutter. The Nearest-Neighbor Standard Filter (NNSF) se-

lects the validated measurement closest to the predicted measurement and uses it for state
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estimation, where the distance measure is given by

d(z(k))2 = rT (k)S(k)−1r(k) (3.4)

The distance defined in (3.4) is a weighted distance with the inverse of the measurement

prediction uncertainty represented by S(k) (residual covariance) as a weight. For example,

Figure 3.3 shows that measurements z1 and z3 are validated for Target 1 whose predicted

measurement is denoted as ẑ1, measurements z2, z3 and z5 for Target 2, and z4 is not

validated for either target. The NNSF selects measurement z3 as the correct measurement

for both targets because z3 is the closest measurement to both the predicted measurements

for Target 1 and 2. However, this is physically impossible because only one measurement

can originate from one target. This incorrect measurement-target association comes from

the fact that the residual covariance matrix S computed by a state estimator (Kalman

filter in this dissertation) could not account for the possibility of incorrect measurement

association. Thus, the performance of the NNSF might be poor in such cases.

z1(k+1|k)
^

z2

z1

z3

z4

z2(k+1|k)
^

z5

Figure 3.3: Validation Gate.

Probabilistic Data Association (PDA)

Consider problems of tracking a single target in clutter. Among the possibly many validated

measurements, only one is target-originated, and the other measurements are assumed to
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be clutter and modelled as independent identically distributed (IID) random variables with

a uniform spatial distribution.

The basic assumption of Probabilistic Data Association (PDA) is:

p(x(k)|Zk−1) = N (x(k); x̂(k|k − 1), P (k|k − 1)) (3.5)

i.e., the state is assumed to be Gaussian according to the latest estimate x̂(k|k − 1) and

covariance P (k|k − 1). Define the events

θi(k) := {zi(k) is the true measurement}
θ0(k) := {none of the measurements at time k is true}

(3.6)

with probability βi(k) := p(θi(k)|Zk), i ∈ {0, 1, · · · ,mk} , called the association probability,

and
∑mk

i=0 βi(k) = 1. Then, the conditional mean state estimate at time k is:

x̂(k|k) = E[x(k)|Zk] =
∑mk

i=0 E[x(k)|θi(k), Zk]p(θi(k)|Zk) =
∑mk

i=0 x̂i(k|k)βi(k) (3.7)

The association probability βi(k) is:

βi(k) = p(θi(k)|Z(k),mk, Z
k−1)

= 1
cp(Z(k)|θi(k),mk, Z

k−1)p(θi(k)|mk, Z
k−1)

=

{
V −mk+1

k P−1
G N (ri(k); 0, Si(k))p(θi(k)|mk, Z

k−1), for i = 1, · · · , mk

V −mk
k p(θi(k)|mk, Z

k−1), for i = 0
(3.8)

where Vk is the volume of the validation gate and PG := {z(k) ∈ Ṽk(γ)} is the gate probability

that the correct measurement lies in the validation gate.

Since PDA is based on the assumption that there is one target and only one measurement

is correct and all others are clutter, its performance could be poor when there are multiple

targets. In the next section, we consider multiple target tracking problems.

Joint Probabilistic Data Association (JPDA)

The Joint Probabilistic Data Association (JPDA) algorithm is an extension of PDA to

the situation in which there is a known number of targets in clutter. If there are several
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targets in the same neighborhood, measurements from one target can persistently fall in

the validation gate of a neighboring target. Since PDA could not account for this situation,

its performance could degrade significantly in such a situation.

The key to the JPDA algorithm is the evaluation of the conditional probabilities of the

following joint events:

Θ =
mk⋂

j=1

θjt, j = 1, · · · ,mk; t = 0, 1, · · · , T (3.9)

where θjt := {measurement j originated from target t}. For example, for the case in Figure

3.3, one possible joint event is an event that z2 originates from Target 1, z1 originates

from Target 2, and z3, z4, and z5 are clutter. There are combinatorial many possible

joint events (in the case in Figure 3.3, there are 5!
2! = 60 joint events) and thus computing

the probabilities of all possible joint events would be computationally intractable as the

number of targets and measurements increase. We can reduce the number of joint events

using validation gates. For example, the above joint event is not feasible because z1 could

not originate from Target 2 since it does not lie in the validation gate of Target 2. A joint

event association matrix can be represented by the matrix

Ω̂ = [ω̂jt(Θ)], where ω̂jt(Θ)

{
1 if θjt ⊂ Θ

0 otherwise
(3.10)

where Ω̂ is a (mk × (T + 1)) matrix. ω̂jt = 1 represents an event that measurement j

originates from target t. The first column in Ω̂ corresponds to the event t = 0 which

represents the no target event. That is, ω̂j0 represents an event that measurement j is

clutter. A feasible joint event is one which satisfies:

1. A measurement can have only one target (j = 1, · · · ,mk).

τj(Θ) :=
∑T

t=0 ω̂jt(θ) = 1 ← measurement association indicator

2. No more than one measurement can originate from a target (t = 1, · · · , T ).

δt(Θ) :=
∑mk

j=1 ω̂jt(Θ) ≤ 1 ← target detection indicator
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For example, a feasible joint event for the case in Figure 3.3 is

Ω̂ =




0 1 0

0 0 1

1 0 0

1 0 0

1 0 0




(3.11)

which represents an event that z1 originates from Target 1, z2 originates from Target 2, and

z3, z4 and z5 are clutter. Measurements not associated with any target are assumed to be

uniformly distributed in space. We define the following notation:

φ(Θ) :=
∑mk

j=1[1− τj(Θ)], ← number of unassociated measurements in event Θ

PD : target detection probability
(3.12)

Then, the association probability is

βjt =
∑

Θ p(Θ|Zk)ω̂jt(Θ)

p(Θ|Zk) = 1
c

φ!
V φ

∏mk
j=1[Ntj (zj(k))]τj

∏T
t=1(P

t
D)δt(1− P t

D)1−δt
(3.13)

where Ntj (zj(k)) := N (zj(k); ẑtj (k|k − 1), Stj (k)) and ẑtj (k|k − 1) denotes the predicted

measurement for target tj with an associated residual covariance Stj . A more detailed

explanation of PDA and JPDA is provided in [81].

3.1.2 Identity management algorithm

Identity management denotes the assignment of labels to targets and the evolution of the

labels over time. The interaction of multiple targets could make the problem complex.

Indeed, a common approach to this problem is to maintain probabilities of all possible

label-target assignments at each time step in the system. The computational complexity of

such an algorithm grows exponentially in time.

A scalable distributed algorithm for computing and maintaining multiple-target identity

information has been developed using Identity-Mass Flow which overcomes the exponential

computational complexity problem [24]. This algorithm maintains identity information
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over time given information about the interaction between N targets. This information is

stored in an N × N identity belief matrix B(k)(= [Bij(k)]), where k is the current time

step. The matrix is doubly stochastic; that is,
∑N

i=1 Bij(k) = 1, for j ∈ {1, . . . , N} and
∑N

j=1 Bij(k) = 1, for i ∈ {1, . . . , N}. The evolution of this belief matrix is governed by

a mixing matrix M(k)(= [Mij(k)]), which stores interaction information for a single time

step. Mij(k) represents the probability that target i at time k − 1 has become target j at

time k. The belief matrix is updated according to the equation [24]

B(k) = B(k − 1)M(k). (3.14)

In certain applications, identity information about a target could be obtained from sensors

which can measure its physical attributes, such as the shape and noise characteristics.

For example, in applications of ad-hoc sensor networks, vision sensors (acoustic sensors)

can measure the shape (noise characteristics) of a target and from this measurement, its

identity can be inferred [72]. This information about the identity of a target obtained from

sensors, is called local information in this dissertation. Identity management can also utilize

this target attribute information, if available from local sensors, to maintain the identity of

a target correctly.

The identity management algorithm in [24] assumes that target position estimates are given,

but in practice, it is difficult to obtain the target position state estimates accurately enough

for the identity management algorithm to work in the multiple-target tracking environment.

For example, in Air Traffic Control (ATC) applications, tracking multiple maneuvering

aircraft in clutter is not trivial, as shown in Section 3.1.1. Data association for target

tracking and identity management are closely related since both algorithms compute and

update the relation between tracks and targets.

3.1.3 Incorporation of Local Information

In this section, we consider a problem of how local information, if available, could be used

to reduce the uncertainty of the belief matrix. For this, we use the entropy of a probability

vector f ∈ [0, 1]n, defined as H(f) :=
∑n

i=1−fi ln fi, as an uncertainty measure of the

probability vector f . Using this, we define the average entropy of the belief matrix B(k) of

the N targets as H̄(B(k)) := 1
N

∑N
j=1 H(bj(k)), where B(k) =

[
b1(k) · · · bN (k)

]
. The
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average entropy of the belief matrix is used as a measure of statistical uncertainty of the

probability density of the identity of the N targets. In the belief matrix, since the columns

represent the probabilities of identity belief for each target, the probability distribution of

belief for each target is given by the corresponding column. Using this definition, we can

prove Lemma 1 in [24].

Lemma 7. Let H̄(B(k)) be the average entropy over all the columns of the belief matrix

B(k). Then, H̄(B(k)) ≥ H̄(B(k − 1)), if B(k) = M(k)B(k − 1); that is, mixing does not

decrease the average entropy.

Proof. From the definition of average entropy of the system,

H̄(B(k)) = 1
N

∑N
j=1 H(bj(k))

= 1
N

∑N
j=1 H([M(k)B(k − 1)]j)

= 1
N

∑N
j=1 H([

∑N !
i=1 αiΦiB(k − 1)]j)

= 1
N

∑N
j=1 H(

∑N !
i=1 αi[ΦiB(k − 1)]j)

≥ 1
N

∑N
j=1

∑N !
i=1 αiH([ΦiB(k − 1)]j)

(3.15)

where Φi is a permutation matrix. But premultiplying by a permutation matrix simply

permutes the rows, so the set of values in the column does not change.

=⇒ H([ΦiB(k − 1)]j) = H(bj(k − 1)) (3.16)

Therefore, we get

H̄(B(k)) ≥ 1
N

∑N
j=1

∑N !
i=1 αiH(bj(k − 1))

= 1
N

∑N
j=1 H(bj(k − 1)), since

∑N !
i=1 αi = 1

= H̄(B(k − 1))

(3.17)

Corollary 2. Since H̄(B(k)) = 1
n

∑N
j=1 H(bj(k))(sum over columns) = 1

n

∑N
j=1 H(bj(k))

(sum over rows), the same proof of no decrease of entropy holds for mixing of the form

B(k) = B(k − 1)M(k).

In the identity management algorithm, we assume that local information arrives in the

form of a column vector whose elements represent the probabilities of identity belief of a
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target. We replace the column corresponding to the target in the belief matrix with local

information, and scale the rest of the belief matrix to make it doubly-stochastic, using

Sinkhorn scaling [82]. We now investigate in detail when the local information should be

used to reduce uncertainties of the beliefs of targets’ identities.

1. Identity-type local information: This is local information which gives with cer-

tainty the identity of one of the targets. In the implementation, this corresponds

to local information in the form of a column unit-vector. We could not find a case

in which identity-type local information increases the entropy of the system through

many simulations. The entropy of identity-type local information is zero since it is in

the form of a unit vector. Thus, from these observations, we believe that it decreases

the entropy of the system.

Conjecture 1. Identity-type local information always reduces the entropy of the sys-

tem.

Therefore, identity-type local information should be incorporated to reduce the un-

certainty of the belief matrix.

2. General forms of local information: In general, local information is in the form

of a stochastic column vector (elements sum to 1). In this case, clearly, the effect on

the entropy depends on the elements of the column and need not necessarily decrease

the entropy. Consider, for example, the belief matrix

[
0.8 0.2

0.2 0.8

]
. The average

entropy of this matrix is 0.5004. If local information arrives at column 2 in the

form

[
0.3

0.7

]
, then the corresponding doubly stochastic matrix after Sinkhorn scaling

is

[
0.7 0.3

0.3 0.7

]
. The average entropy of the updated matrix is 0.6109, that is, the

average entropy increases when we incorporate information of this form. Therefore,

local information in the form of a stochastic vector should be incorporated only if it

decreases the average entropy of the belief matrix.

The above statements have important implications in the incorporation of local information.

Sinkhorn iteration is an approximate algorithm to obtain a doubly-stochastic matrix, and

there may be situations in which the incorporation of local information would increase
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our uncertainty in belief. However, we are justified in always incorporating identity-type

information. Since it is computationally quite simple to compute the average entropy, we

only incorporate general local information if the doubly-stochastic matrix after the Sinkhorn

scaling has a smaller average entropy than before the incorporation of the local information.

3.2 Multiple-Target Tracking and Identity Management in

an environment without clutter

Let us assume, for the moment, that we are operating in an environment without clutter,

meaning that each measurement corresponds to a target, and there are exactly as many

targets (T ) as measurements (T ). Then, the target detection probability PD = 1, the

number of unassociated measurements φ(Θ) = 0, and the measurement association indicator

τj(Θ) = 1 defined in Section 3.1.1. The association probability in (3.13) becomes

βjt(k) =
∑

Θ

[
T∏

j=1

N [zj(k)]ω̂jt(Θ)] (3.18)

We apply the Sinkhorn iteration to the association matrix A(k) := [βjt(k)] to make it

a doubly-stochastic matrix A′(k), and we use A′(k) as the mixing matrix M(k) in the

identity management algorithm. Then, the evolution of the belief matrix is governed by

(3.14). Thus, the MTIM algorithm for an environment without clutter is as follows:

Algorithm 1. Algorithm for Multiple-target Tracking and Identity Management in an en-

vironment without clutter

For target t (t ∈ {1, · · · , T}),

• Step 1: mixing/interaction: initialize x̂0i(k − 1|k − 1) and P01(k − 1|k − 1)

• Step 2: Kalman Filter i (for mode i, i ∈ {1, · · · , N})

1. State propagation/prediction

x̂i(k|k − 1) = Aix̂0i(k − 1|k − 1)

Pi(k|k − 1) = AiP0i(k − 1|k − 1)AT
i + Qi

Si(k) = CiPi(k|k − 1)CT
i + Ri

(3.19)
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2. Measurement Validation

rij(k)T Si(k)−1rij(k) < γ2 (3.20)

where rij(k) = zj(k)−Cix̂i(k|k − 1) (j ∈ {1, · · · ,mi
k}) and mi

k is the number of

validated measurements for target i at time k.

3. Measurement Update

(a) Compute an association matrix using (3.18) and a mixing matrix by making

the association matrix a doubly stochastic matrix using Sinkhorn iteration.

(b) Update the belief matrix using (3.14).

(c) If local information arrives and it decreases the entropy of the belief matrix,

then update the column corresponding to the local information, and scale the

rest of the matrix (using Sinkhorn iteration) to make it doubly-stochastic.

(d) Update the continuous state estimate and its covariance

x̂i(k|k) = x̂i(k|k − 1) + Ki(k)
∑mi

k
l=1 βil(k)ril(k)

Pi(k|k) = [I −Ki(k)Ci]Pi(k − 1|k − 1) + Ki(k)[
∑mi

k
l=1 βil(k)ril(k)ril(k)T

−(
∑mi

k
l=1 βil(k)ril(k))× (

∑mi
k

l=1 βil(k)ril(k))T ]Ki(k)T

(3.21)

where a Kalman filter gain Ki(k) = Pi(k|k− 1)CT
i [CiP (k|k− 1)CT

i + Ri]−1.

• Step 3: Compute mode likelihood functions

Λi(k) = N (ri(k); 0, Si(k)) (3.22)

where ri(k) :=
∑mi

k
l=1 βil(k)ril(k).

• Step 4: Compute mode probabilities: µi(k).

• Step 5: Compute outputs: x̂(k|k), P (k|k), m̂(k) using (2.79) and B(k).

3.2.1 Simulation results

We consider a three-aircraft scenario, in which given the (noisy) measurements of the po-

sition coordinates of three different aircraft (in random order) at every instant of time, we
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track the aircraft not only in their state estimates, but also with respect to their identities.

This is representative of a scenario in which we might receive local information about one

of the aircraft, based on, perhaps, its physical attributes such as the shape and noise char-

acteristics of the aircraft. The simulation results are shown in Figures 3.4. From the figure,

it is clear that the proposed algorithm is effective in maintaining both track and identity,

and is also capable of incorporating any local information that may become available in a

manner consistent with the system behavior.
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Figure 3.4: (a) Trajectory comparisons, (b) Belief matrix evolution.

3.3 Multiple-Target Tracking and Identity Management in

clutter

In this section, we extend the MTIM algorithm developed in the previous section to its

application in a cluttered environment. We first present the structure of the MTIM algo-

rithm. Next, each step is detailed in its specific use in the MTIM algorithm for a cluttered

environment. Figure 3.5 shows the evolution of hybrid state estimates and identity at a

single time k. The first stage is State Prediction, which generates an estimate of the state at

time k based only on the outputs of MTIM at time k−1. This stage is performed in parallel
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for each of the N targets. The next stage is Measurement Validation/Association. There

are at least N (the number of targets) measurements input to the MTIM algorithm at time

k. The measurements are validated in validation gates defined by the predicted states of

the targets. The JPDA algorithm can be used to choose N measurements and generate

an N × N mixing matrix M(k). However, in order to deal with many targets in clutter

with good accuracy, we develop a modified approximate JPDA (MAJPDA) to generate the

mixing matrix. The approximate JPDA on which MAJPDA is based outperforms JPDA

for large numbers of measurements, such as in a cluttered environment [73]. The extra

modification is to make the N ×N subset of the association probability matrix β(k) doubly

stochastic, resulting in a mixing matrix. The element at the ith row and the jth column of

the mixing matrix M(k), output by MAJPDA, contains the probability that measurement

i, of the chosen N measurements, is associated with target j.

Measurement assignments Mixing matrix Local information

N state predictions, residual covariancesMeasurements

Hybrid state estimates

Hybrid state estimates Belief matrix

State Prediction

Measurement Validation/
Association

Local Information
Incorporation

Belief Matrix UpdateState Estimate Update

Figure 3.5: MTIM Block Diagram.

The outputs from this stage are the mixing matrix and the one-to-one assignment between

the N chosen measurements and the N targets. The assignment between the measurements

and targets are then input to the State Estimate Update block. The RMIMM algorithm
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is used to update continuous state, covariance, and mode estimates for each of the N tar-

gets. These estimates are part of the MTIM algorithm output for time k and are input to

the State Prediction block at time k + 1. The other output from the Measurement Vali-

dation/Association block, the mixing matrix, is input to the Belief Matrix Update block.

This block updates the belief matrix from time k − 1 to reflect the interaction described

by the mixing matrix. The Local Information Incorporation block generates target identity

information and incorporates this information into the belief matrix only if it reduces un-

certainty in the belief matrix [37]. The belief matrix and the hybrid state estimate are the

outputs generated by the MTIM algorithm at each time step. The following sections detail

each block and present the logic behind various algorithmic choices.

