
Closer to the Cloud - A Case for Emulating Cloud

Dynamics by Controlling the Environment

Ashiwan Sivakumar

School of Electrical and

Computer Engineering

Purdue University

Email: asivakum@purdue.edu

Shankaranarayanan P N

School of Electrical and

Computer Engineering

Purdue University

Email: spuzhava@purdue.edu

Sanjay Rao

School of Electrical and

Computer Engineering

Purdue University

Email: sanjay@purdue.edu

Abstract—Cloud computing offers a wide range of bene-
fits including potential cost-savings by leasing resources from
cloud service providers and improved user experience by Geo-
distributing applications [17]. Cloud service providers typically
share the platform and cloud resources across multiple users for
better utilization. They lease resources on-demand to users in
three broad flavors, namely, Infrastructure as service (IaaS)[1],
Platform as Service (PaaS)[9] and Software as Service (SaaS)
[8]. These shared resources make the cloud environment highly
dynamic and often induce substantial performance variation in
the cloud services [21], [22], [14]. A critical step in developing
cloud based applications is the ability to test these solutions
on a controlled but cloud-like environment. Also, it is impor-
tant for commercial product vendors to profile the application
performance in the presence of such cloud dynamics before a
production deployment. While many testbeds [13], [12], [15],
[18] provide the abstraction of cloud services via virtualization,
control over the cloud environment is seldom available for
systems that require precise emulation of the cloud dynamics.
In this work, we emphasize the importance and need for
testbeds that can provide repeatable and precise control over the
environment for developing such latency sensitive applications.
We substantiate our claim by presenting the case study of a multi-
tier enterprise application called DayTrader [2] deployed on a
large scale experimental testbed GENI [7]. We show using various
controlled experiments on DayTrader and GENI, the importance
and utility of controlling the environment (e.g., network and link
parameters) in the testbeds to emulate cloud dynamics. We show
the importance of emulating cloud dynamics to enable research
on adaptive systems that help applications deal with performance
variation in cloud services. We present our experience with
performing controlled experiments on GENI and briefly discuss
possible enhancements in such testbeds that can open up new
avenues of research in cloud computing.

I. INTRODUCTION

Cloud computing has undoubtedly become one of the most

promising technological innovations of the last decade and

has received great attention from both industry and academia.

On the one hand, large players in the IT industry have

realized the economic potential of cloud computing and have

themselves become cloud service providers, on the other hand,

enterprises benefit from the elasticity, scalability, Geo-diversity

and the pay-as-you-go policy of the cloud services which

make them naturally suitable for the deployment of large

scale applications. Cloud computing also helps reduce the

operational and maintenance cost of hosting an application

by sharing resources among multiple clients.

However, shared cloud infrastructure presents many unique

challenges to the application developers, the most important

of which is dealing with failures and performance variations

in the cloud services. Recent works [14], [21], [22] have

explored such dynamics in the cloud services using extensive

measurement studies on commercial cloud platforms [1], [9],

[8]. Therefore it is very important to test the applications

on a cloud-like environment and profile their performance in

the presence of various cloud dynamics. Also, dealing with

performance fluctuations is still largely an unsolved research

problem. A critical requirement for developing solutions to

such problems is the ability to evaluate the effectiveness of the

solution using controlled experiments in testbeds that provide

a cloud-like abstraction.

Cloud testbeds like Open Cirrus and Eucalyptus [13], [15]

provide an excellent platform for evaluation of research pro-

totypes through techniques like virtualization that can provide

applications with a cloud-like interface. They allow emulation

of various scenarios that are both undesirable and hard to

reproduce on commercial platforms. These testbeds are also

federated across multiple data-centers similar to commercial

cloud platforms, where experimenters can lease resources.

While providing an infrastructure and interface similar to cloud

platforms is an essential first step that enables research in cloud

systems, many of these testbeds do not expose control of the

environment in which the cloud services are hosted.

In this work, we bring out the importance of control over

the environment of the testbed for enabling new avenues of

research in cloud systems. We make use of insights gained

from our measurement study on commercial cloud platforms to

show the presence of performance variations in cloud services

due to shared infrastructure. We present the case study of

a multi-tier enterprise application, DayTrader deployed on a

federated, large-scale GENI [7] testbed. Specifically, we show

that it is critical to obtain control of the testbed environment

for profiling the application performance using controlled

and precise experiments. We present a few experiments that

profile the application performance by varying the environ-

ment parameters such as network latency and intra-data center

bandwidth. We also highlight the importance of a controllable

environment in the research and development of new cloud



systems. As an example, we show how GENI can help evaluate

the responsiveness of Dealer [19], a system that we are

building to help applications adapt to short-term fluctuations

in performance of cloud services [14], [21], [22]. We show

using our experiments the utility of such testbeds in creating a

cloud environment where it is possible to accurately replay the

cloud dynamics using traces obtained from commercial cloud

systems.

