
Self Tuning Data-stores for Geo-distributed Cloud Applications
Shankaranarayanan P N, Ashiwan Sivakumar, Sanjay Rao, Mohit Tawarmalani

Purdue University

Write

Read

User homepage

Interactive Online Applications
 Latency, availability and consistency are ALL critical
 Solutions:
 Latency higher replication (e.g., CDNs)
 Availability geo-redundancy (e.g., geo-distributed DBs)
 Consistency quorum protocols (e.g., Dynamo, Cassandra)

Challenges
 Can I achieve all the three for my application?
 Will my application meet client’s SLA constraints?
 How do I optimally balance the contrasting requirements?
 Is there a feasible solution for a given set of constraints?
 Can this complex decision making be automated?

Our approach
 Develop models that capture the relationship between

Latency, Availability and Consistency
 Build optimization framework using the models

Model goals
 Automatically determine the replication configuration

parameters for “buckets” of data items

 number (N) and location of replicas
 read/write quorum size (R,W)

 Honor application availability and consistency constraints
 Leverage workload characteristics to minimize latency
 Geographical distribution of accesses
 Asymmetry between the reads and writes
 Relative priority between the reads and writes

Additional inputs
 Percentiles of requests that needs to be optimized
 Priority of reads and writes

Availability
constraints
(e.g. N ≥ 3)

Read/Write
Access PatternsLatency

constraints
(e.g. Tr ≤ 50 ms)

Consistency
constraints
(R+W > N)

Optimization
and

Configuration
Engine (OCE)

replica
configurations

Observations
• Models predictions are very close to reality
• Models perform significantly better than naïve,

off-the-shelf configurations (e.g. random partitioning)
• Failure of different DCs can result in different

performance

System Design

Experimental evaluation of our models on EC2 test-bed
• Evaluation on a Cassandra cluster with 27 nodes (DCs)

using real world application traces - Twitter, Wikipedia
• Location of DCs similar to AWS edge locations
• Inter DC delays measured using planet-lab nodes and

emulated using dummynet
• Failure of DCs emulated by shutting down nodes in the

Cassandra cluster

Conclusions
Our optimization models
 evaluate limits on achievable performance given application

constraints and a given workload
 show the importance of choosing different replication

strategies across different buckets
 highlight the significant benefits of optimizing for the

optimal latency percentiles
 show that explicit modeling of performance under failure is

critical for good performance
 are embarrassingly parallel, flexible and easily extensible –

replica configuration can be automated at scale

Middleware
library