3.3.1 State Prediction

State prediction is carried out for each of the N targets. The details that follow refer to the

procedure used for a single target. The stage takes as input the continuous state estimates

x̂i(k− 1|k− 1), covariances Pi(k− 1|k− 1), and mode probabilities µi(k− 1), where i refers

to the mode of the target. The output of the block is a prediction of the state and its

covariance at time k without information from time k. First, the mixing stage of RMIMM

is used to combine the state estimates from the different modes, resulting in new initial

states x̂0i(k− 1|k− 1) and covariances P0i(k− 1|k− 1). These are input to a set of Kalman

filters, one for each mode, without measurement inputs. The outputs of the Kalman filters

are state predictions

x̂i(k|k − 1) = Aix̂0i(k − 1|k − 1), (3.23)

covariances

Pi(k|k − 1) = AiP0i(k − 1|k − 1)AT
i + Qi, (3.24)

and residual covariances

Si(k) = CiPi(k|k − 1)CT
i + Ri, (3.25)

The mode estimate m̂(k−1) from the previous time step is used to obtain a single continuous

state prediction x̂(k|k − 1) and a single residual covariance S(k). Because the predicted

state is assumed to have a Gaussian distribution, the state prediction is the mean (center)

of the validation gate of the target, while the residual covariance is the covariance of the
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validation gate. S(k) is also supposed to be used to determine the size of the validation

gate, according to (3.1). However, when a target changes modes (starts a maneuver), the

Kalman filter overestimates its confidence in its state estimate, which results in a smaller

S(k) than is appropriate. Often, the measurement of the maneuvering target does not fall

inside its validation gate; as a result, the size of the validation gate must be increased.

This increase is obtained by increasing the state covariance S with an additional term that

compensates for the additional uncertainty about the maneuvering target. This additional

term is related to the state velocity estimate v̂ according to the expression

Sextra = τ2v̂v̂T + ν2v̂⊥v̂⊥T , (3.26)

where v̂⊥ is obtained by rotating v̂ by 90o in the counterclockwise direction. The effective

residual covariance S′ is then equal to

S′ = S + Sextra. (3.27)

Since Sextra is positive definite, the region covered by the validation gate created from S′

is larger than that created by S, as shown in Figure 3.6. In this figure, the smaller ellipse

is the validation gate as determined by S, while the larger ellipse is that determined by

S′. The extended validation gate is longer in the cross-track direction to account for the

likelihood of targets maneuvering to either side of their expected track. The constants τ

and ν are chosen empirically to ensure that maneuvers are extremely unlikely to lead to

measurements outside validation gates; the cross-track term ν is chosen to be larger than

the along-track term τ . The additional term Sextra is related to velocity because errors in

track due to a maneuver will be directly related to the velocity of the target. Thus, the

outputs from the first block are state prediction x̂t(k|k − 1), residual covariance St(k), and

effective residual covariance S′t(k) for target t. There are N sets of outputs, one set for each

target. The effective residual covariance S′ is used for measurement validation only.

3.3.2 Measurement Validation/Association

We first define the residual rt
j(k) = zj(k) − Ctx̂t(k|k − 1) for target t and measurement

j. The measurement at position zj(k) falls inside the validation gate if (3.1) is satisfied,

with S(k) replaced with the effective residual covariance S′(k). Given the set of validated
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Figure 3.6: Validation gates determined by the original residual covariance S and the effec-
tive residual covariance S′ which accounts for the maneuvering uncertainty of a target.

measurements, MAJPDA is used to obtain the association probability matrix β(k) and the

mixing matrix M(k).

The approximate JPDA (AJPDA) algorithm is a computationally abbreviated version of

JPDA [73]. Denote the Gaussian probability density function of the residual Ntj (zj(k)) as

Gjt(k). Thus, Gjt(k) is proportional to the Gaussian likelihood function that represents the

closeness between target t and measurement j. We let

Pst(k) :=
∑

j

(Gjt(k)) (3.28)

and

Prj(k) :=
∑

t

(Gjt(k)) (3.29)

Then the association probability is defined as [73]

βjt(k) =
Gjt(k)

Pst(k) + Prj(k)−Gjt(k) + B
. (3.30)

Thus, (3.30) puts more weight on the target which does not fall into the validation gates

of any other targets as JPDA does. B is a bias term set to 0 in most cases, including
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for this paper. However, the data association matrix computed by AJPDA might not be

stochastic, which JPDA produces. Thus, the accuracy of AJPDA might not be good enough

for certain situations. To correct this and improve the performance of data association, we

propose a modified approximate JPDA (MAJPDA) which uses the Sinkhorn algorithm

[82, 37] to make the data association matrix β(k) doubly stochastic. Thus, MAJPDA keeps

essential characteristics of JPDA and thus, outperforms AJPDA with far less computational

complexity than JPDA for tracking many targets in clutter.

Because there are more measurements than targets in a cluttered environment, there is a

need to choose a subset of the full data association matrix as the mixing matrix, which

should be a square matrix [24]. The MAJPDA algorithm entails both the determination of

the association probability matrix and the doubly stochastic, square mixing matrix. In the

no-clutter case, the mixing matrix is nothing more than the doubly stochastic form of the

marginal association probability matrix β. However, for a cluttered environment, if there

are K measurements, then β has K rows and N ≤ K columns. The mixing matrix M(k)

must still have N rows and columns. To choose N of the K rows, we use the extended

Munkres algorithm [79]. The Munkres algorithm is an assignment algorithm which chooses

the set of N numbers with maximum sum from all sets of N numbers taken from an N by

N matrix such that the numbers cover every row and every column [78]. Bourgeois and

Lassalle extend this algorithm to rectangular matrices [79]. Thus, for a K × N matrix,

with K ≥ N , the extended Munkres algorithm picks N from the matrix with maximum

sum so that these numbers cover N distinct rows and all of the N columns. This extension

lends itself to processing the association probability matrix output by MAJPDA. The N

numbers chosen from β(k) by the extended Munkres algorithm constitute zj(k), which

are the N measurements assigned to the N targets to maximize the sum of association

probabilities. The assignment of measurements to targets is a one-to-one correspondence

between measurement j and target t; that is, j is a function of t and vice-versa. The N rows

of β(k) representing these measurements form an N×N matrix. The doubly stochastic form

of this matrix is the mixing matrix M(k). The mixing matrix and measurement assignments

are then passed to the Belief Matrix Update and State Estimate Update blocks, respectively.

3.3.3 State Estimate Update

Given a measurement for target t, zj(k), RMIMM propagates the continuous state x̂t(k −
1|k − 1), its covariance P t(k − 1|k − 1), and mode probabilities µt(k − 1) to time k. The
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outputs include x̂t(k|k), P t(k|k), and m̂t(k). These outputs are then used as input to the

MTIM algorithm at time k + 1.

3.3.4 Belief Matrix Update

The mixing matrix M(k) from the Measurement Validation/Association block is input to

the Belief Matrix Update block. The evolution of belief matrix B(k) is governed by (3.14).

The entry Bij(k) represents the probability that target j can be identified as label i. The

belief matrix at time k is held independent of the hybrid state estimation and is only used

in the Belief Matrix Update block at time k + 1. The belief matrix can also be updated by

local information, which is parsed in the Local Information Incorporation block.
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Figure 3.7: State estimates (x) and measurements (o) for two-aircraft example.

3.3.5 Local information incorporation

Local information is useful only if the uncertainty of the belief matrix is reduced, where

uncertainty is measured as entropy defined in Section 3.1.3. In Section 3.1.3, it has been

shown that local information that identifies one or more targets with absolute certainty

can always be incorporated, since such information will never increase entropy. In this
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Figure 3.8: (a)-(d): Possible joint events in MHT.

section, an additional set of possible local information is presented. This set is automatically

generated whenever targets interact and entropy increases significantly.

Without using extra sensors to get attribute information about the targets to correct target

identities, we propose to use the Multiple Hypothesis Testing (MHT) algorithm to get local

(attribute) information about interacting targets. The reason for using MHT is that it covers

all possible target identity hypotheses. MHT is used only when the minimum diagonal

element of the mixing matrix is below a threshold, which we treat as a design parameter.

The local information comes from applying the MHT algorithm on track estimates for two

time steps. This information is useful in the situation portrayed in Figure 3.7. In this figure,
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two aircraft cross perpendicularly at time k. Their estimated positions are marked with x’s,

while the radar measurements are marked with o’s. The expression x̂t(l) denotes the state

estimate for target t at time l. The measurements za(k), zb(k), zc(k + 1), and zd(k + 1) are

indexed by letters to reflect that of possibly many choices, two measurements were chosen

by MAJPDA at each time step to correspond to the two targets. Aircraft A starts at the

bottom left at time k − 1 and moves to the top right at time k + 1, while Aircraft B starts

at the top left and moves to the bottom right. The assumption is that Aircraft A(B) is

Target 1(2) with absolute certainty at time k− 1. That is, the belief matrix B(k− 1) is the

identity

[
1 0

0 1

]
. At time k, the two targets are close together and almost equally likely

to be associated with each of two measurements. Assume the mixing matrix M(k), and

thus the belief matrix B(k) = B(k − 1)M(k), is

[
0.51 0.49

0.49 0.51

]
at time k. At time k + 1,

the aircraft have diverged, and the validation gates of the two aircraft no longer intersect.

Thus, the mixing matrix M(k + 1) from MAJPDA is the identity, and the belief matrix

B(k + 1) = B(k)M(k + 1) remains at

[
0.51 0.49

0.49 0.51

]
.

The MAJPDA algorithm cannot differentiate between the two measurements at time k; as

a result, uncertainty in the belief matrix is essentially maximum. This uncertainty remains

even after the aircraft separate. However, from analyzing the dynamics of the two aircraft,

a belief matrix with lower entropy can be determined. If the aircraft are assumed to turn at

3o/ sec, a common turn rate for commercial jets, neither aircraft can execute a 90o turn in

one time step. The swapping of aircraft-target association is physically impossible. Indeed,

the only possible outcome is that Aircraft A(B) remains associated with Target 1(2). This

should yield a belief matrix equal to the identity matrix, which is minimum entropy.

The MHT algorithm is utilized to obtain a lower entropy belief matrix than MAJPDA

and standard Belief Matrix Updates can achieve. This algorithm is discussed in detail in

[17, 80]. Given initial conditions x̂1(k − 1) and x̂2(k − 1), as well as measurements za(k),

zb(k), zc(k + 1), and zd(k + 1), there are four possible target-measurement matchings that

can occur; these are illustrated in Figure 3.8. Figure 3.8-(a) refers to the outcome chosen

by MAJPDA, since Target 1 is assumed to have gone through measurements za(k) and

zc(k +1). Each plot in Figure 3.8 is a joint event made up of four events represented by the

line segments in the plot. The likelihood of the joint event that each target chooses its pair
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of measurements is the product of these individual events. The result is four likelihoods for

the four joint events portrayed in the plots of Figure 3.8.

To determine belief, one is only interested in whether Target 1 reaches the expected position

of Aircraft A at time k +1 or not. Thus, the sum of the likelihoods from Figure 3.8-(a) and

(c) is the likelihood that Target 1(2) remains identified as Aircraft A(B); let this quantity

be denoted L1. The sum of the likelihoods from Figure 3.8-(b) and (d) is the likelihood

that the targets swap identities; let this quantity be denoted L−1. Because a 90o turn in

one time step is not allowed in the dynamic models of the aircraft, L−1 = 0.

The doubly stochastic version of the matrix

[
L1 L−1

L−1 L1

]
represents the mixing matrix for

the two aircraft between time steps k−1 and k +1. This matrix, a two-step mixing matrix,

is denoted as Γ(k +1). For the example presented, Γ(k +1) is the identity. Thus, the belief

matrix determined by MHT at time k+1 is B′(k+1) = B(k−1)Γ(k+1) =

[
L1 L−1

L−1 L1

]
.

The resulting belief matrix B′(k + 1) is the identity, which has lower entropy than the

B(k + 1) from the standard MTIM model. The local information can thus be incorporated

through the Belief Matrix Update block of MTIM.

Because there is no guarantee that automated MHT local information will improve the

entropy of the belief matrix, it is only incorporated only if this local information decreases

entropy. This automated local information and identity local information are both han-

dled by the Incorporate Local Information block of the MTIM algorithm. The next section

applies the MTIM algorithm to scenarios involving multiple aircraft in a cluttered environ-

ment.

3.3.6 Simulation results

Two examples are presented below to demonstrate the efficacy of the MTIM algorithm in

clutter. Both examples are scenarios where multiple aircraft are interacting in a cluttered

environment. In both examples, several system parameters are set to the same values.

First, measurement points are made available every 5 seconds. Measurement covariance R

is

[
(100)2 0

0 (100)2

]
, which means the standard deviation of position error is 100m in both
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dimensions. Process noise is set to be

[
0.001 0

0 0.001

]
for straight flight and

[
10 0

0 10

]

for turning mode. The above constants are realistic values for aircraft in clutter and are

taken from [83]. Clutter is uniformly distributed in space and Poisson distributed in number;

the density of clutter points is 0.5 ∗ 10−6 clutter points per square meter, or 0.5 points per

square kilometer. The validation gate parameter γ is set to 9.2, which would correspond to

a 3σ confidence level if residual covariance S were used. The effective residual covariance S′

that is actually used is determined with system constants τ and ν set to 3 and 6, respectively.

The threshold for initiating MHT is set to 0.75. In both examples, the target 1 is initially

identified as Aircraft A, 2 as B, and so on.

The first example is an extreme (acrobatic) scenario where four aircraft fly at each other

directly and maneuver; this example is useful in understanding the capabilities of the MTIM

algorithm. Figure 3.9 (top) shows a shot of the radar screen including the entire flight data,

but without the trajectories explicitly indicated. This gives us an idea of the clutter density,

as well as how unclear the system is, especially when the aircraft come close to each other.

Figure 3.9(center) displays the actual and estimated positions of four aircraft following

symmetric paths that first converge, then maneuver around a common point, and finally

diverge. The dashed lines with dots as markers are the noisy measurements from the targets.

The solid lines with markers as shown in the legend are the estimated positions found by

MTIM. The fainter dots interspersed throughout the plot are clutter points. Aircraft A,

B, C, and D fly with constant velocity of 200 m/s (or 390 knots). All turns are executed

at 3o/sec. Target tracking is accurate except for overshoot when aircraft start turning.

Indeed, the dashed lines depicting the noisy measurements are not clearly visible because

the solid lines depicting estimated target positions match them almost exactly. Figure

3.9(bottom) displays the evolution of the belief matrix in graphical form. The plots, from

top to bottom, show the probability that any aircraft is identified with targets 1 through

4, respectively. From this figure, it is clear that the belief matrix is unchanged while the

aircraft are distant from and not interacting with each other. When paths cross, the belief

matrix is changed significantly only if the measurements for both targets happen to nearly

coincide. For example, at time 30, targets 1 and 2 nearly coincide, leading to the belief that

both targets 1 and 2 are nearly 0.5 Aircraft A and 0.5 Aircraft B. However, the automated

MHT local information generated by this interaction restores the belief matrix to nearly

identity at the following time step. At time 30, targets 3 and 4 also interact with equally



3.3. MTIM IN CLUTTER 85

drastic loss of identity between Aircraft C and D. Again, the local information restores the

belief matrix at the following time step. At time 32, targets 1 and 3 interact, with similar

jump in belief matrix entropy followed by belief matrix restoration from local information.

Targets 2 and 4 also interact in the same fashion at time 32. The scenario depicted in

Figure 3.9 establishes the efficacy of the MTIM algorithm in clutter.

The next example is designed to demonstrate the effectiveness of the MTIM algorithm

in a more realistic free flight scenario. There are six aircraft flying in both straight and

turning modes. We show the measurements obtained with clutter in Figure 3.10(top). The

trajectory plot in Figure 3.10(center) is set up the same way as that in Figure 3.9(center).

This plot includes realistic accident scenarios. For example, the intersection of Aircraft A

and B at coordinates (20,10) depict a blunder by Aircraft B into Aircraft A’s path. Like the

four aircraft scenario, tracking is successful for the six aircraft scenario except for overshoot

at the start of a maneuver. The dashed lines for the target measurements are visible at

these overshoot points. Identity management also performs well; part of the belief matrix

is shown in Figure 3.10(bottom). Only the belief for the first two targets is shown. One can

see the interaction between Aircraft A and B at time 21, which leads to an increase in the

entropy in the belief matrix followed by restoration of the belief matrix through automated

local information incorporation. Aircraft A and F have a similar interaction at time 37;

only the changes in the belief matrix for target A are shown in Figure 3.10(bottom). The

interaction between Aircraft B and C at time 27 is of note because the interaction is mild.

The belief matrix is not changed enough to trigger the automated local information, so the

belief of Target 2 is not restored. Because the interaction is mild, one can confidently label

target 2 as Aircraft B. The identity management portion of MTIM performs successfully.

Indeed, MTIM performs successfully for both examples shown.
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panying belief matrix plot (bottom).
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Chapter 4

Flight-Mode-Based Conflict

Detection

In the previous two chapters, we have derived hybrid state estimates computed using the

Residual-Mean Interacting Multiple Model (RMIMM) algorithm, and used them in the

Multiple-Target Tracking and Identity Management (MTIM) algorithm, as shown in Figure

1.1. In this chapter, we consider 2D aircraft conflict detection problems in which the aircraft

are assumed to fly at the same altitude. To the best of our knowledge, all existing conflict

detection algorithms are based on the continuous state information of the aircraft (see

Kuchar and Yang [11] for a comprehensive survey). For example, Yang et al. [15] propose a

conflict alerting logic based on sensor and trajectory uncertainties, with conflict probability

based on Monte Carlo simulation; Paielli et al. [3] and Prandini et al. [84] propose analytic

algorithms for computing the probability of conflict. The performance of these conflict

detection algorithms depends strongly on the accuracy of state estimates. Here, we propose

conflict detection algorithms using the aircraft’s current continuous state estimates as well as

flight mode (discrete state) estimates computed by the RMIMM algorithm. This algorithm

is applicable to both ground and airborne control scenarios in ATC – to ground control using

radar information, and to airborne control using information from Automatic Dependent

Surveillance-Broadcast (ADS-B) data [85].

For conflict detection, we use the aircraft model derived in Section 2.1.3 which has two flight

modes: constant velocity and coordinated turn. ADS-B information is assumed to be used

89
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for measurements, and thus both aircraft’s position and velocity information are available

for state estimation. However, as shown in the previous chapter, there is no restriction in

using only the aircraft’s position information to estimate the aircraft’s current states with

RMIMM.

In this chapter, we develop a probabilistic conflict detection algorithm using an analytic

equation, which can compute conflict probabilities efficiently. This analytic equation is

based on the algorithm in [3] (which is based only on the continuous state) which we extend

to incorporate flight mode estimates. We use RMIMM for state and mode estimation.

Using Enhanced Traffic Management System (ETMS) data, we show that even in cases in

which the turn mode is a small portion of the whole flight trajectory, the accuracy of this

hybrid conflict detection algorithm is better than that of continuous schemes, especially in

the airspace around waypoints and airports where several airways converge. In addition,

the flight mode estimate could also be used for blunder detection, that is, it could be used

to allow an aircraft (or a ground controller) to detect a conflict early enough to take (or

issue) a safe resolution maneuver if a neighboring aircraft (blunderer) starts a maneuver

which might cause a conflict with itself (or another aircraft).

