D-Tunes: Self Tuning Datastores for Geo-distributed Interactive Applications

Shankaranarayanan P N, Ashiwan Sivakumar, Sanjay Rao, Mohit Tawarmalani Purdue University

Motivation and Challenges

- > Online interactive applications Google docs
- Low latency data close to users (e.g. < 100ms)</p>
- ➤ High availability DC or server failures, network partitions
- > Strong consistency All reads see the latest write
- > Geo-distributed datastores (e.g. Spanner, Cassandra)
- > Configuring datastores is challenging
 - Many parameters location, # of replicas, quorum sizes
 - Judiciously tradeoff consistency, latency and availability
 - Heterogeneity across data items (e.g. location of access)
 - Scale of the data millions of users (e.g. Twitter)

Motivating example – real world Twitter trace

D-Tunes design

Application constraints e.g. read latency < 50ms, N > 3DC-1 DC-2 Change Config Self tuning DC-3 DC-4 algorithm detection engine Datastore cluster Configuration decisions e.g. N = 3 (2 in USE 1 in USW)

Modeling datastore performance

- Analytical models, solved as an optimization problem
- Explore limits on achievable latency given constraints
- Our initial focus Quorum based systems e.g. Cassandra
 - more models in future e.g. Paxos
- Novel aspects of our model:
 - Geographical distribution of accesses
 - Latency percentiles to be optimized SLAs
 - Asymmetry between reads and writes
 - Latency under normal and failures conditions

Experimental validation on Amazon EC2

- Cassandra cluster on Amazon EC2
- > Across 8 regions, 21 Availability Zones world-wide
- > Real world application traces Twitter, Wikipedia, Gowalla

USW USW

back

210

fails

180

150

Time(minutes)

- of requests) 90%ile 75%ile -- -O.2

- Large scale experiments trace driven simulation
- > Real world application traces
 - ✓ Twitter 5 year trace, 3 million users
 - ✓ Wikipedia 3 year trace, 4 million+ wiki articles
 - ✓ Gowalla 2 year trace, 0.2 million users
- > Lowers normal operation latency as much as 40%
- Failure resilient 55% better than failure agnostic model

Tokyo Tokyo

back

350₁

(msec)

Latency 200

150

100

50

30

60

All

alive fails

- variable performance during failures

even during failures,

congestion events

Failure resilient model - guarantee availability - Good performance

ĕ 40 .⊑ 30

latency 05 20 Number of replicas

Need for heterogeneous replica configuration:

- uniform replication policy leads to poor performance
- more than 15% of keys in Twitter needed heterogeneity
- benefits as high as 70ms

Acknowledgements

This work was supported in part by NSF grants 0953622 and 1162333