4.1 Conflict detection

In this section, we use RMIMM to estimate current states and flight mode with the aircraft

models derived in Section 2.1.3. Then, we predict conflicts within a look-ahead time (TLA <

∞) using these estimates. A conflict is defined by an event in which the relative separation

of two aircraft becomes less than a predefined safety distance (R). We set R := 5 nautical

miles (nm) in this paper. For conflict detection, we project each aircraft’s current state

into the future in two ways: a nominal state projection which constructs a single trajectory

based on the current state vector without prediction uncertainties, and a probabilistic state

projection in which uncertainties in the model are used to construct a set of possible future

trajectories, each weighted by its probability of occurring. However, the nominal state

projection method is used for comparison only.

4.1.1 Nominal conflict detection

We perform conflict detection by projecting the aircraft’s current velocity estimate, obtained

by RMIMM, into the future. We project along a single trajectory which is a straight line if
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the current flight mode estimate is CV mode or a circular arc with an estimated yaw rate if

the estimate is CT mode. To validate the nominal conflict detection algorithm, we use the

prediction uncertainty model in [3]. The trajectory prediction error is modelled as normally

distributed with a zero mean, and a covariance with eigenvectors in the along-track and

cross-track directions, as shown in Figure 4.1. The along-track error is modelled as a 15

knots (kn) standard deviation speed uncertainty. The cross-track error grows from its initial

uncertainty of 15m at the aircraft’s current position (which is the position estimation error

bound of RMIMM) to a steady-state error with a standard deviation of 1nm. The growth

rate is v
57nm/min (where v is an aircraft speed). This growth rate is equivalent to a lateral

deviation error with a standard deviation of 1o [15]. Thus, the prediction error covariance

matrix in the body-fixed frame aligned with the aircraft heading is a diagonal matrix.

4.1.2 Probabilistic conflict detection

For probabilistic conflict detection, we need to compute the probabilities of all possible

conflicts. In [3], the trajectory prediction errors are modelled as Gaussian random variables

with zero mean and time-varying covariances. Through coordinate transformation, an an-

alytical solution for conflict probability is derived based on the assumption that aircraft fly

straight with constant velocity. Since our conflict detection algorithm allows the aircraft

to be in CT mode, we suggest a modified conflict probability computation from that in [3]

when aircraft are in CT mode.
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Figure 4.1: Trajectory prediction error ellipses. (a) Both aircraft are in the constant velocity
mode. (b) An aircraft is in constant velocity mode and the other is in the coordinated turn
mode. (c) Both aircraft are in the coordinated turn mode, motivated by the single mode
computations in [3].
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First, we summarize the conflict detection algorithm in [3] (in which the authors consider

only the case in which both aircraft are in CV mode). The trajectory prediction error is

modelled as a zero-mean normal distribution, with diagonal covariance matrix S in the

body-fixed frame aligned with the aircraft heading. If a rotation matrix Rrot transforms

the heading-aligned body-fixed frame to the reference frame, the transformed covariance

matrix is

Q := RrotSRT
rot (4.1)

Two error covariances for an aircraft pair can be combined into a single equivalent covari-

ance, which is assigned to one of the aircraft (which we call the “stochastic aircraft”). The

other aircraft, called the “reference aircraft”, is assumed to have no position uncertainty.

Then, the combined prediction error covariance is

M := Qs + Qr −Qsr (4.2)

where Qs and Qr are the covariance of the stochastic aircraft and the covariance of the ref-

erence aircraft, respectively. Qsr is the cross-correlation between the two aircraft. Through

combined

error circle

ellipsoidal conflict zone

relative velocity (case 1)

extended

conflict zone

∆y

∆y
c

y

x

relative velocity (case 2)

stochastic aircraft

reference aircraft

Figure 4.2: Transformed conflict geometry [3].

coordinate transformation, we make the combined covariance ellipse centered on the stochas-

tic aircraft a unit circle and the relative velocity vector aligned in the x-direction as shown

in Figure 4.2. The elliptical conflict zone is centered on the reference aircraft. If the
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relative heading angle of two aircraft is constant during the conflict, the total conflict prob-

ability is the volume of the probability density function over the shaded area. Since the

combined error covariance ellipse is a unit circle, the two dimensional Gaussian probabil-

ity density function decouples into the product of two identical one-dimensional functions:

p(x, y) = p(x)p(y) where p(x) = exp(−x2/2)/
√

2π. Thus, the conflict probability Pc is

Pc =
∫ −∆y−∆yc

−∆y+∆yc

∫∞
∞ p(x, y)dxdy

=
∫ −∆y−∆yc

−∆y+∆yc
p(y)dy

∫∞
∞ p(x)dx

=
∫ −∆y−∆yc

−∆y+∆yc
p(y)dy

(4.3)

Equation (4.3) is valid only in the case in which both aircraft are in CV mode (Figure

4.1-(a)). Therefore, for the conflict cases in Figure 4.1-(b) and Figure 4.1-(c), we change

the prediction model (i.e., prediction error covariance S). If an aircraft is in CT mode,

both the along-track error and the cross-track error are modelled as a 15 kn standard

deviation speed uncertainty because the aircraft’s acceleration is composed of tangential

(along-track) acceleration and centripetal (cross-track) acceleration. The relative heading

is assumed to be constant during the conflict. We use the relative heading angle at time

tmd, when the predicted minimum distance between aircraft is achieved, as the pass-crossing

angle. The latter assumption is coarse, but since typical civilian aircraft yaw rates are not

large (≈ 3o/sec) and are of short duration, the computation error may be small. So, it

would be reasonable to use the analytical solution in (4.3) instead of a numerical one, which

could be computationally intensive. However, to reduce the error in conflict probability

computation, we introduce a time interval around the time tmd ( [tmd − δ, tmd, tmd + δ],

δ > 0), compute the conflict probability distribution within this interval, and choose the

maximum value as the conflict probability.

Two main points about this algorithm warrant additional conditions for conflict detection.

First, the conflict probability computation algorithm in [3] is based on the conflict geom-

etry, and uses the extended conflict zone as shown in Figure 4.2 to compute the conflict

probability. Thus, the conflict probability when the relative velocity of the reference air-

craft is pointing towards the stochastic aircraft (case 1) is the same as that of the case in

which the relative velocity of the reference aircraft is pointing away from the stochastic

aircraft (case 2). Second, the proposed conflict detection algorithms can be applied to both

on-board applications and ground control applications. If the conflict detection algorithms
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are applied in ground control applications, they may handle large numbers of aircraft at

one time. Thus, to eliminate the above error and to reduce the number of aircraft pairs for

conflict detection computation, we propose the following conditions.

(Conditions for Conflict Detection Computation)

Pth is defined as a conflict probability threshold and used as a design parameter. ~rij is

defined as a relative position vector from aircraft i to aircraft j and ~vi as a velocity vector

of aircraft i.

1. (a) The conflict detection algorithm is executed every τ (0 < τ < ∞) seconds.

(b) If mode changes are observed within the time interval τ , the conflict detection

algorithm is executed instantly for the corresponding aircraft pairs.

(c) For aircraft pairs with conflicts with Pc ≥ Pth, the conflict detection is executed

every τc (0 < τc < τ) seconds.

2. (a) The conflict detection algorithm is executed for aircraft pairs satisfying (∀i, j)
i. CASE I: Two aircraft fly generally towards each other:

[(~rij(k) ·~vi(k) ≥ 0)∧(~rij(k) ·~vj(k) ≤ 0)]∧ [sign(~rij(k)×~vi(k)) 6= sign(~rji(k)×
~vj(k))]

ii. CASE II: An aircraft follows another aircraft:

[(~rij(k) · ~vi(k) ≥ 0) ∧ (~rij(k) · ~vj(k) ≥ 0) ∧ (‖~vi(k)‖ > ‖~vj(k)‖)]
∧ [(~rij(k) · ~vi(k) ≤ 0) ∧ (~rij(k) · ~vj(k) ≤ 0) ∧ (‖~vi(k)‖ < ‖~vj(k)‖)]

(b) The conflict probability is computed only when the above Condition 2-(a) is

satisfied and the predicted minimum distance within the look-ahead time is less

than the test safety distance (R̄ := αR, α ≥ 1).

We set τ = 20sec and τc = 5sec for simulation. Condition 1-(b) corresponds to event-

driven simulation, i.e., the simulation (or computation) is triggered not by a time instant

but by an event (mode change in this case) [86, 87]. Thus, we can reduce computational

load significantly. However, for safety, even if there is no mode change, we perform conflict

detection every τ seconds because measurements contain noise and thus the conflict detec-

tion may have prediction errors. We also pay more attention to aircraft pairs which have

conflict probabilities over the threshold for safety. Condition 2 tests whether an aircraft
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pair may have a conflict based on the current aircraft’s state and mode estimates. We can

then filter out many aircraft pairs before applying the conflict detection algorithms. Since

the predicted minimum distance is not exact due to prediction uncertainties and current

state estimation errors, we compute conflict probability when it is less than the “test safety

distance” (R̄ ≥ R) so that we do not miss possible conflicts. Here, we set α = 1.5.

4.2 Numerical examples and validation with ETMS data

In this section, we apply the flight-mode-based conflict detection algorithm to various

multiple-aircraft conflict detection scenarios and validate it with Enhanced Traffic Man-

agement System (ETMS) data. The Federal Aviation Administration’s (FAA’s) ETMS

database contains all flight plan information for flights in the National Airspace System

(NAS). The flight information for an airborne aircraft in the NAS in the ETMS database

contains: time, flight number, aircraft type, latitude, longitude, speed, altitude, heading,

and flight plan information [88]. Data are collected from the entire population of flights in

the NAS with filed flight plans. The FAA uses these data to monitor the effectiveness of

its National Route Program, in which the user community is offered flexible, cost-effective

routing options as an alternative to published ATC preferred routes. The ratio of flights

not subject to ATC preferred routes to total flights is considered to be a measure of sys-

tem flexibility, and is included as an index in the FAA’s Air Traffic Services Performance

Measures. In order to improve conflict detection performance around waypoints, a conflict

detection algorithm using waypoint information is derived and tested with ETMS data.

4.2.1 Numerical examples for multiple-aircraft conflict detection

We apply the proposed conflict detection algorithms in Section 4.1 to the scenarios of Figure

4.1, through many simulations. The RMIMM algorithm is used to estimate the aircraft’s

current state and flight mode. We assume the aircraft speed is constant at v = 480kn for all

simulations unless otherwise stated. The predefined safety distance is 5nm. For prediction,

the along-track and the cross-track RMS errors grow linearly at a rate of 0.25nm/min and
v
57nm/min from the initial uncertainty 15m. Yet, the cross-track RMS error saturates when

it reaches 1nm [3]. The RMS errors of position and velocity measurements are assumed



96 CHAPTER 4. FLIGHT-MODE-BASED CONFLICT DETECTION

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Average Conflict Probability at Predicted Time of Minimum Separation (0 nautical miles)

Average Time to Minimum Separation (minutes)

C
o

n
fl
ic

t 
P

ro
b

a
b

il
it
y

Paielli Prediction with No Uncertainty
Deterministic Prediction
Probabilistic Prediction

−400 −300 −200 −100 0 100 200 300

0

50

100

150

x(nautical miles)

y
(n

a
u

ti
c
a

l 
m

il
e

s
)

2 aircraft trajectories, both in CV mode with a 90 degree conflict angle

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Average Conflict Probability at Predicted Time of Minimum Separation (3 nautical miles)

Average Time to Minimum Separation (minutes)

C
o

n
fl
ic

t 
P

ro
b

a
b

il
it
y

Paielli Prediction with No Uncertainty
Deterministic Prediction
Probabilistic Prediction

−20 −15 −10 −5 0 5 10 15 20 25 30

−5

0

5

10

x(nautical miles)

y
(n

a
u

ti
c
a

l 
m

il
e

s
)

2 aircraft trajectories, CV and CT mode

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Average Conflict Probability at Predicted Time of Minimum Separation (0 nautical miles

Average Time to Minimum Separation (minutes)

C
o

n
fl
ic

t 
P

ro
b

a
b

il
it
y

Deterministic Prediction
Probabilistic Prediction at Predicted Minimum Separation
Probabilistic Prediction Around Predicted Minimum Separation

−15 −10 −5 0 5 10 15

−6

−4

−2

0

2

4

x(nautical miles)

y
(n

a
u

ti
c
a

l 
m

il
e

s
)

2 aircraft trajectories, both in CT mode

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Average Conflict Probability at Predicted Time of Minimum Separation (0 nautical miles

Average Time to Minimum Separation (minutes)

C
o

n
fl
ic

t 
P

ro
b

a
b

il
it
y

Deterministic Prediction
Probabilistic Prediction at Predicted Minimum Separation
Probabilistic Prediction Around Predicted Minimum Separation

(a) (b) (c)

Figure 4.3: 200 Monte Carlo simulation results using nominal and probabilistic conflict
detection algorithms. (a) Both aircraft are in the constant velocity mode. (b) An aircraft is
in constant velocity mode and the other is in the coordinated turn mode. (c) Both aircraft
are in the coordinated turn mode.

to be 50m and 3m/sec respectively. Wind-error cross-correlation between aircraft (Qsr) in

(4.2) is assumed to be zero.

In Figure 4.3, the deterministic conflict detection probability refers to the probability of

successful conflict detection. In Figure 4.3-(a), both aircraft are in CV mode. The top graph

shows the conflict geometry with the path-crossing angle at 90o. The middle and bottom

plots show the average conflict probability as a function of the average time required to get

to the predicted minimum separation point, where the minimum separation is 0 (collision)

and 3nm respectively. The conflict probability of the probabilistic prediction is close to

that of Paielli and Erzerberger’s algorithm [3]. Thus, we conclude that RMIMM used in

the proposed probabilistic conflict detection algorithm produces good state estimates since

the conflict probability of Paielli and Erzerberger’s algorithm assumes that there is no
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uncertainty in the current state.

In Figure 4.3-(b), only one aircraft is in CV mode, with a heading angle of 210o. The other

aircraft begins in CV mode for a little bit and then switches to CT mode for most of its

trajectory. The turn rate of the aircraft in CT mode is 1.5o/sec. There is a collision at the

origin. The bottom plot shows the computed conflict probability versus the average time

to minimum separation. The computation starts after the second aircraft switches to CT

mode so that both aircraft predict that there is some conflict in the future. At 6 regularly

spaced points on the trajectory, we project the current state estimate to find a predicted

minimum separation point and compute the conflict probability using the deterministic and

probabilistic method. The dotted line represents the conflict probability at the predicted

minimum separation. The continuous line comes from the maximum conflict probability in

an interval with half width 5 seconds (i.e., δ = 5) around the time of predicted minimum

separation. The difference is small, but we can reduce the conflict probability computation

error due to the assumption that the heading angle of aircraft is constant during the conflict.

In Figure 4.3-(c), both aircraft are in CT mode and the plots are analogous to those in

Figure 4.3-(b). Figure 4.3 shows that probabilistic conflict detection is more accurate than

the deterministic one, especially when the look-ahead time is long.

We can interpret the conflict scenarios in Figure 4.1-(b) and in Figure 4.1-(c) as blunder

detection, because the two aircraft are close to each other and the conflict time is very short

compared to the look-ahead time. If an aircraft can detect that another aircraft (blunderer)

starts a sudden maneuver that may cause a conflict within a short time, the aircraft can

take a safe resolution maneuver. Blunder detection could be useful for conflict detection in

congested airspace such as around waypoints and airports, and for parallel landings [89].

This is one of the advantages of using flight mode information for conflict detection over

existing conflict detection methods. Figure 4.4 shows a blunder detection scenario for two

aircraft. Initially two aircraft fly in parallel. Then one aircraft (blunderer) changes its

heading. The trajectory interval in which the aircraft violate the 5nm safety zone is shown

by the thick black lines. On the right figure, we plot the conflict probability as a function of

the time of trajectory. The circles here correspond to the same time instants as the circles

in the left figure. Thus, we can see how the conflict probability changes at points along

the trajectory. This result was obtained with 200 simulations. One of the problems we

observed was that even though the aircraft are no longer in conflict and heading away from
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each other at the end of the trajectory, the conflict probability algorithm in [3] still returns a

conflict probability of one. Thus, we use Condition 2-(b) to eliminate this phenomenon and

the continuous line in Figure 4.4 shows this correction. Figure 4.5 shows multiple-aircraft
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Figure 4.5: Simulations for multiple-aircraft conflict detection. (a) Structured airspace
scenario (four aircraft). (b) Free Flight scenario (ten aircraft).

conflict detection scenarios. We set the look-ahead time to 20 minutes and the conflict

probability threshold (Pth) to 0.7. The conditions for conflict detection computation are

applied to reduce the number of aircraft pairs for conflict detection. We perform conflict
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detection every 20 seconds (τ = 20sec) even if there is no flight mode change. For the aircraft

pairs where conflict probability is greater than or equal to Pth = 0.7, conflict detection is

performed every 5 seconds (τc = 5sec).

There are four aircraft in the multiple-aircraft conflict scenario for structured airspace in

Figure 4.5-(a). The circles correspond to positions that are 100 seconds away from each

other. All the aircraft fly at 8nm/min and have turn rates of 1.5o/sec. The grey regions

indicate where the aircraft detect conflict. The black regions are where the aircraft are

actually in conflict. The Free Flight scenario in Figure 4.5-(b) has the same parameters

except that there are ten aircraft. Probabilistic methods are used for both scenarios. Here

the circles are spaced 200 seconds apart for clarity. In these simulations, the conflict de-

tection algorithm is implemented in a centralized way, so that it performs aircraft tracking

and conflict detection for all the aircraft.

Since computational efficiency is important for real-time air traffic control, we compute the

average time required for both the state estimation and the conflict probability computa-

tion. The average computation times for two-aircraft tracking using IMM and RMIMM

are 0.01 seconds and 0.013 seconds respectively. The average computation time for con-

flict probability for two-aircraft conflict is 0.0041 seconds. These values are obtained using

MATLAB on a 500 MHz Pentium III PC.

4.2.2 Validation with ETMS data

In this section, we validate the flight-mode-based conflict detection algorithm with ETMS

data. We use ETMS data for the Oakland center from track time 921735971sec to 921756011sec

which starts on January 1, 1970 ending approximately 5 hours 34 minutes later. Since cur-

rently air traffic is stratified in altitude and we consider 2D conflict detection problems in

this paper, ETMS data for a fixed altitude is used for simulations. We choose 31, 000ft

since it is among the busiest altitudes in air traffic. Figure 4.6-(a) and (b) show two of the

performance measures of the proposed conflict detection algorithm – the successful conflict

detection probability (the probability that the conflict detection algorithm correctly detects

conflict), and the false alarm probability (the probability that the conflict detection algo-

rithm detects a conflict when in reality there is none). From Figure 4.6-(a) and (b), we see

that the successful conflict detection probability tends to increase as the look-ahead time
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Figure 4.6: Performance analysis of the flight-mode-based conflict detection algorithm with
ETMS data (altitude 31, 000ft). (a) Successful conflict detection probability. (b) False
alarm probability.

decreases. This means that most conflicts can be detected within a certain look-ahead time.

As the conflict probability threshold increases, the successful conflict detection probability

decreases, and the false alarm probability also decreases. Thus, we need to make a trade-

off between the successful conflict detection probability and the false alarm probability by

varying the conflict probability threshold (Pth). A system operating characteristic (SOC)

curve shown in Figure 4.7 clearly shows how to choose a good conflict probability threshold.

Based on the SOC curve in Figure 4.7, we justify our choice Pth = 0.7, since it gives a high

successful conflict detection probability and yet a small false alarm probability.

The proposed conflict detection algorithm is applied to various scenarios based on ETMS

data. Figure 4.8 shows one such scenario. In this simulation, air routes around Mina

and Clovis are considered. These two airspace fixes are the waypoints which have the

most complex air traffic in Oakland center’s airspace. Several air routes from other centers

converge at Mina, and the converged air route leads to the Oakland airport. Three different

air routes intersect at Clovis. In Figure 4.8, four aircraft are approaching Mina. AC1

and AC2 are going to have a conflict with each other near Mina. The conflict detection
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algorithm detects the conflict and it also detects another conflict between AC3 and AC4

around Coaldale. A conflict between AC5 and AC6 is denoted as × in Figure 4.8. In

Figure 4.8, the dotted lines represent the trajectories of the aircraft, the thick grey lines

indicate where the aircraft detect conflict, and the thick black lines denote where the aircraft

are actually in conflict. However, the conflict detection algorithm does not detect the

conflict around Clovis until AC6 changes its heading around Clovis because it does not

consider the heading change of AC6 around Clovis . The conflict detection algorithm does

detect the conflict only after AC6 passes Clovis and changes its heading toward AC5. This

delayed conflict detection is due to the fact that the conflict detection algorithm does not

use waypoint information; in this case around Clovis. The proposed conflict detection

algorithm uses only aircraft’s current state and mode estimate for conflict detection based

on the assumption that all aircraft keep current speed and heading. However, this may

not be true when the look-ahead time is long or aircraft are close to their waypoints.

Therefore, a conflict detection algorithm using waypoint information would be useful for

conflict detection in airspace around waypoints, or for midterm conflict detection, in which

the look-ahead time is long. In the next section, we develop an extended conflict detection

algorithm using waypoint information.
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Figure 4.8: Multiple-aircraft conflict detection around waypoints Mina and Clovis.

4.2.3 Conflict detection using waypoint information

We now consider waypoint information in order to compute conflict probabilities. We

consider the case shown in Figure 4.9-(a), in which an aircraft passes through a waypoint

within the look-ahead time (TLA). In this case, the projected trajectory is composed of

three segments: w0q1, q1q2, and q2w2. The trajectory prediction errors are modelled as

Gaussian random variables with zero means and time-varying covariances, as in Section

4.1.2. Therefore, the trajectory prediction uncertainty ellipses for three segments of the

projected trajectory should be computed in order to compute conflict probabilities.

If an aircraft is supposed to be on a straight path, i.e., w0q1 or q2w2, the along-track error

is modelled as a 15kn standard deviation speed uncertainty. The cross-track error grows

from the initial uncertainty to a steady-state error with a standard deviation of 1nm if the

initial uncertainty is less than 1nm; if the initial uncertainty is greater than or equal to

1nm, the standard deviation of the cross-track error is the same as the initial uncertainty.

If an aircraft is supposed to be on a circular arc, i.e., q1q2, both the along-track error and

the cross-track error are modelled as a 15kn standard deviation speed uncertainty so that

it accommodates the uncertainty about a turning maneuver around a waypoint.
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Figure 4.9: (a) Trajectory prediction error ellipses when an aircraft passes a waypoint within
the look-ahead time. (b) Geometry of the turning maneuver around a waypoint.

Now, we consider the question of how to find three segments of the projected trajectory,

i.e., how to find q1 and q2. From Figure 4.9-(b), we can compute the distance between q1

and w1, ‖q1w1‖:
‖q1w1‖ =

v

ω0
tan

ψ

2
(4.4)

where ω0 = 3o/sec is a nominal angular velocity. The two triangles in Figure 4.9-(b) are

symmetric, and so ‖q1w1‖ = ‖w1q2‖. Since we know where w1 is, we can compute the

positions of q1 and q2. With this knowledge, the arrival time at point q1, t1 and at point q2,

t2 can be computed using the aircraft’s current velocity estimate. Therefore, the magnitudes

of the semi-major (along-track) axis (a [nm]) and the semi-minor (cross-track) axis (b [nm])

of the trajectory prediction error ellipse at conflict time tc (seconds) are:

1. Case I: 0 ≤ tc ≤ t1

a1(tc) = 0.042tc + a0

b1(tc) = min[ vtc
3420 + b0, 1]

(4.5)

2. Case II: t1 < tc ≤ t2

a2(tc) = 0.042(tc − t1) + a1(t1)

b2(tc) = 0.042(tc − t1) + b1(t1)
(4.6)

3. Case III: t2 < tc ≤ TLA
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a3(tc) = 0.042(tc − t2) + a2(t2)

b3(tc) = max[b2(t2), 1]
(4.7)

where a0 and b0 are initial uncertainties (15m). With these trajectory prediction error

ellipses, conflict probabilities are computed in the same way as in Section 4.1.2. This

conflict detection algorithm can also be easily extended to the case in which an aircraft

trajectory has multiple waypoints.

ZOA33

ZOA32

ZOA34

ZOA15

ZOA13

Oakland

Big Sur

Salinas

Manteca

Friant

Coaldale
Point Reyes

Sacramento
Mina

Clovis

20 nm

36

38

122 120 118

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to Minimum Separation   (minutes)

S
uc

ce
ss

fu
l C

on
fli

ct
 D

et
ec

tio
n 

P
ro

ba
bi

lit
y

Using waypoint info.
Without using waypoint info.

(a) (b)

Figure 4.10: Performance comparison between the conflict detection algorithms using and
without using waypoint information. (a) Conflict scenario around waypoint Clovis. (b)
Successful conflict detection probabilities of the conflict detection algorithms using and
without using waypoint information.

Figure 4.10-(a) shows three trajectories around Clovis, and the aircraft have Clovis as

the common waypoint. Flight plans passing Clovis are extracted from ETMS data and

are used for the simulation in Figure 4.10. The dotted lines and solid lines represent

different flight plans. If the heading change of each aircraft at Clovis is not considered,

the conflict among the three aircraft along the dotted line cannot be detected before the

heading changes. However, the conflict detection algorithm using waypoint information

can detect the conflict before the heading changes at Clovis. Figure 4.10-(b) shows the

comparison of conflict detection results using and not using waypoint information. As the

time to the minimum separation increases, the successful conflict detection probability of

the conflict detection algorithm without using waypoint information drops rapidly, yet that

of the conflict detection algorithm using waypoint information remains close to one. Thus,
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this simulation shows that using waypoint information could improve the performance of

the conflict detection algorithm, especially around waypoints.



106 CHAPTER 4. FLIGHT-MODE-BASED CONFLICT DETECTION



Chapter 5

Protocol-based Conflict Resolution

In the previous chapter, we developed a probabilistic conflict detection algorithm, which

uses the current continuous state estimates of an aircraft as well as its flight mode estimates

computed by the Residual-Mean Interacting Multiple Model (RMIMM) algorithm. In this

chapter, we consider multiple-aircraft conflict resolution problems and propose a protocol-

based conflict resolution algorithm for resolving multiple-aircraft conflicts.

Several recent papers have focused on solving conflict resolution problems [11]. The studies

of conflict resolution, which is the scope of this chapter, may be categorized into three

different cases according to the methods by which a solution is obtained : 1) optimization

2) rule-based and 3) force field methods.

First, optimized conflict resolution algorithms produce a resolution maneuver, which min-

imizes a cost function such as deviation from the original trajectory, flight time, fuel con-

sumption, or energy [90, 91, 92, 93, 94, 95, 96]. Menon et al. [12] formulate conflict resolution

as a multi-participant optimal control problem. Using parameter optimization and state-

constrained trajectory optimization, they compute a conflict resolution trajectory for two

different cost functions: deviation from the original trajectory and a linear combination of

total flight time and fuel consumption. Their method results in 3D optimal multiple-aircraft

conflict resolution. In general, the optimization process is computationally intensive and is

difficult to implement in real-time. Frazzoli et al. [97] use randomized searches to choose

a particular cross pattern from all possibilities, and apply convex optimization to obtain a

107
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minimum energy resolution maneuver for this cross pattern. Hu et al. [98] categorize types

of multiple-aircraft resolutions using braid theory, and select a type by a randomized algo-

rithm. Resolution maneuvers are determined by solving a convex optimization problem to

minimize the total length of trajectories (or energy) for the selected type. Due to the prop-

erties of convex optimization, the algorithms are numerically efficient. However, randomized

algorithms could produce different solutions to the same conflict problems. Bilimoria [99]

proposes a method for pairwise geometric optimization which minimizes trajectory devia-

tion. Conflict resolution maneuvers are obtained from a closed-form analytic solution, and

thus can be applied in real-time to two-aircraft conflicts. Mao et al. [100] propose a decen-

tralized conflict avoidance strategy based on successive pairwise resolution and numerical

optimization. Durand et al. [101] propose that predefined maneuvers be used to construct

a multiple-aircraft conflict resolution maneuver. Their method uses genetic algorithms to

generate each resolution maneuver successively. Alliot et al. [26] solve multiple-aircraft

conflicts by generating resolution maneuvers for each aircraft sequentially with a token al-

location strategy; the A∗ algorithm is then used to select the optimal maneuver (minimum

length trajectory) from a set of predefined maneuvers. In order to resolve multiple-aircraft

conflicts, pairwise resolution algorithms should be executed successively, but it is fairly easy

to come up with situations in which the successive application of pairwise resolution does

not guarantee safety for multiple-aircraft conflicts [26].

The second class of conflict resolution problems may be referred to as rule-based conflict

resolution, i.e., a conflict avoidance maneuver is determined according to predescribed rules

[102, 103, 104, 105]. Duong et al.[105] propose Extended Flight Rules, which extend the

current Visual Flight Rules by assigning a priority to each aircraft involved in a conflict.

The rules may be simple to understand and easily implementable, but they do not properly

account for unexpected events. For example, a conflict situation may be classified as several

predefined cases at the same time. It results from uncertainties in the aircraft’s position

and heading. The ambiguity in which rule to choose may lead to an unsafe resolution. The

method may also require many rules to completely cover all possible conflicts.

Another class of conflict resolution techniques uses force field methods. Aircraft are assumed

to fly in the force field generated by a potential function; the forces induced by the potential

function form a resolution maneuver [106, 107, 108, 109, 110, 111]. Duong and Zeghal [110]

present a technique in which a force field “generated” by an intruding aircraft produces a
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conflict avoidance action and a force from the flight plan generates an attracting action.

Zeghal and Ferber [111] propose a distributed conflict resolution algorithm based on a

symmetrical force field method. They give a resolution maneuver using a relatively simple

equation, yet the resolution maneuver may have several discontinuities which are not flyable.

Most importantly, safety cannot be proven about such multiple-aircraft maneuvers.

We present a new conflict resolution algorithm, which we call Protocol-Based Conflict Res-

olution (PBCR), for multiple-aircraft conflicts. The PBCR algorithm is simple and easily

understandable since the protocol is obtained from a closed-form analytic solution. There-

fore, it can be implemented in airborne systems for real-time conflict resolution, as well as

in ATC ground systems. Most importantly, the proposed algorithm always guarantees safe

conflict resolution within the limits of the model used. This is the main difference from

many other currently available multiple aircraft resolution solutions.

Since aircraft fly in a vertically stratified airspace in the current Air Traffic Control (ATC),

aircraft are assumed to cruise at the same altitude with varying velocities. The position,

velocity, and heading of an aircraft are assumed to be available to all aircraft which are

involved in the conflict; this assumption can be justified with the proposed availability of

the Global Positioning System (GPS) [9] and Automatic Dependent Surveillance-Broadcast

(ADS-B) [25].

For the derivation of the protocol, the multiple-aircraft conflict is categorized into two cases:

1) exact and 2) inexact conflict. First, we derive a closed form analytic solution describing

the resolution maneuver for the exact conflict case, which represents the situation in which

all aircraft would come into a conflict at a single point in time and space. This result is then

generalized to cover the inexact conflict case, in which conflict points of multiple aircraft

do not coincide in time and space. A finite partition of the airspace around the conflict is

constructed in real time according to the minimum relative angle between aircraft. With

the results from the exact and inexact conflict cases, the protocol for resolving the worst-

case conflict within each partition is derived. Heading change from the original path is the

primary control input and is used exclusively when the conflict is exact. Velocity change is

also used as a control input when an exact conflict assumption fails.

For implementing PBCR, we have to determine which aircraft involved in the conflict should

follow the protocol to resolve a conflict. We could assign all aircraft within a certain region
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around an anticipated conflict point to be part of a resolution group, however, this may be

not efficient since it could cause large deviation from the aircraft’s nominal path. For a more

efficient set of maneuvers, a flight-mode-based conflict prevention algorithm is presented.

It uses the conflict detection algorithm developed in the previous chapter. The conflict

prevention algorithm runs in real time, and detects all conflicts when an aircraft changes its

heading and/or speed, that is, changes its flight-mode. By applying the conflict prevention

algorithm, we find the smallest group of aircraft which will not cause another conflict.

PBCR also takes into account aircraft flight plans, by considering both a resolution and

return path.

Computational complexity of the conflict prevention algorithm is polynomial in the number

of aircraft, and thus the PBCR with the conflict prevention algorithm can be implemented

with real time. Finally, we combine the Flight-Mode-Based Conflict Detection (FMBCD)

algorithm developed in the previous chapter and the Protocol-Based Conflict Resolution

algorithm and validate it with actual air traffic data.

5.1 Motivation and problem formulation

Multiple-aircraft conflict resolution is motivated by the fact that pairwise conflict resolution

is not guaranteed to resolve multiple-aircraft conflicts. Several recent papers have focused

on the multiple-aircraft conflict resolution case. However, their approaches are based on

optimization procedures and randomized algorithms [97, 98, 12], and thus could produce dif-

ferent solutions to identical problems, which may cause confusion in real applications. Since

optimization procedures are computationally intensive, they are undesirable for real-time

airborne applications. Thus, we propose a protocol-based conflict resolution for multiple-

aircraft conflicts to overcome the above problems. While the majority of conflicts occurring

in the current airspace are pairwise conflicts, multiple-aircraft conflict resolution methods

are important for two reasons. First, a method that evolves gracefully from treatment of

two aircraft to treatment of multiple aircraft conflicts would be efficient in resolving even

today’s small number of multiple aircraft problems; second, as the airspace and air traffic

system evolve to a stage in which aircraft are more often flying user preferred routes, one

would expect more multiple aircraft conflicts.
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Figure 5.1: An illustration of the exact conflict resolution maneuver for one of the N -aircraft
and parameters involved.

We consider the problem of conflict resolution in the horizontal plane, using only information

about each aircraft’s current position, velocity, and heading. A time horizon of [0, Tf ] is

assumed, where 0 is an initial time at which all aircraft involved in a conflict initiate their

conflict resolution maneuver and Tf is a maneuver completion time for all aircraft. We

define a conflict to be the event in which, the distance between any pair of aircraft, d(t),

is less than a predefined safety distance, R, at some t ∈ [0, Tf ] ⇔ ∃t ∈ [0, Tf ] such that

d(t) < R (R is assumed to be 5 nautical miles (nm) in this paper). Then, safety means

there are no conflicts over [0, Tf ], i.e., the minimum distance between any pair of aircraft

is greater than or equal to R. Each aircraft’s velocity is bounded by a minimum allowable

velocity, vmin, and a maximum allowable velocity, vmax: v ∈ [vmin, vmax].

We consider the following two cases:

Definition 6 (Exact conflict). All aircraft involved in a conflict come into conflict at a

single point in space and time.

Definition 7 (Inexact conflict). At least one of the aircraft involved comes into conflict

at a different point in space and time than the others.
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In this section, we present the model and formulate the collision avoidance problem for the

exact conflict case; the more general inexact conflict case will be detailed in Section 5.3.2,

using analysis and results from this and following sections.

Initially, we assume that each aircraft has a desired, or nominal, trajectory, which is a

straight path of constant heading. Conflict detection is achieved by the FMBCD algorithm

with a Look-ahead time, which we assume in this chapter to be greater than 20 minutes,

though our method is general enough to work for any finite time horizon. When a conflict

is detected, all aircraft involved in the conflict prepare to initiate a conflict resolution

maneuver. The maneuver is assumed to start at (conflict-time− T ), where conflict-time is

the time at which the aircraft would have reached the conflict point, and T is a fixed time,

assumed to be 20 minutes. In our notation, we thus initiate the time horizon [0, Tf ] so that

(conflict-time − T ) = 0. The aircraft involved in the conflict are assumed to be flying at

constant velocity during a resolution maneuver. The velocities are bounded between known

values vmin and vmax.

We initially partition the airspace around the conflict point into two concentric circular

discs of radii rmin and rmax, as shown in Figure 5.1. These radii are designed so that

rmin = vminT and rmax = vmaxT , which ensures that the aircraft lie in the annulus between

the two radii at the initiation of the conflict resolution maneuver.

For aircraft i, we denote the starting position as (xi(0), yi(0)) such that

[
xi(0)

yi(0)

]
=

[
ri cos θi

ri sin θi

]
, where i = 1, 2, · · · , N (5.1)

where ri = viT is the radial position of aircraft i, θi is the angular position of aircraft i,

and vi is the velocity of aircraft i as shown in Figure 5.1.

For aircraft i, the destination point is computed as the point at which the aircraft must

“rejoin” its original trajectory after completing the conflict resolution maneuver. This point

is assumed to be an equal distance along the desired trajectory from the conflict point, as

the conflict point is from (xi(0), yi(0)). We then relax this assumption and use waypoint
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information to find the destination point. We use a kinematic model for each aircraft to

design the protocol:

[
ẋi

ẏi

]
=

[
vi cosψi

vi sinψi

]
, where i = 1, 2, · · · , N (5.2)

In order to derive a real-time solution, we assume in our model that the aircraft can change

heading instantaneously, and that the control input is a piecewise constant heading change

(∆ψi) which we denote as ui. However, we show (in Appendix C) that the protocol is still

valid when a sharp corner in the resulting (xi, yi) path is replaced with a smooth circular

arc. Also, we assume synchronous maneuvers, in which all aircraft change their heading at

the same time, yet we will show that our protocol is robust with respect to asynchronous

maneuvers, in which all aircraft may not necessarily change their heading at the same time.

Detailed robustness analysis is given in Appendix C. We assume ui to be the same for

all aircraft. The resolution maneuver for each aircraft is set to be an isosceles triangular

path composed of two straight segments of constant heading and of constant velocity, the

apex of which is the new waypoint, pi. The position of the waypoint pi, and the vertical

deviation oi, is determined up to sign by the heading change ui. It can easily be shown that

under this maneuver, all aircraft arrive at their waypoints pi, and their destination points,

at the same time. Thus the problem of maneuver protocol design reduces to computing

the heading change ui to ensure safety. Based on this symmetric resolution maneuver, we

propose an asymmetric resolution maneuver, in which the resolution trajectory and the

returning trajectory are considered separately and thus may not be symmetric, in order to

account for flight plan information.

Finally, in this design, we are assuming that all aircraft share information about the other

aircraft’s position, velocity, and heading. This information sharing can be achieved by

communication through Automatic Dependent Surveillance-Broadcast (ADS-B). In [38],

we analyzed the effect on the conflict resolution protocol of differing information horizons.

5.2 Safety conditions for multiple-aircraft conflict resolution

In this section, we derive the safety conditions for multiple-aircraft conflict resolution for an

exact conflict which is unrealistic yet illustrative. First, a necessary and sufficient condition
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for safety of multiple-aircraft conflict resolution is derived. Since the safety condition for

the proposed conflict resolution is based on the minimum distance between aircraft, the

geometry of the conflict resolution maneuver is symmetric, and all aircraft change their

heading at the same time, the safety condition can be derived over the first half and the

second half of the conflict resolution path separately. Here, the safety condition is based on

the assumption of an exact collision; we show in Section 5.3.2 that the same safety condition

is also used for an inexact conflict resolution.

To ensure there is no conflict during the resolution maneuver, the minimum distance between

aircraft should be greater than or equal to the predefined safety distance, R. For notational

simplicity, we define for aircraft i and j: φi := ψi + ui, a := vi cosφi − vj cosφj , b :=

ri cos θi − rj cos θj , c := vi sinφi − vj sinφj , e := ri sin θi − rj sin θj .

Then, the distance squared between aircraft i and aircraft j on the first half path is:

S1
ij(t) = (xi(t)− xj(t))2 + (yi(t)− yj(t))2

= [(vi cosφi − vj cosφj)t + (ri cos θi − rj cos θj)]2

+[(vi sinφi − vj sinφj)t + (ri sin θi − rj sin θj)]2

= (at + b)2 + (ct + e)2

(5.3)

where 0 ≤ t ≤ Tf

2 , and i, j = 1, 2, · · · , N , i 6= j.

Similarly, we define: χi := ψi − ui, λ := vi cosχi − vj cosχj , µ := ri sinχi − rj sinχj ,

ξ := 1
2Tfa + b, σ := 1

2Tfc + e.

Then, the distance squared between aircraft i and aircraft j on the second half path is:

S2
ij(τ) = [(vi cosχi − vj cosχj)τ + (vi cosφi − vj cosφj)

Tf

2

+(ri cos θi − rj cos θj)]2 + [(vi sinχi − vj sinχj)τ

+(vi sinφi − vj sinφj)
Tf

2 + (ri sin θi − rj sin θj)]2

= (λτ + ξ)2 + (µτ + σ)2

(5.4)

where 0 < τ ≤ Tf

2 , and i, j = 1, 2, · · · , N , i 6= j.

In our problem setting, the worst case occurs when the minimum distance among aircraft

is achieved. If the minimum distance between aircraft is always greater than or equal to

the predefined safety distance, then the whole resolution maneuver is safe.
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We define (Sk
ij)min(t) to be the minimum distance between aircraft i and aircraft j over

the first half path if k = 1 and over the second half path if k = 2. In order to make

multiple-aircraft conflict resolution safe, the following inequality is satisfied:

(Sk
ij)min(t) ≥ R2 for t ∈

{
[0, Tf

2 ] if k = 1

(Tf

2 , Tf ] if k = 2
(5.5)

where ij ∈ {12, 23, 13, · · · , (N − 1)N}, which leads to N(N − 1) safety conditions. For

example, if we consider a three-aircraft conflict case (N = 3), then there are six condi-

tions for safe resolution. Condition 1 (C1) is (S1
12)min(t) ≥ R2 and Condition 2 (C2) is

(S2
12)min(t) ≥ R2. Condition 3 (C3) and Condition 4 (C4) for aircraft 2 and aircraft 3, and

Condition 5 (C5) and Condition 6 (C6) for aircraft 1 and aircraft 3 can be obtained in the

same way. We claim that the inequality in (5.5) for ij ∈ {12, 23, 13, · · · , (N−1)N} comprise

necessary and sufficient conditions for safety of multiple-aircraft conflict resolution for an

exact conflict.

Lemma 8. (Safety conditions for multiple-aircraft conflict resolution) There are no conflicts

over t ∈ [0, Tf ] for an exact conflict case if and only if (C1∧C2)∧(C3∧C4)∧· · ·∧(CN(N−1)−1∧
CN(N−1)).

Proof. See Appendix A.

We compute the minimum distance over the first half path and over the second half path

sequentially. From the geometry of the conflict resolution maneuver, the distance between

aircraft along each straight path is a differentiable function of t, thus the derivative of the

distance between aircraft with respect to time is always well defined and finite in these

regions. The minimum distance can be obtained by setting the derivative of the distance

squared between aircraft with respect to time to zero:

dS1
ij(t)
dt

= 0 ⇒ tmin = −ab + ce

a2 + c2
(5.6)

After algebraic manipulation, it may be shown that (5.6) reduces to a very simple relation

between heading change and the time at which the minimum distance occurs: tmin =
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T cosui. Substituting tmin into (5.3), the safety condition between aircraft i and aircraft j

over the first half path becomes

S1
ij(tmin) = (a2 + c2)(b2 + e2 −R2)− (ab + ce)2 ≥ 0 (5.7)

(5.7) can be rewritten as:

b2 + e2 − (ab + ce)2

a2 + c2
≥ R2 (5.8)

where

b2 + e2 = (ri cos θi − rj cos θj)2 + (ri sin θi − rj sin θj)2

= r2
i + r2

j − 2rirj cos(θi − θj)

a2 + c2 = (vi cosφi − vj cosφj)2 + (vi sinφi − vj sinφj)2

=
1
T 2

[r2
i + r2

j − 2rirj cos(θi − θj)]

ab + ce = (vi cosφi − vj cosφj)(ri cos θi − rj cos θj) + (vi sinφi − vj sinφj)(ri sin θi − rj sin θj)

= −cosu

T
[r2

i + r2
j − 2rirj cos(θi − θj)]

Since the heading changes of all aircraft are assumed to be the same u := ui = uj for all

i, j = 1, 2, · · · , N , the safety condition in (5.8) can be simplified as

sin2 u ≥ R2

r2
i + r2

j − 2rirj cos(θi − θj)
=

R2

S1
ij(0)

(5.9)

where i, j = 1, 2, · · · , N , i 6= j.

Now, we consider the second half path. Similar to the first half path, the minimum distance

occurs at
dS2

ij(t)
dt

= 0 (5.10)

The same procedure as previous is taken, and the safety condition between aircraft i and

aircraft j over the second half path is identical to the condition in (5.9) for the first half

path. This is expected from the geometry of the resolution maneuvers into which the conflict

resolution problem is cast because heading changes of all aircraft are the same and aircraft

change their headings at the same time.

From (5.9), we see that the magnitude of the heading change required for conflict resolution

is inversely proportional to the aircraft’s initial distance to a conflict point and to the
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minimum relative angular distance among aircraft. In other words, the magnitude of the

safe heading change is inversely proportional to the distance squared between aircraft at the

resolution starting time. This result coincides with the intuition that if aircraft are far apart

from each other, then a small heading change is enough to resolve a conflict but if aircraft are

close, then a bigger heading change is needed for safe separation. Inequality (5.9) represents

a closed-form analytic solution for the heading change required of all aircraft to resolve the

conflict. The minimum heading change, umin, can be obtained from (5.9) for a given initial

configuration and known parameters. Since both ±u satisfy (5.9), we resolve this turn

ambiguity for exact conflicts by restricting the control input to be such that 0o < u < 90o.

Thus, inequality (5.9) (with turn ambiguity resolved) is simple and deterministic; and can be

used to design a protocol for multiple-aircraft conflict resolution which can be implemented

in both airborne systems and ground ATC systems, and also easily implemented for real-

time applications because its computing time is negligible. No other currently available

multiple-aircraft conflict resolution algorithm has all of these properties. The design of

such a protocol for exact and inexact conflicts is the subject of the next two sections.

5.3 Protocols for multiple-aircraft conflict resolution

In this section, we derive protocols for multiple-aircraft conflict resolution using the safety

condition of inequality (5.9). Based on the unrealistic yet geometrically simple exact conflict

case, we derive a protocol for the general inexact conflict case.

5.3.1 Derivation of a protocol for multiple-aircraft conflict resolution for

an exact conflict

We construct a finite partition of the airspace around the conflict, and using our analytic

solution in (5.9), we derive a protocol for resolving the worst-case conflict within each

partition, where we define the worst-case conflict to be that configuration in which the

required heading change to resolve the conflict is maximized. Thus, for each partition, the

worst-case conflict is computed and the safe heading change which causes the minimum

deviation from the desired trajectories of each aircraft is computed for this worst case.

From (5.9), the minimum heading change which resolves a conflict is achieved when the
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denominator in the right-hand side is minimum, i.e. when ri = rj = rmin and |θi − θj | =

δθmin:

umin = sin−1

(
R

rmin

√
2(1− cos δθmin)

)
(5.11)

In this chapter, we use parameters from the data of a B747 which cruises with Mach 0.8 at

40, 000ft altitude [112]. We set rmin = 130nm and rmax = 170nm based on the data of a

B747, though these are general and may be altered. All initial configurations are assumed

to be safe.

x

y

candidate worst case 2

candidate worst case 1

r
min

r
max

(a) Two possible worst cases.

ac
1

ac
2

ac
3

x

y

30o

δθ
min

(b) Possible conflict configuration in Case 1 :
90o ≤ δθmin ≤ 120o.

Figure 5.2: Airspace partition.

For clarity, we derive the protocol below for a three-aircraft conflict, however, as we shall

show, our method is general to N -aircraft conflicts. For a three-aircraft conflict, there are

two possible worst cases as shown in Figure 5.2-(a). One is the case in which all three aircraft

are initially at rmin and separated by R. The other is the case in which all three aircraft

are initially located on a line and separated by R. However, these two cases become unsafe

instantaneously, i.e., this is a tactical conflict resolution problem which cannot be resolved

by our (or any) algorithm. Therefore, we impose a condition that the initial minimum

distance between aircraft is not less than 3R so that we rule out such cases. In fact, the

initial minimum distance between aircraft can be any value greater than R, the reason we
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choose 3R is to avoid large heading changes (≥ 20o) while at the same time making the

restriction not overly conservative. Then, the worst case occurs when the initial distance

between any two aircraft is 3R. Therefore, a protocol for the worst case is:

u ≥ 0.3400 = 19.4798o (5.12)

This is an interesting result: it indicates that a triangular deviation maneuver as shown

in Figure 5.1, with u ≥ 19.5o for all aircraft, will resolve any conflict for any number of

aircraft, as long as at the start of the maneuver, the radial positions of all aircraft are

between 130nm and 170nm, and the initial minimum distance between aircraft is not less

than 3R. However, this result is overly conservative as it was computed using the worst case

data. Thus, consider the following partition: divide the airspace in the angular direction

around the conflict point in order to alleviate conservativeness. Consider, for example, six

different cases corresponding to the minimum relative angle between any pair of aircraft:

• Case 1: 90o ≤ δθmin ≤ 120o

• Case 2: 60o ≤ δθmin < 90o

• Case 3: 45o ≤ δθmin < 60o

• Case 4: 30o ≤ δθmin < 45o

• Case 5: 10o ≤ δθmin < 30o

• Case 6: 0o ≤ δθmin < 10o

where the minimum relative angle between aircraft is defined: δθmin = min{|θi − θj ||i, j =

1, 2, · · · , N, and i 6= j} as shown in Figure 5.2-(b) for a three-aircraft conflict. For each of

these cases, we compute the worst-case conflict and the safe heading change which causes

the minimum deviation from the desired trajectories of each aircraft.

Consider, for example, Case 1, in which without loss of generality, the relative angle between

aircraft 1 and aircraft 2 is assumed to be minimum. Place aircraft 1 on the negative x-

axis as shown in Figure 5.2-(b), such that the conflict occurs at the origin. To satisfy the

hypothesis of Case 1, aircraft 2 should be located inside the shaded region, 270o ≤ θ2 ≤ 300o

(since δθmin is 90o) and aircraft 3 could be located somewhere inside the shaded region,

0o ≤ θ3 ≤ 90o, as shown in Figure 5.2-(b). Here, the shaded region which contains aircraft

3 is the largest possible one. Indeed, if aircraft 2 lies on the negative y-axis, then aircraft

3 could lie on the positive x-axis, and the hypothesis of Case 1 would still be satisfied.
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The minimum safe heading change can be obtained by substituting rmin = 130nm and

δθmin = 90o into equation (5.11). This procedure can be similarly applied to the other five

cases (where the protocol for Case 6 is the same as equation (5.12) derived earlier), leading

to the following protocol:

Multiple-aircraft protocol in the case of exact conflict

• Case 1: 90o ≤ δθmin ≤ 120o ⇒ u ≥ 0.0272 = 1.5584o

• Case 2: 60o ≤ δθmin < 90o ⇒ u ≥ 0.0385 = 2.2048o

• Case 3: 45o ≤ δθmin < 60o ⇒ u ≥ 0.0503 = 2.8805o

• Case 4: 30o ≤ δθmin < 45o ⇒ u ≥ 0.0744 = 4.2628o

• Case 5: 10o ≤ δθmin < 30o ⇒ u ≥ 0.2225 = 12.7471o

• Case 6: 0o ≤ δθmin < 10o ⇒ u ≥ 0.3400 = 19.4798o

If we consider an N -aircraft conflict in which the minimum relative angular position among

N aircraft is, for example, 50o, then heading change u = 2.8805o guarantees safety of the

N -aircraft conflict resolution. In general, we consider the case in which each aircraft has

the authority to choose its own airspace partition. Since the finer the airspace partition,

the smaller the deviation, it is reasonable that each aircraft may select its own airspace

partition according to its on-board computing ability and aerodynamic performance. Then,

the resolution procedure is as follows:

Algorithm 2. (Conflict resolution procedure in the case of exact conflict)

We assume that each aircraft has access to the other aircraft’s position, velocity, and head-

ing, and thus detects a conflict:

1. Each aircraft chooses a partition, computes its own heading change according to this

partition, and broadcasts this heading change ui to all other aircraft;

2. Among all heading changes broadcast including its own each aircraft chooses the small-

est (i.e. u = mini |ui| , for i= 1, 2, · · · ,N.), and follows this protocol.

Since each aircraft has the authority to choose its own airspace partition and to compute

its own resolution maneuver from Algorithm 2, our method is a decentralized conflict

resolution method.
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Proposition 7. Algorithm 2 guarantees safety for a multiple-aircraft exact conflict.

Proof. Since each aircraft’s heading change ui satisfies (5.9), from Lemma 8, Step 1 of

Algorithm 2 is safe. Since all heading changes ui chosen in Step 2 of Algorithm 2

are safe, the smallest u guarantees safety. Algorithm 2 guarantees safety of N -aircraft

conflicts because Lemma 8 and the safety condition in (5.9) do not depend on the number

of aircraft involved in the conflict.

5.3.1.1 Simulation results for an exact conflict

Simulation and validation are performed with a dynamic aircraft model under linear control

using the data from Bryson [112] of a B747 which cruises with Mach 0.8 at 40, 000ft

altitude, presented in Appendix B. If the resolution procedure designed above is applied to

an arbitrary initial configuration (which has a conflict point at the origin), the conflict-free

resolution maneuvers are obtained as shown in Figure 5.3 for a three-aircraft conflict (for all

six cases in the example above) and Figure 5.4 for a ten-aircraft conflict. The ten-aircraft

scenario converging to a conflict point is motivated from Bilimoria [99], Frazzoli et al. [97],

and Hoekstra et al [113]. Since the computing time for Algorithm 2 is negligible because

the protocol is based on a simple geometric inequality in (5.9), it can be used for real-time

airborne applications.

5.3.2 Derivation of a protocol for multiple-aircraft conflict resolution for

an inexact conflict

The exact conflict case is unrealistic, yet the methodology of the previous section may be

extended to the inexact case. In this section, we relax the exact assumption to consider the

case in which the conflict points of a multiple aircraft conflict do not coincide. For N -aircraft

conflicts, there are at most N(N−1)
2 original conflict points. We generalize our protocol so

that only the first segment of a resolution maneuver contributes to safe separation (the case

in which k = 1 in (5.5)). The second segment of the resolution maneuver is used in order

to return to the nominal trajectory. For example, if we consider the three-aircraft conflict,

Condition 1 (C1) is (S1
12)min(t) ≥ R2, Condition 2 (C2) is (S1

23)min(t) ≥ R2 and Condition

3 (C3) is (S1
13)min(t) ≥ R2 where t ∈ [0, Tf

2 ].
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Figure 5.3: Protocol-based conflict resolution for three aircraft (nm), exact conflict case.
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Figure 5.4: Protocol-based conflict resolution for ten aircraft (nm), exact conflict case.

If the point at which the last conflict among all conflicts occurs is chosen as the origin of

our reference frame, and thus the midpoint of each aircraft’s nominal trajectory segment

for resolution purposes, then the other possible conflict points are on the first segments of

each aircraft’s nominal trajectory. In this case, only the first segment has to be considered

in order to derive a safety condition. The three-aircraft example is illustrated in Figure 5.5.

Our strategy for solving this general conflict will be to first transform the problem to that of

an exact conflict, and then to use the solution derived in Section 5.3.1 for an exact conflict

to resolve the transformed problem. We then map the resolution maneuver back to the

coordinates of the general conflict, and the general resolution results. The proof of safety

follows from the fact that the exact resolution solves the transformed problem, and that

the mapping between the original and transformed problem is unique.

Thus, we introduce new variables wi, defined as the heading difference between the true

heading of aircraft i and the origin of our reference frame, as shown in Figure 5.5 for aircraft

3. Here, we define the counter-clockwise direction as positive, thus sign(w3) = −1, where

the sign function is defined as:

sign(x) =

{
1 if x ≥ 0

−1 if x < 0
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Figure 5.5: Inexact conflict.

Now suppose that aircraft i were not involved in the conflict at the origin; if we adjust the

velocity of aircraft i such that vi = ri
T and we change its heading by wi, then it would be

involved in a conflict at the origin. If we performed this transformation for all aircraft not

involved in conflict at the origin (at most N − 2 aircraft), then the inexact conflict would

become an exact conflict, and the required heading change u for safe resolution of this exact

conflict can be obtained from Algorithm 2. For clarity, we denote this u as uexact in this

section.

Now, define for aircraft i and aircraft j: φi := ψi − u, ā := vi cosφi − vj cosψj , b̄ :=

ri cos θi−rj cos θj , c̄ := vi sinφi−vj sinψj , ē := ri sin θi−rj sin θj , where i, j = 1, 2, · · · , N .

Then, the distance squared between aircraft i and aircraft j is:

S1
ij(t) = (xi(t)− xj(t))2 + (yi(t)− yj(t))2

= [(vi cosφi − vj cosψj)t + (ri cos θi − rj cos θj)]2

+[(vi sinφi − vj sinψj)t + (ri sin θi − rj sin θj)]2

= (āt + b̄)2 + (c̄t + ē)2

(5.13)

The safety condition between aircraft i and aircraft j becomes

b̄2 + ē2 − (āb̄ + c̄ē)2

ā2 + c̄2
≥ R2 (5.14)
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We define wmax = maxi |wi| · sign(wi), i = 1, 2, · · · , N : thus wmax has the maximum mag-

nitude among wi and preserves sign. For example, in the case of Figure 5.5, w1 = 0, w2 = 0,

and w3 = |w3|sign(w3), thus wmax = −w3. If we assumed that uexact = wmax and follow

the same procedure as in Section 5.3.1, the safety condition for a general inexact conflict

would be:

sin2 uexact ≥ R2

r2
1 + r2

3 − 2r1r3 cos(θ1 − θ3)
(5.15)

which is identical to the safety condition for an exact conflict in (5.9). However, the as-

sumption that uexact = wmax may not necessarily be true. Thus, we consider the two cases

uexact > |wmax| and uexact ≤ |wmax|: if uexact > |wmax|, a safe heading change for an inexact

conflict must be uexact because |wmax| would not satisfy the safety condition in (5.15); if

uexact ≤ |wmax|, then both uexact and wmax satisfy (5.15). However, since the sign of the

heading change of all aircraft should be the same according to our protocol, then u must

be set to wmax. Therefore, a protocol u for a general inexact conflict is:

u =

{
uexact sign(wmax) if uexact > |wmax|
wmax if uexact ≤ |wmax|

Since this protocol u is computed in the transformed frame, aircraft i must actually change

its heading by u − wi (i = 1, 2, · · · , N). The protocol for a general inexact conflict is as

follows:

Algorithm 3. (Multiple-aircraft protocol in the case of inexact conflict)

New Protocol (heading change + velocity change)

For i = 1, 2, · · · , N :

1. Select the last conflict point among possible conflict points as the center of conflict

resolution;

2. If aircraft i is not involved in the conflict at the origin, adjust its velocity such that

vi = ri
T (← new velocity);

3. Aircraft i computes its own heading change uexact from Algorithm 1, and computes

wi, wmax, and u;

4. Aircraft i changes its heading by u− wi.
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Algorithm 3 may be implemented in a decentralized manner, since each aircraft recognizes

a conflict situation and computes its own resolution maneuver autonomously.

Proposition 8. Algorithm 3 guarantees safety for the multiple-aircraft inexact conflict.

Proof. Step 1 ∼ Step 3 transform an inexact conflict situation into an exact conflict, and

the heading changes in Steps 3 and 4 satisfy the safety condition in (5.9). Therefore, from

Lemma 8, the multiple-aircraft protocol in the case of a general inexact conflict guarantees

safety.

5.3.2.1 Simulation results for an inexact conflict

If the protocol for an inexact conflict is applied to an arbitrary initial configuration which

satisfies the given assumptions, the conflict-free resolution maneuvers are obtained as shown

in Figure 5.6. A symmetric encounter pattern for four-aircraft conflicts [113] and a scenario

of two converging aircraft streams in Figure 5.6-(b) and (d), and random encounter patterns

for ten-aircraft conflicts in Figure 5.6-(e) are motivated from Frazzoli et al. [97]. As in

Section 5.1, rmin and rmax are the radii of two concentric circular discs around the conflict.

From the data of a B747 with Mach 8 at 40, 000ft, we used rmin = 130nm and rmax =

170nm throughout this chapter. However, the simulation result with rmin = 30nm and

rmax = 50nm in the airspace partition in Figure 5.6-(f) shows that our protocol is valid

with respect to various airspace partitions with different rmin and rmax (correspondingly

different T ), which is detailed in random simulation results in Appendix B. Appendix B

further presents details of validation with the dynamic aircraft model and random simulation

results with different parameters such as look-ahead time, initial minimum distance between

aircraft, and the number of airspace partitions.

5.4 Flight-mode-based conflict prevention

In this section, we propose a flight-mode-based conflict prevention algorithm in order to

minimize the number of aircraft in a resolution group, which could result in a small deviation

from the aircraft’s nominal trajectory. With the use of the conflict prevention algorithm,

we can also relax the assumption that an aircraft’s trajectory is a straight line, so that a

new protocol could resolve conflict around waypoints.
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(a) For three aircraft.
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(b) For four aircraft.
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(c) For five aircraft.
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(d) For six aircraft.
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(e) For ten aircraft.
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Figure 5.6: Inexact conflict (General case) (nm).
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5.4.1 Grouping

To implement PBCR, we have to determine which aircraft should take part in a resolution

maneuver. One option is to include in the resolution group all aircraft within a certain range

around a conflict point, yet this is inefficient since some of the aircraft may not need to take

the resolution maneuver. From Algorithm 3, a safe heading change required for conflict

resolution increases as θmin decreases. If many aircraft are included in the resolution, it

is more likely that θmin would be small. This means that perturbation from the aircraft’s

original path will be large. Thus, it is desirable to keep a resolution group as small as

possible. In this section, we present an algorithm to determine which aircraft should be

involved in the resolution maneuver.

Figure 5.7 shows the concept of grouping using the conflict prevention algorithm. The

conflict prevention algorithm is an event-driven algorithm , i.e., it is executed whenever an

aircraft changes its flight mode to see if there will be any other conflicts due to the flight

mode change. In Figure 5.7, solid and dotted lines represent original and resolution paths

of the aircraft, respectively. Suppose that AC2 and AC4 are going to have a conflict at

point A, and AC1 and AC3 have no conflict with any other aircraft. First, AC2 and AC4

are involved in a resolution group, and their maneuvers are determined according to the

protocol in Algorithm 3. However, a resolution maneuver (dotted line) of AC2 causes



5.4. FLIGHT-MODE-BASED CONFLICT PREVENTION 129

a new conflict with AC1 along its resolution trajectory, and it is detected by the conflict

prevention algorithm. Using this information, the new resolution group should contain AC1,

AC2 and AC4. After making a new resolution group, there are no more conflicts. Thus,

the conflict of the four aircraft can be safely resolved by a resolution maneuver involving

only three aircraft.
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−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

x

y

(d) For ten aircraft.

Figure 5.8: Protocol-based conflict resolution with flight-mode-based conflict prevention.

Figure 5.8 shows that the size of the resolution group can be reduced by applying the

conflict prevention algorithm. In the three aircraft case, only two aircraft take a resolution

maneuver to resolve the conflict and thus, the perturbation from the desired paths is smaller

than the case in which all three aircraft take a resolution maneuver. In the four aircraft

case, one aircraft is excluded from the resolution group and the other three aircraft are

involved in the resolution maneuver. In the case of ten aircraft, two aircraft do not take a

resolution maneuver and the resolution with only eight aircraft can avoid the conflicts.
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5.5 Validation with ETMS data

In this section, we combine the PBCR algorithm with the Flight-Mode-Based Conflict

Detection (FMBCD) algorithm (FMBCD/PBCR) and validate it with the scenarios based

on Enhanced Traffic Management System (ETMS) data. The FMBCD algorithm is used

for both conflict detection and conflict prevention. We set a look-ahead time (TLA) of

20min for both conflict detection and conflict prevention and a conflict resolution time (T )

of 10min. The FMBCD/PBCR algorithm is applied to various air traffic scenarios based

on ETMS data and flight plans from ETMS data are used to generate nominal trajectories

of aircraft.
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Figure 5.9: Simulations with ETMS data using FMBCD/PBCR: (a) Structured airspace
scenario. (b) Free flight scenario.

Figure 5.9-(a) shows one of such scenarios. Solid lines represent the nominal trajectories and

dotted lines denote resolution trajectories. FMBCD detects all conflicts around waypoints

such as Mina, Coaldale, and Clovis. The conflicts around Mina and Coaldale are resolved by

only two aircraft taking a resolution maneuver, yet all three aircraft join conflict resolution

to resolve a conflict near Clovis. Figure 5.9-(b) shows a “free flight” scenario result in which

each aircraft follows its own optimal trajectory. All conflicts are detected early enough by

the FMBCD algorithm for the resolution maneuvers. The PBCR algorithm resolves all

conflicts safely, and it is noted that not all aircraft around conflict points join the conflict

resolution due to the conflict prevention algorithm.
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Chapter 6

Approximate Computation of

Reachable Sets using Polytopic

Approximation

In the previous chapter, we considered cooperative resolution for multiple aircraft conflicts

in which all aircraft involved in a conflict coordinate their maneuvers to resolve it. We have

proposed algorithms which can solve these problems efficiently with guarantees of safety if

the maneuvers are followed. However, safety of these algorithms may not be guaranteed if

at least one of the aircraft involved in a conflict resolution does not follow the resolution

maneuver. Thus, in this chapter, we consider non-cooperative conflict resolution between

two aircraft, which we model as a dynamic game. In other words, we consider the worst-

case conflict scenario between two aircraft in which an aircraft (evader) tries to avoid a

conflict for any maneuver of the other aircraft (pursuer). By solving this problem, safety

for all possible conflict cases within the limits of the model used is guaranteed. We solve

this problem through reachable set computation.

Reachability analysis for continuous and hybrid systems is important for the automatic

verification of safety properties and for the synthesis of safe controllers for these systems

[27, 28]. Unsafe configurations of a dynamic system can be represented by a set of states

(unsafe set) in the state space. By computing a reachable set, that is, a set of states from

which the system could reach the unsafe set, we can show whether the dynamic system

133
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has an unsafe configuration. The exact reachable set boundary is known to be the zero

level set of the viscosity solution [114] of a Hamilton-Jacobi type of partial differential

equation (PDE). To the best of our knowledge, Leitmann was the first to recognize the

relationship between Bellman functions and the boundaries of the reachable sets [115].

In [116] it was shown how to approximate boundaries of reachable sets with an arbitrary

accuracy using smooth functions. In the sequence of papers by Khrustalev [117, 118], locally

Lipschitz functions are used to describe arbitrarily accurate under- and over-approximations

of reachable sets. The numerical solutions which provide convergent approximations of

reachable sets for dynamic systems have a computational complexity which is exponential

in the continuous variable dimension [29, 4]. Therefore, approximate methods for reachable

set computation have been proposed.

Tiwari and Khanna [119] and Alur et al. [120] propose predicate abstraction for reachable

set computation: this method can be used to extract equivalent finite state models from

complex, infinite state models, and then use them to find approximate reachable sets of

the original systems. In [121] Hwang et al. have used an augmented form of predicate

abstraction to compute reachable sets for a simple biological cell network. However, since

the accuracy of reachability analysis using predicate abstraction greatly depends on the

choice of polynomials for abstraction, it is important to have information about a given

system a priori (from analysis and simulations) to get good results in the reachability

analysis. Chutinan and Krogh [122, 123] present a method to approximate the flows of

autonomous systems with convex polyhedra. An experimental system called d/dt [124, 125,

120, 126] has been developed to approximate reachable sets for linear dynamical systems

using griddy orthogonal polyhedra. In these methods, optimization or an analytic relation

(for linear time invariant systems) are used to push the faces of polyhedra at each time

step in order to over-approximate reachable sets; it is difficult to compute the control

input from the boundary of the over-approximative set, which is guaranteed to keep the

system on the boundary or outside the set. Varaiya [30] designs a polytopic approximation

for linear time invariant systems using optimal control. Kostousova [127] develops two-

sided approximations of reachable sets for linear dynamic systems using parallelotopes.

Kurzhanski and Varaiya [31, 32, 128] propose an ellipsoidal approximation for forward and

backward reachable sets (a computational tool VeriSHIFT [129] has been developed based

on their ideas) and in [33, 34], they define various types of reachable sets for linear time-

varying systems with bounded perturbations using both open and closed-loop input laws. In
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[34], they propose ellipsoidal over-approximations of reachable sets for linear systems under

uncertainty via solutions of a particular type of differential equation. The authors clearly

state in the conclusions of both papers that the computational methods of reachable sets

and their approximations are topics for future research. These statements were a motivation

for the results presented in this chapter.

In this chapter, to overcome computational complexity of convergent numerical algorithms,

we use a polytopic approximation method [30] based on optimal control methods (e.g., [130,

131]), and polytopic level set functions, to efficiently compute approximations of forward

and backward reachable sets for linear dynamic systems. We then extend this method

to more general dynamical systems such as feedback linearizable nonlinear systems, linear

dynamic games, and norm-bounded nonlinear systems. Finally, as an example, we solve a

two-aircraft, non-cooperative conflict avoidance problem in real time.

6.1 Motivation and Problem Formulation

Consider a dynamical system,

ẋ(t) = f(x(t), u(t), d(t)),

x(0) ∈ X0 (or x(tf ) ∈ Y0), t ∈ [0, tf ]
(6.1)

where 0 ≤ tf < ∞, x ∈ Rn, u ∈ U ⊂ Rm is the control input, d ∈ D ⊂ Rp is the disturbance

input, X0 = {x : l(x) ≤ 0} is an initial set of states, and Y0 = {x : y(x) ≤ 0} is a target set of

states. We assume f to be Lipschitz. The spaces of admissible control input trajectories and

disturbance input trajectories are denoted as the spaces of piecewise continuous functions

U = {u(·) ∈ PC0|u(t) ∈ U, 0 ≤ t ≤ tf} and D = {d(·) ∈ PC0|d(t) ∈ D, 0 ≤ t ≤ tf}
respectively. The forward and the backward reachable sets of the system (6.1) are defined

as follows.

Definition 8. The forward reachable set X (τ) at time τ (0 < τ ≤ tf ), of the system (6.1)

from the initial set X0, is the set of all states x(τ) that are reachable from some x(0) ∈ X0

with a control input u(t) ∈ U (0 ≤ t ≤ τ) for every disturbance d(t) ∈ D (0 ≤ t ≤ τ), and

the system satisfying (6.1).
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Definition 9. The backward reachable set Y(τ) at time τ (0 < τ ≤ tf ), of the system (6.1)

from the target set Y0, is the set of all states x(τ) from which there exists a control input

u(t) ∈ U (τ ≤ t ≤ tf ) such that for all disturbances d(t) ∈ D (τ ≤ t ≤ tf ), and the system

satisfying (6.1), x(tf ) ∈ Y0.

It has been shown that a forward reachable set computation can be formulated as a dynamic

optimization problem [32]. The forward reachable set of the dynamical system (6.1) at time

τ (0 < τ ≤ tf ) is shown to be [32]:

X (τ) = {x : v(x, τ) ≤ 0} (6.2)

where v(x, τ) is a (viscosity) solution of the Hamilton-Jacobi-Isaacs (HJI) partial differential

equation,

Dtv(x, t) + max
u∈U

min
d∈D

{< Dxv(x, t), f(x, u, d) >} = 0 (6.3)

with v(x, 0) = l(x) and < p, q >= pT q the inner product in Rn. Then, the forward reachable

set of the dynamical system (6.1) is the zero sublevel set of the solution to the HJI equation

in (6.3).

Similarly, the backward reachable set of the dynamical system (6.1) at time τ (0 < τ ≤ tf )

is a zero sublevel set of the solution to the HJI equation [32],

Dtv(x, t) + min
u∈U

max
d∈D

{< Dxv(x, t), f(x, u, d) >} = 0 (6.4)

with v(x, tf ) = y(x).

In [29, 4], a numerical tool for computing convergent approximations for backwards reach-

able sets is designed and presented. This method is based on the level set method for

computing PDE solutions [132]. The computational complexity of this tool is exponential

in the number of continuous variables dimensions: it has been shown to work well in up

to three continuous variables dimensions, yet for larger problems computation time is cur-

rently prohibitive. Numerical convergence has been demonstrated on several examples; we

will use a “benchmark” three-dimensional example from [4] in this dissertation.

Consider planar kinematic models of two aircraft, labelled 1 and 2 as shown in Figure 6.4.

Let (xr, yr, ψr) ∈ R2 × [−π, π) represent the relative position and orientation of aircraft
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2 with respect to aircraft 1. Given the absolute positions and orientations of the two

aircraft, denoted as xi, yi, ψi for i = 1, 2, the relative coordinates are defined as: xr =

cosψ1(x2−x1)+ sinψ1(y2− y1), yr = − sinψ1(x2−x1)+cosψ1(y2− y1), ψr = ψ2−ψ1. The

relative kinematics are thus given by:

ẋr = −σ1 + σ2 cosψr + ω1yr

ẏr = σ2 sinψr − ω1xr (6.5)

ψ̇r = ω2 − ω1

where σi is the linear velocity of aircraft i and ωi is its angular velocity. Safety is encoded

Figure 6.1: Backward reachable set for two aircraft collision avoidance problem from [4].
Courtesy of I. Mitchell.

as a 5 nautical mile radius cylinder “protected zone” centered at the origin of the relative

frame. In this chapter, following the notation in Definition 9 (which is different from that

in [4]), we define the angular velocity of aircraft 2 (ω2) as the control input that steers the

system (6.5) into the target set and the angular velocity of aircraft 1 (ω1) as the disturbance

input that keeps the system (6.5) outside of the target set. Posing this problem as a game,

we label aircraft 1 as “evader” and aircraft 2 as “pursuer”, and we compute the set of

states (xr, yr, ψr) for which for all possible disturbance inputs, ω1 action of the evader,

there is a control input, ω2 action of the pursuer, such that the system state enters the

protected zone, which we consider the target set of the game. For values σ1 = σ2 = 5 and
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ωi ∈ [−1, 1], the problem has been solved numerically, and the results are shown in Figure

6.1 (visualization tool courtesy of Professor Ronald Fedkiw at Stanford). This computation

took approximately 15 minutes to run on a Sun UltraSparc II, in which 50 grid nodes in

each dimension were used. This example may also be solved analytically [133], and it may

be verified using this that the average error in computation is less than one tenth of a grid

cell, with maximum error always less than one grid cell.

In the following section, we extend Varaiya’s method [30] to treat this kind of system and

in Section 6.3.3, we compare the above computation with the resulting approximation.

6.2 Computation of polytopic reachable sets

We first define the over-approximate reachable set [32] (here we specialize to the case of

(6.1) in which there are no disturbances). Assume that x∗(0) ∈ X0 and u∗(t) ∈ U for all

t ≥ 0 such that x∗(τ) ∈ X (τ) (0 ≤ t ≤ τ). Then, an over-approximate solution to the

solution of the HJI equation in (6.3) is defined as a function v+(x, t) satisfying [32]:

dv+(x,t)
dt |x=x∗(t),u=u∗(t),ẋ=f(x,u) = Dtv

+(x∗, t)+ < Dxv+(x∗, t), f(x∗, u∗) >

≤ Dtv
+(x∗, t) + maxu∈U{< Dxv+(x∗, t), f(x∗, u) >}

≤ µ(t)
(6.6)

where v+(x∗, t) is a piecewise continuous function, and µ(t) is a positive-definite, integrable

function. Thus,
dv+(x, t)

dt
|x=x∗(t),u=u∗(t),ẋ=f(x,u) ≤ µ(t) (6.7)

By integrating (6.7) from 0 to τ , we obtain the over-approximate reachable set of the

dynamical system (6.1) at time τ as:

V +(τ) = {x|v+(x, τ) ≤
∫ τ

0
µ(t)dt + max

x(0)∈X0

v+(x(0), 0)} (6.8)

Next, we review the polytopic over-approximation of reachable sets for linear dynamical

systems and derive computational methods for polytopic over-approximate reachable sets for

feedback linearizable nonlinear systems, linear dynamic games, and norm-bounded nonlinear

systems.
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6.2.1 Linear dynamical systems

In this section, we review the polytopic over-approximation of reachable sets for linear

systems from [30]. Consider a time-varying linear dynamical system

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) ∈ X0, u(t) ∈ U (6.9)

where the initial set X0 and the admissible control input set U are assumed to be convex

polytopes which have N and Nu faces respectively. We assume the initial set X0 is a

polytope, but in general the number of faces of the initial set is a design parameter since

X0 may be a convex compact set and thus the more the number of faces of X0 the better

the over-approximate reachable sets.

A convex polytope P with K faces can be represented in two ways; it can be represented

as the bounded intersection of K half spaces,

P =
K⋂

i=1

{x|hT
i x ≤ γi} (6.10)

where hi is a normal vector to the ith face of the polytope P. A convex polytope can also

be represented as the convex hull of its vertices: if a convex polytope P has m vertices

{v1, · · · , vm}, then

P = {x|x =
m∑

i=1

αiv
i, αi ≥ 0,

m∑

i=1

αi = 1} (6.11)

Define a set of affine functions as

v+
i (x, t) = hT

i (t)x, i ∈ {1, 2, · · · , N} (6.12)

These affine functions are used to represent a convex polytope as shown in (6.10). In order

to find a polytopic over-approximate reachable set, solve for v+
i (x, t) in (6.12) that satisfies

(6.6). Then, (6.6) becomes

Dtv
+
i (x, t) + maxu∈U{< Dxv+

i (x, t), f(x, u) >}
= < ḣi(t), x(t) > +maxu∈U{< hi(t), A(t)x(t) + B(t)u(t) >}
= < ḣi(t), x(t) > + < A(t)T hi(t), x(t) > +maxu∈U{< hi(t), B(t)u(t) >}
≤ µ(t)

(6.13)
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From optimal control theory [134, 131], the adjoint equation for linear systems when the

input set does not depend on x is λ̇(t) = −A(t)T λ(t). Since λ(t) = hi(t) in our case, then

(for i ∈ {1, 2, · · · , N})

< ḣi(t), x(t) > + < A(t)T hi(t), x(t) >= 0, (6.14)

This represents the evolution of the normal vector of the ith face. Let hi(0), i ∈ {1, 2, · · · , N}
be the normal vectors of the faces of the initial set X0. Then, the solution to (6.14) is

hi(t) = Φ(t, 0)hi(0), i ∈ {1, 2, · · · , N} (6.15)

where Φ(t, 0) is the state transition matrix satisfying Φ̇ = −A(t)T Φ, Φ(0, 0) = I. If the

system dynamics in (6.9) is time invariant, then Φ(t, 0) = e−AT t and (6.15) becomes

hi(t) = e−AT thi(0), i ∈ {1, 2, · · · , N} (6.16)

Thus, for a linear time invariant system, the evolution of normal vectors can be determined

analytically. We denote {u1, · · · , umu} as the vertices of the input set U . Since U is a

convex polytope, the following must hold: (for j ∈ {1, · · · ,mu})

max
u∈U

< hi(t), B(t)u(t) >= max
j

< hi(t), B(t)uj >≤ µ(t) (6.17)

that is, the maximum is achieved at a vertex of U [30]. Furthermore, if the system dynamics

in (6.9) is time invariant, (6.17) is simplified to

max
j

< hi(t), Buj >= max
j

< e−AT thi(0), Buj >≤ µ(t) (6.18)

for j ∈ {1, · · · ,mu}. We choose µ(t) = maxj < hi(t), B(t)uj > and note that µ(t) is always

positive for a properly chosen input set U (e.g., chosen such that 0 ∈ U). Then, the affine

function v+
i (x, t) in (6.12) is a supporting hyperplane of the exact reachable set [30]. A

polytopic over-approximate forward reachable set V +(t) for the dynamical system (6.9) is

the intersection of half spaces as follows:

V +(t) =
N⋂

i=1

{x : v+
i (x, t) ≤

∫ t

0
max

j
< hi(s), B(s)uj > ds + max

x(0)∈Xo

v+
i (x(0), 0)} (6.19)
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V +(t) is a convex polytope which contains the exact reachable set at time t since each

v+
i (x, t) in (6.19) is a supporting hyperplane of the exact reachable set. If the system

dynamics is linear time invariant, V +(t) becomes

V +(t) =
N⋂

i=1

{x : v+
i (x, t) ≤

∫ t

0
max

j
< e−AT shi(0), Buj > ds + max

x(0)∈Xo

v+
i (x(0), 0)} (6.20)

6.2.2 Feedback linearizable nonlinear systems

In this section, we consider a class of nonlinear systems [135], in which u(t) is a feedback

control:

ẋ(t) = f(x) + g(x)u(t) (6.21)

u(t) = a(x) + b(x)v(t) (6.22)

We assume that there exists a diffeomorphism T : such that z = T (x), which transforms,

with the control input u(t), the nonlinear system (6.21) into an equivalent linear system.

Then, we can compute an over-approximate forward reachable set for the nonlinear system

(6.21) as follows:

• Step 1: Transform the nonlinear system (6.21) to an equivalent linear system, ż(t) =

A(t)z(t) + B(t)v(t) with appropriate u(t) and T .

• Step 2: Compute a polytopic over-approximate forward reachable set V +(t) of the

linear system following the procedure in Section 6.2.1.

• Step 3: Using the inverse state transformation x = T−1(z), we obtain the over-

approximate forward reachable set for the original nonlinear system (6.21) from V +(t).

Since there is no approximation during the transformation and the transformation is a

diffeomorphism on a given domain of interest, the forward reachable set obtained in Step

3 is guaranteed to be an over-approximate forward reachable set of the nonlinear system

(6.21).



142CHAPTER 6. APPROX. COMP. OF REACH SETS USING POLYTOPIC APPROX.

6.2.3 Linear dynamic games

Now, we consider the linear dynamic game:

ẋ(t) = A(t)x(t) + B(t)u(t) + C(t)d(t), x(0) ∈ X0, u(t) ∈ U, d(t) ∈ D (6.23)

where the initial set X0, the admissible control input set U , and the disturbance input set

D are assumed to be convex polytopes which have N , Nu, and Nd faces respectively. Then,

the HJI equation in (6.3) for a forward reachable set computation becomes [33, 34],

Dtv(x, t) + max
u∈U

min
d∈D

{< Dxv(x, t), A(t)x(t) + B(t)u(t) + C(t)d(t) >} = 0 (6.24)

To find an over-approximate solution to (6.24), we look for a set of affine functions v+
i (x, t)

in (6.12) satisfying the following inequality,

Dtv
+
i (x, t) + maxu∈U mind∈D{< Dxv+

i (x, t), A(t)x(t) + B(t)u(t) + C(t)d(t) >}
= < ḣi(t), x(t) > +maxu∈U mind∈D{< hi(t), A(t)x(t) + B(t)u(t) + C(t)d(t) >}
= < ḣi(t), x(t) > + < A(t)T hi(t), x(t) > +maxu∈U{< hi(t), B(t)u(t) >}

+mind∈D{< hi(t), C(t)d(t) >}
= maxu∈U{< hi(t), B(t)u(t) >}+ mind∈D{< hi(t), C(t)d(t) >}
≤ µ(t)

(6.25)

Since < hi(t), x(t) > + < A(t)T hi(t), x(t) >= 0, the evolution of normal vectors is the

same as (6.14). We denote {u1, · · · , umu} and {d1, · · · , dmd} as the vertices of U and D

respectively. Since (6.25) is linear with respect to u and d, the maximum and the minimum

in (6.25) are achieved at vertices of U and D as follows:

max
j

< hi(t), B(t)uj > +min
k

< hi(t), C(t)dk >≤ µ(t) (6.26)

for (j ∈ {1, · · · ,mu}, k ∈ {1, · · · , md}).
We choose µ(t) = maxj < hi(t), B(t)uj > +mink < hi(t), C(t)dk > and then a polytopic

over-approximate reachable set V +(t) for a linear dynamic game (6.23) is

V +(t) =
⋂N

i=1 {x : v+
i (x, t) ≤ ∫ t

0 [maxj < hi(s), B(s)uj > +mink < hi(s), B(s)dk >]ds

+ maxx(0)∈X0
v+
i (x(0), 0)}

(6.27)
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6.2.4 Norm-bounded nonlinear systems

In this section, we consider a norm-bounded nonlinear system,

ẋ(t) = A(t)x(t) + B(t)u(t) + φ(x, t), x(0) ∈ X0, u(t) ∈ U, ‖φ(x, t)‖ ≤ β(t) (6.28)

where the initial set X0 and the admissible control input set U are assumed to be convex

polytopes which have N and Nu faces respectively and ‖ · ‖ represents the Euclidean norm.

β(·) is a positive-definite function. Then, the HJB equation in (6.3) becomes

Dtv(x, t) + max
u∈U

{< Dxv(x, t), A(t)x(t) + B(t)u(t) + φ(x, t) >} = 0 (6.29)

To compute an over-approximate solution to the HJB equation in (6.29), we find the affine

functions v+
i (x, t) in (6.12) satisfying the following inequality,

Dtv
+
i (x, t) + maxu∈U{< Dxv+

i (x, t), A(t)x(t) + B(t)u(t) + φ(x, t) >}
= < ḣi(t), x(t) > +maxu∈U{< hi(t), A(t)x(t) + B(t)u(t) + φ(x, t) >}
= < ḣi(t), x(t) > + < A(t)T hi(t), x(t) > +maxu∈U{< hi(t), B(t)u(t) >}

+ < hi(t), φ(x, t) >

≤ maxu∈U{< hi(t), B(t)u(t) >}+ 1
2(‖hi(t)‖2 + ‖φ(x, t)‖2)

≤ maxj{< hi(t), B(t)uj >}+ 1
2(‖hi(t)‖2 + β(t)2)

≤ µ(t)

(6.30)

If we choose µ(t) such that
µ(t) = max

j
< hi(t), B(t)uj > +

1
2
(‖hi(t)‖2 + β(t)2) (6.31)

then, a polytopic over-approximate reachable set V +(t) for the norm-bounded dynamical

system (6.28) is

V +(t) =
⋂N

i=1 {x : v+
i (x, t) ≤ ∫ t

0 [maxj < hi(s), B(s)uj > +1
2(‖hi(s)‖2 + β(s)2)]ds

+maxx(0)∈X0
v+
i (x(0), 0)}

(6.32)

If φ(x, t) belongs to a polytope with vertices {φ1, · · · , φmφ}, a polytopic over-approximate

reachable set V +(t) becomes

V +(t) =
⋂N

i=1 {x : v+
i (x, t) ≤ ∫ t

0 [maxj < hi(s), B(s)uj > + maxk{< hi(s), φk >}]ds

+maxx(0)∈X0
v+
i (x(0), 0)}

(6.33)
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6.3 Examples

Here, we consider three examples: a linear system, a norm-bounded nonlinear system, and

we conclude with the example which motivated this study, a nonlinear, feedback linearizable,

dynamic game.

6.3.1 Linear dynamical systems

In this section, we consider a linear dynamical system ẋ = Ax + Bu, x(0) ∈ X0 where the

control input u(t) can vary inside a convex polytope U and the initial set X0 is also a convex

polytope. The system parameters are defined as [125]

A =




0.0 1.0 0.0 0.0

−8.0 0.0 0.0 0.0

0.0 0.0 0.0 0.1

0.0 0.0 −4.0 0.0




, B = 1

X0 = [0.0, 2.0]× [−1.0, 1.0]× [0.0, 2.0]× [−1.0, 1.0]

U = [−0.5, 0.5]× [−0.005, 0.005]× [−0.5, 0.5]× [−0.005, 0.005]

Figure 6.2 shows the evolution of the projection on x3 and x4 over time. This result is

similar to that in [125], yet computation time with the method shown in Section 6.2.1 is

1.17 seconds (which includes plotting the result shown in Figure 6.2) using MATLAB on a

700MHz Pentium III PC. For comparison, the algorithm proposed in [125] takes 18 seconds

using the same parameters.

6.3.2 Norm-bounded nonlinear systems

We consider a norm-bounded nonlinear system

ẋ = A(t)x + B(t)u(t) + φ(x, t), x(0) ∈ X0, u(t) ∈ U (6.34)
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Figure 6.2: The forward reachable set of a four dimensional linear dynamical system (pro-
jection onto x3 and x4).

where the initial set X0 and the control input set U are convex polytopes. The nonlinear

function φ(x, t) is assumed to be norm-bounded i.e., ‖φ(x, t)‖ ≤ 1
3 t where t > 0. The system

parameters are defined as follows:

A =

[
−0.5 4.0

−3.0 −0.5

]
, B =

[
−1

0

]

X0 = [4, 5]× [4, 5], U = [−0.1, 0.1]

The evolution of the forward reachable set over time is shown in Figure 6.3 and its compu-

tation time is 0.87 seconds (including plotting the result) using MATLAB on the same PC.

6.3.3 Conflict resolution between two aircraft

Last, we consider the two aircraft collision avoidance problem, as an example of feedback

linearizable nonlinear systems and linear dynamic games. Figure 6.4 shows the relative

configuration between two aircraft showing the protected zone. Aircraft 1 tries to avoid a

conflict with aircraft 2 no matter how aircraft 2 behaves within the limit of its capability.
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Figure 6.3: The forward reachable set of a norm-bounded nonlinear system.

Thus, we want to compute a backward reachable set (unsafe set) from the target set (pro-

tected zone) which represents the states from which the two aircraft would eventually have

a conflict no matter how aircraft 1 tries to avoid it [4].

The planar kinematic model for each aircraft i (i = 1, 2) in (6.5) is:




ẋi

ẏi

ψ̇i


 =




σi cosψi

σi sinψi

ωi


 (6.35)

ac
1

ac
2

5

protected zone

polytopic approximation of

the protected zone ( Y
0
)

x
r

y
r

ψ
r

Figure 6.4: Relative configuration of two aircraft showing the protected zone.
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Using dynamic extension [135] with σi as a new state variable, we can obtain a new nonlinear

model which is feedback linearizable [136],




ẋi

ẏi

ψ̇i

σ̇i




=




σi cosψi

σi sinψi

ωi

ai




(6.36)

where ai is the acceleration of aircraft i and is a new control input. Thus, the new state

and input variables are ξi := [xi yi ψi σi]T and ηi := [ai ωi]T respectively. We introduce a

change of the state variables

zi = T (ξi) such that




z1

z2

z3

z4




i

=




xi

yi

σi cos(ψi)

σi sin(ψi)




(6.37)

and a change of the input variables

ηi = M(ξi)ui such that M(ξi) =

[
cos(ψi) sin(ψi)

− sin(ψi)/σi cos(ψi)/σi

]
(6.38)

where ui is the control input for the linearized model, and T and M are diffeomorphisms

everywhere except at σi = 0. Then, the feedback linearized model of the nonlinear kinematic

aircraft model in (6.36) obtained through the transformations in (6.37) and (6.38) is [136]:

żi = ∂T
∂ξ i

ξ̇i ⇒ żi = Azi + Bui

where A =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




, B =




0 0

0 0

1 0

0 1




(6.39)

The relative kinematic aircraft model between two aircraft can be obtained by introducing

new states ξr = ξ2−ξ1 in the original nonlinear state space and zr = z2−z1 in the linearized
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(a) (b)

Figure 6.5: Comparison between over-approximate and exact (Figure 6.1) backward reach-
able sets (unsafe sets) of conflict resolution between two aircraft: view from (a) Azimuth
80o and elevation 10o (b) Azimuth 10o and elevation −10o.

state space. Thus, a linearized relative kinematic aircraft model is

żr = Azr + Bu2 −Bu1, u2 ∈ U, u1 ∈ D, (6.40)

where the admissible control input set U and the disturbance input set D are polytopes.

This is a linear dynamic game since aircraft 1 (u1) tries to keep aircraft 2 from entering

into its protected zone (target set) to prevent a conflict, but aircraft 2 (u2) tries to enter

the protected zone of aircraft 1. For a backward reachable set computation for the linear

dynamic game (6.40), the HJI equation in (6.24) becomes [33, 34],

Dtv(x, t) + min
u2∈U

max
u1∈D

{< Dxv(x, t), A(t)x(t) + B(t)u2(t))−B(t)u1(t) >} = 0 (6.41)

A target set (protected zone) is assumed to be Y0 = [−5, 5] × [−5, 5] × [−π, π] as shown

in Figure 6.4 in which we have performed the computation in four dimensions (6.40) and

projected the result onto the relative coordinate in three-dimensional space. A polytopic

over-approximate backward reachable set is first computed in the linearized space and then

the over-approximate backward reachable set in the original state space is obtained through

the transformations in (6.37) and (6.38). The over-approximate backward reachable set for

conflict resolution with heading changes only, using the target set Y0, normalized aircraft

speeds σ1 = σ2 = 5, angular velocities |ω1| ≤ 1 and |ω2| ≤ 1 is compared with the exact

solution in [29] in Figure 6.5. The backward reachable set obtained by using the polytopic
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Figure 6.7: Conflict resolution simulation with relative initial states (xr = 10, yr =
−20, ψr = 115o). Aircraft 1 tries to avoid a conflict with aircraft 2 with the optimal
strategy.

approximation is an over-approximation of the exact reachable set and its computation time

is about 1.0 seconds (including plotting the result as shown in Figure 6.5) using MATLAB on

the same PC, yet the exact solution [4] takes approximately 15 minutes on a Sun UltraSparc

II with 50 grid nodes in each dimension. Figure 6.6 shows a conflict scenario in which aircraft

2 tries to enter the unsafe zone. When aircraft 2 reaches the boundary of the unsafe zone

as shown in Figure 6.6, the optimal control input for aircraft 1 can be easily obtained as

follows:
u∗1(t) = arg maxu1∈D{< Dxv(x, t),−B(t)u1(t)) >}

= arg maxj < e−AT th1(0),−Buj
1 >

(6.42)

Figure 6.7 shows a simulation for conflict resolution between the two aircraft with the initial
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condition (xr = 10, yr = −20, ψr = 115o). Since both aircraft behave optimally, the relative

position of aircraft 2 moves along the boundary of the unsafe set. As expected, chattering

occurs along the boundary. To avoid such a phenomenon, we could introduce a buffer zone

around the boundary so that the control inputs change smoothly as aircraft 2 approaches

the boundary.



Chapter 7

Conclusions and Future Work

The contributions of this dissertation are the development of a set of algorithms and tools for

air traffic surveillance and control, with provable properties such as safety, convergence, and

computational efficiency. For air traffic surveillance and control, accurate state estimates

of aircraft are required because traffic advisories are highly dependent on them. The flight

mode changes of an aircraft depend on the pilot’s input, which is typically unknown to the

surveillance system. In this dissertation, the flight mode logic of the aircraft is represented

by discrete state dynamics governed by a finite Markov chain. Each discrete state has its

own discrete-time continuous linear dynamics that describe the motion of the aircraft in

the corresponding flight mode. In this way, a discrete-time stochastic linear hybrid system

could be used to accurately represent the behavior of an aircraft over all of its flight regime.

To estimate the aircraft state using such a model, hybrid estimation algorithms are needed.

In order to derive a hybrid estimation algorithm, we have constructed observability con-

ditions for discrete-time stochastic linear hybrid systems and analyzed the performance of

hybrid estimation algorithms for such hybrid systems. Based on the results of this analysis,

we have developed a new hybrid estimation algorithm called the Residual-Mean Interacting

Multiple Model (RMIMM) algorithm. RMIMM uses the mean of the residual computed by

an individual Kalman filter so that it reduces mode estimation confusion and thus provides

accurate state estimates. Using the RMIMM algorithm for state estimation, we have devel-

oped a Multiple-Target Tracking and Identity Management algorithm, which can keep track

of multiple aircraft in clutter and maintain their identities at the same time. We have also

151
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developed a Flight-Mode-Based Conflict Detection algorithm which uses not only continu-

ous state estimates but also flight mode (discrete state) estimates computed by the RMIMM

algorithm. In order to resolve conflicts detected, we have proposed a Protocol-Based Con-

flict Resolution algorithm for multiple-aircraft conflict resolution. The proposed conflict

resolution algorithm is based on a closed-form analytic solution so that its computational

time is negligible, and it is shown to be provably-safe within the limits of the model used.

These algorithms may be used either as supporting tools to reduce the controllers’ work load

and to increase their performance, or as automation tools for some functions that are cur-

rently performed manually. For safety verification and synthesis of safe controllers, we have

proposed an over-approximate method for reachable set computation using polytopic ap-

proximations, based on optimal control theory. The proposed method efficiently computes

over-approximate reachable sets for linear systems, feedback linearizable nonlinear systems,

linear dynamic games, and norm-bounded nonlinear systems. We have successfully solved

a two-aircraft conflict avoidance problem in real time.

Future Work

The algorithms that we have developed in this dissertation have properties of computational

efficiency, safety, and convergence, and could be applied to many applications related to the

control of multiple-vehicle systems, such as the control of a group of mobile robots, as well

as to ad hoc sensor networks.

Since hybrid estimation is quite general, its applications span many possible arenas. I am

interested in extending the application of hybrid estimation algorithms to fault detection

and isolation, and fault-tolerant estimation. Various faults of a dynamic system can be

modelled by a hybrid system whose discrete states denote different error states, and the

continuous dynamics in each discrete state describes the physical behavior of the system

corresponding to the fault occurred. A hybrid estimation algorithm can detect and isolate a

fault through its discrete state estimate. Since the continuous dynamics in the corresponding

mode describes the behavior of the faulty system correctly, the hybrid estimation algorithm

could provide accurate continuous state estimates even after a fault occurs in the system.

As the number of faulty modes increases to account for many possible faults, the number of

discrete states in a hybrid system should increase. And thus, the number of mode-matched

Kalman filters in a hybrid estimation algorithm should increase accordingly. This not only

increases the computational complexity of hybrid estimation but also could deteriorate the
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performance of hybrid estimation due to mode confusion. Since the proposed RMIMM

algorithm decreases mode estimation confusion using the mean of residual computed by

mode-matched Kalman filters, we predict that the RMIMM algorithm would work better

for such cases than any other existing multiple-model-based state estimation algorithm. If

we can reduce the number of discrete state trajectories for hybrid estimation, we might

further increase the performance of hybrid estimation algorithms. For this, I have an

interest in the Viterbi algorithm [137] which computes the maximum likelihood discrete

state trajectory. Using the Viterbi algorithm, we keep only a subset (M < N , where N is

the number of discrete states in the hybrid system and M denotes the number of discrete

state trajectories) of discrete state trajectories which have the M greatest likelihoods.

I am also interested in extending hybrid estimation to information inference (or system

identification) for discrete-time stochastic linear hybrid systems. In practice, system identi-

fication methods for hybrid systems are quite ad hoc, consisting of highly simplified models

of continuous dynamics and no systematic way of designing discrete dynamics. I have

worked on this problem recently and have developed an algorithm that finds the maximum-

likelihood values of parameters of the continuous dynamics in each discrete state, and also

the transition probabilities between the discrete states [138]. I would like to extend this

method to the fields of modelling of biological systems and the statistical analysis of time-

series data.

The current Multiple-Target Tracking and Identity Management (MTIM) algorithm is cen-

tralized in the sense that it uses information about all aircraft. I would like to extend the

MTIM algorithm to the distributed case. That is, an individual aircraft could track multiple

targets and manage their identities within its surveillance region, and aircraft could com-

municate with each other only when necessary to get global information. The distributed

algorithm could decrease computational complexity significantly and would be robust with

respect to sensor or processor failure. This distributed version of the MTIM algorithm could

be used for real-time onboard applications for control of multiple-vehicle systems (includ-

ing air traffic control). In the ad hoc sensor network applications, each sensor has its own

(possibly small) surveillance region and the global surveillance region is comprised of these

individual surveillance regions of each sensor. In order to obtain global surveillance infor-

mation, individual sensors have to communicate with each other. Then the problems to be

addressed are when and what information has to be communicated and how to get global
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information from local information. Therefore, the decentralized algorithm is essential for

these applications.

For safety verification, I would like to extend the over-approximate reachable set compu-

tation to hybrid systems and other complex dynamic models. The current algorithm can

compute reachable sets for two-player dynamic games. I am interested in extending the

algorithm to multiple-player dynamic games for multiple-aircraft conflict avoidance. Since

we use polytopic functions for approximation of reachable sets, we can compute approxi-

mate reachable sets computationally efficiently. In order to further increase computational

efficiency, I would like to incorporate algorithms for computational geometry [139] which

could efficiently handle polytopic objects.



Appendix A

Proof of Lemma 8 (Safety

conditions for multiple-aircraft

conflict resolution) in Section 5.2

Proof. Denote by P1 the statement: there are no conflicts over t ∈ [0, Tf ]; and by P2 the

statement (C1 ∧ C2) ∧ (C3 ∧ C4) ∧ · · · ∧ (CN(N−1)−1 ∧ CN(N−1)).

(1) Show (if) is true first, i.e., P2 ⇒ P1.

Assume P2 is not true. This means at least, one of Ci (i = 1, · · · , N(N − 1)) is false.

Without loss of generality, we suppose C3 is false, i.e., (S1
23)min(t) < R2. Then, there exists

t ∈ [0, Tf

2 ] such that (d1
23)min(t) = d(t) < R at some t ∈ [0, Tf

2 ]. From the definition of

a conflict, there is a conflict over [0, Tf

2 ], thus, over [0, Tf ]. This is a contradiction to P1.

Hence, P2 ⇒ P1 is true.

(2) Show (only if) is true, i.e., P1 ⇒ P2.

Assume there is at least one conflict over [0, Tf ]. Without loss of generality, we suppose

a conflict occurs between aircraft 1 and aircraft 3. This means that d13(t) < R at some

t ∈ [0, Tf ]. We consider two cases. First, we assume a conflict occurs at some t ∈ [0, Tf

2 ].

Then, d13(t) < R is true at some t ∈ [0, Tf

2 ]. Since (d1
13)min(t) ≤ d13(t) at all t ∈ [0, Tf

2 ],

(d1
13)min(t) < R is true at all t ∈ [0, Tf

2 ]. This is a contradiction to P2. Hence, P1 ⇒ P2.

Second, we suppose a conflict occurs at t ∈ (Tf

2 , Tf ]. Then, d13(t) < R occurs at some
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t ∈ (Tf

2 , Tf ]. Since (d2
13)min(t) ≤ d13(t) over (Tf

2 , Tf ], (d2
13)min(t) < R is true at all t ∈ [0, Tf

2 ].

This is a contradiction to P2. Hence, P1 ⇒ P2.

Therefore, P1 ⇔ P2.



Appendix B

Validation of Protocol-Based

Conflict Resolution with dynamic

aircraft model

The protocols for multiple-aircraft conflict resolution have been derived using a kinematic

aircraft model. However, validation with a dynamic aircraft model is necessary to show

applicability of the protocols to real air traffic control problems. The lateral motion of

an aircraft is controlled by the aileron δa (rad), and the rudder δr (rad). The important

variables of an aircraft’s lateral motion are: sideslip velocity v (ft/sec), yaw rate r (rad/sec),

roll rate p (rad/sec), roll angle φ (rad), and heading angle ψ (rad).

A linear lateral dynamic model of a B747 which cruises with M = 0.8 at 40, 000ft altitude

is used for validation [112]:
ẋ = Ax + Bδ

y = Cx
(B.1)

where x := [v r p φ ψ]T is the state vector, δ := [δa δr]T is the control input, and y := [v ψ]

is the output, and the system parameters A, B, and C are given by
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A =




−0.0558 −7.74 0 0.322 0

0.0773 −0.115 −0.0318 0 0

−0.394 0.388 −0.465 0 0

0 0 1 0 0

0 1 0 0 0




B =




0 0.0564

0.00775 −0.475

0.143 0.153

0 0

0 0




C =

[
1 0 0 0 0

0 0 0 0 1

]

(B.2)

In Figure B.1-(a), the trajectory generator produces a conflict resolution trajectory accord-

ing to the corresponding protocol for multiple-aircraft conflict resolution and the controller

keeps the aircraft on the conflict resolution trajectory. The control law is:

δ = −Kx + (Nu + KNx)yr (B.3)

where,

[
Nx

Nu

]
=

[
A B

C 0

]−1 [
0

1

]

The feedforward control in (B.3) makes the aircraft follow the conflict resolution trajectory

and the feedback control K regulates the error dynamics. The feedback control gain K is

designed using linear optimal control (LQR). All validation results in Section 4 and Section

5 have been obtained with the closed-loop dynamic model in Figure B.1-(a).

We validate our protocol for randomly generated five-aircraft conflict situations with dif-

ferent parameters and a dynamic aircraft model. For each parameter, simulation has been

done for 200 different conflict configurations. Figure B.1-(b:(I)) shows random simula-

tion results with different initial minimum distance such as 2R, 3R, and 4R, and Figure

B.1-(b:(II)) shows random simulation results with different look-ahead time such as 5min,

10min, 15min, and 20min. Figure B.1-(b:(III)) shows random simulation results with dif-

ferent minimum radius of airspace partition (rmin) such as 30nm, 60nm, 100nm, and 130nm
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Figure B.1: Validation with a dynamic aircraft model.
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and Figure B.1-(b:(IV)) shows random simulation results with different number of airspace

partitions such as 6, 12, and 24 partitions. The simulation results demonstrate that our

protocol resolves all conflicts safely.



Appendix C

Robustness Analysis of

Protocol-Based Conflict Resolution

Demonstrating robustness of the protocol for multiple-aircraft conflict resolution is impor-

tant; the protocol must guarantee safety against uncertainty in the position, velocity, and

heading of the aircraft. Here, we mean by robustness that the small perturbations in the

system parameters causes small perturbations in the solution for conflict resolution. In the

following, we show the protocol is robust with respect to uncertainty in sector boundary, to

maneuver shape, and to asynchronous maneuvers for both exact and inexact maneuvers.

Robustness analysis with respect to sector boundaries

Consider Figure C.1-(a). We express sectors of allowable initial conditions for aircraft as

(rmin ≤ r ≤ rmax) ∧ (θmin ≤ θ ≤ θmax), shown as a shaded region in Figure C.1-(a). The

uncertainties that are important for the protocol are those in rmin and δθmin, as seen from

(5.11). Uncertainty in rmin is considered first. If rmin has ±5% error, a new heading change

ui can be obtained from (5.11) for both the exact conflict case and the inexact conflict case.

For an exact conflict, ui should be:

ui ≥ sin−1

(
R

0.95rmin

√
2(1− cos δθmin)

)
(C.1)

161



162 APPENDIX C. ROBUSTNESS ANALYSIS OF PBCR

If Case 1 is considered, ui ≥ 0.02864 which differs from the original heading change by

5.29%. But since the heading change itself is small, the difference is only 0.0825o. For Case

5, ui ≥ 0.2344 which differs from the original heading change by 5.35% and by 0.6818o. From

this analysis, we know that the protocols for multiple-aircraft conflict resolution are robust

to uncertainty in rmin. To make conflict resolution in Algorithm 2 and Algorithm 3 safe

with respect to uncertainty in rmin, a new rmin which takes into account this uncertainty

should be used when each aircraft computes its own heading change ui.

Now, consider uncertainty in δθmin. Since the protocol is derived from the worst case in

each category, the control input, ui, is the minimum heading change which can resolve

conflicts for a given category. If the aircraft position is uncertain due to sensor errors, it

can be represented by a region, usually a circle or an ellipse. If this region crosses the

sector boundary as shown in Figure C.1-(a), the larger ui must be chosen for safety. For

example, in Figure C.1-(a), if there is no uncertainty in the position of aircraft 2, then

this configuration corresponds to Case 1. Thus, the protocol for an exact conflict case is

ui = 0.0272. However, if there is uncertainty in the position of aircraft 2, then the protocol

for an exact conflict case must be that for Case 2, i.e., ui = 0.0385 rather than ui = 0.0272.

Similarly, the larger ui must be chosen for safety for an inexact conflict case. Then, the

protocols for multiple-aircraft conflict resolution are robust to uncertainty in δθmin.

Robustness analysis with respect to circular arc turns

We assumed instantaneous heading changes when deriving the protocol for multiple-aircraft

conflict resolution, impossible in a real situation. Thus, we consider robustness with respect

to replacing corners by circular arc turns. Again, without loss of generality, we consider

three-aircraft conflicts. In Figure C.1-(b), all three aircraft follow the conflict resolution

paths: consider aircraft 1 and aircraft 2. Aircraft 1 and aircraft 2 reach q1 and q2 respectively

at the same time. On the circular arcs, the two aircraft move with the same angular velocity,

ω. This can be easily shown. The distance l1 in Figure C.1-(b) is

l1 = v1T cosu1 (C.2)

Thus, the angular velocity of aircraft 1 is:

ω1 =
v1

l1
=

v1

v1T sinu1
=

1
T sinu1

=: ω (C.3)
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From (C.3), the angular velocity of aircraft 1 depends on T and u1 only. Since u1 = u2 = u3,

the angular velocities of all three aircraft are the same.

To show robustness of the protocol, we need only to show now that the maneuvers are safe

when the aircraft are on the circular arc paths. Of course, the worst case occurs when the

distance between aircraft on the circular paths is minimum. From the geometry and the

fact that all three aircraft have the same angular velocity during the resolution maneuver,

the worst case is achieved between a point q1 and a point q2 when aircraft 1 and aircraft

2 are both on rmin and the relative angle between aircraft 1 and aircraft 2 is δθmin. The

minimum distance between aircraft on the circular arcs from Figure C.1-(b) is:

η2
min = 2r2

min(1− cos γ) (C.4)

where γ is δθmin. Therefore, the minimum distance on the circular arcs is:

ηmin = rmin

√
2(1− cos δθmin) (C.5)

If ηmin ≥ R for all possible conflict cases over the circular arcs, the resolution maneuvers are

safe, i.e. the protocol for three-aircraft conflict resolution is robust to smoothing corners.

If (C.5) is applied to all six cases, the results are:

• Case 1: 90o ≤ δθmin ≤ 120o ⇒ ηmin = 5.0004 > R ⇒ safe

• Case 2: 60o ≤ δθmin < 90o ⇒ ηmin = 5.0038 > R ⇒ safe

• Case 3: 45o ≤ δθmin < 60o ⇒ ηmin = 5.0026 > R ⇒ safe

• Case 4: 30o ≤ δθmin < 45o ⇒ ηmin = 5.0032 > R ⇒ safe

• Case 5: 10o ≤ δθmin < 30o ⇒ ηmin = 5.0005 > R ⇒ safe

• Case 6: 0o ≤ δθmin < 10o ⇒ ηmin = 5.0002 > R ⇒ safe

This shows that the protocol for an exact conflict is robust to replacing corners by circular

arc turns. Since the protocol for an inexact conflict is based on the protocol for an exact

conflict, robustness of the protocol for an inexact conflict to replacing corners by circu-

lar arc turns can be easily shown by following the same procedure for an exact conflict.

Since angular velocities of all aircraft are the same, the minimum distance between aircraft

remains same after replacing corners by circular arcs. Thus, the protocol for an inexact

conflict perturbation case is also robust to replacing corners by circular arcs.
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Robustness analysis with respect to asynchronous maneuvers

We assumed synchronous maneuvers, in which all aircraft in a resolution group change their

heading at the same time, when deriving the protocol for multiple-aircraft conflict resolution.

Here, we show that our protocol is robust with respect to asynchronous maneuvers.

First, consider the case in which aircraft initiate their resolution maneuver earlier or later

than the exact resolution starting time, as shown in Figure C.1-(c). In Figure C.1-(c), c

represents an exact resolution starting point. If an aircraft initiates its resolution maneuver

earlier or later than the exact resolution starting point, c1 and c2 represent a real resolution

starting point respectively and a1 is the distance between c and c1 (or c2). If the aircraft’s

velocity is v, then the time discrepancy τ1 between the exact resolution starting time and

a real resolution starting time at the resolution starting point is defined as τ1 = a1
v . From

(5.6), the minimum distance among aircraft occurs at z1 on the first segment and at z2

on the second segment. Due to asynchronous maneuvers, the minimum distance can be

changed by a1 at z1 and z2. We use an uncertainty disk with radius a1 at the z1 and z2 to

accommodate this change in the minimum distance [140]. Then, for safety, a new predefined

safety distance Rsafe should be

Rsafe = R + vτ1 (C.6)

We consider the case in which aircraft change their heading before or after reaching a new

waypoint c as shown Figure C.1-(d). In Figure C.1-(d), a2 is the distance between c and c1

(or c2) and the time discrepancy τ2 at the new waypoint is defined as τ2 = a2
v . If the same

procedure as previous is taken, a new predefined distance should be

Rsafe = R + vτ2 (C.7)

Therefore, in order to make our protocol safe against asynchronous maneuvers both at a

resolution starting point and at a new waypoint, from (C.6) and (C.7), a new predefined

safety distance should be

Rsafe = R + v(τ1 + τ2) (C.8)

Then, a new protocol for exact and inexact conflicts can be obtained from (5.9) with the new

safety distance in (C.8). For example, if we consider a B747 cruising with M=8 at 40, 000ft
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altitude and the maximum allowable time discrepancy both at a resolution starting point

and at a new waypoint is τ1 = 10sec and τ2 = 10sec respectively, then a new safety distance

is Rsafe = 7.53nm.
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