The rest of the paper is organized as follows. In section

§II, we show the presence of performance fluctuations in the

cloud environment using a measurement study on commercial

cloud platforms. We then consider single and multi data-center

deployments of DayTrader on GENI as case study to discuss

the importance and need for emulating cloud dynamics on

testbeds. Our results show that it is possible to accurately

control environmental parameters like network latency which

helps profile and tune the application performance. Section

§V briefly talks about the importance of our approach in de-

veloping research systems. Finally, we discuss our experience

with GENI as a testbed for conducting controlled experiments.

We also discuss the enhancements that need to be effected on

such testbeds which can potentially open up new avenues of

research on cloud platforms.

II. MOTIVATION

A. Performance fluctuations in cloud services

Cloud services are susceptible to performance problems

that can last anywhere from few seconds to few days. These

problems can occur due to a number of reasons like hardware

failures, network misconfiguration, increased user load or due

to performance degradation of the shared cloud infrastructure.

Moreover, these performance issues can affect individual VMs

or even an entire data-center. These short-term and long-term

variabilities in the performance of the cloud environment have

severe impact on the application performance. As discussed

in section §I, many researchers have studied performance

problems in the cloud [14], [21], [22]. We have also observed

short-term and long-term anomalies in the application perfor-

mance in our experiments on real clouds. For instance, fig.1(a)

outlines the performance of a commercial cloud database

service deployed at a data-center in the northern part of US.

The graph shows the CDF of the average response time of

the database along the Y-Axis and the time in ms along

the X-Axis. The data represented in the graph is collected

over a duration of about four hours across two consecutive

days. From the figure, we observe that the performance of

the component varies drastically across the two days. Fig.1(b)

shows a snapshot of the time series graph of the database

latency across the two days corresponding to Fig.1(a). It can

be observed from the graph that the DB showed a considerably

poor performance on Day1 due to a load issue with the entire

data-center while the same DB on Day 2 showed a better and

stable performance. Also, the curve for Day1 shows that there

is significant fluctuation in the performance of the cloud DB

service.

(a) CDF of the database latency in the US North data-
center of Windows Azure over a duration of four hours
for two days.

(b) Time-series showing the database latency in the US North
data-center of Windows Azure over a 2 hour period across
two days.

Fig. 1. Database component performance issue in Microsoft Azure

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

RTT in msec

C
D

F

 

 

East−East

East−West

Fig. 2. CDF showing intra and inter-data center latency in Amazon AWS

Figure 2 shows the CDF of the inter and intra data-center

round trip times measured over a period of 6 hours for a TCP

stream between two micro instances of Amazon AWS. The

graph shows that there is substantial performance variation

in the measured RTT even in such simple experiments. These

observations from our measurement study emphasizes the fact

that cloud environment is highly dynamic. This also implies

that it is important for the applications deployed on the cloud

to be monitored continuously for ensuring stable performance.

B. Need for emulating cloud dynamics

Commercial and enterprise applications have stringent la-

tency requirements and measuring the impact of such cloud

dynamics on the application is a challenge. Application de-

velopers typically pilot test their application and profile its

performance under realistic conditions before committing to

the cloud. This often requires a federated deployment of

these multi-tier applications and load testing at scale. While

evaluating the prototype in commercial cloud platforms with



experiments conducted in the wild are insightful, it is very

hard to reproduce failure and test scenarios accurately and

repeatably on real cloud platforms due to two reasons. First,

cloud providers often do not provide the required degree of

control to emulate a certain scenario. Second, the shared cloud

platforms have inherent performance fluctuations as we saw

in the previous section. Therefore, it becomes hard for the

developers to distinguish and isolate infrastructure issues from

that of the application design. For instance, a short spike

in the application response time could be due to increase

in network latency, user load, queuing at the application

server or due to the shared cloud platform. Profiling and

fine tuning the application performance requires isolation of

resources, accuracy and repeatability of a scenario. Testbeds

which provide resource isolation and a controlled environ-

ment are therefore critical to evaluate and profile applications

under emulated cloud dynamics. Often, it is also desirable

to accurately replay performance traces obtained from real

cloud services on the testbeds to profile the performance of

the various design or deployment choices of an application.

For instance, the application can be deployed in a single or

multi data-center environment on a testbed and its performance

with the two deployment strategies can be analyzed. Also, one

could emulate the various dynamics observed in real clouds

like variations in network delay, packet loss or bandwidth to

study the application behavior in such scenarios.

C. Cloud testbeds for emulation

There is a wide-spread need to control environment pa-

rameters like delay, bandwidth, fault domains etc which is

not possible in a shared and distributed infrastructure. We

need testbeds that not only give a view of the layers above

the infrastructure like PaaS and SaaS, but also those that

are hidden away from the applications to emulate the cloud

dynamics. Currently cloud research is limited to organizations

which have access to private clusters that provide control

over the resources. Researchers are developing shared testbeds

like Open Cirrus, ProtoGENI, Planetlab, Emulab [13], [7],

[10], [6] which can be opened up to a larger community for

research purposes. One such initiative is GENI, that serves as

an attractive, easy-to-use testbed to emulate real cloud dynam-

ics, study application response time variations and evaluate

systems which adapt to such cloud dynamics.

III. IMPACT OF CLOUD DYNAMICS ON APPLICATION

PERFORMANCE

In this section we introduce a multi-tier enterprise applica-

tion DayTrader which we deploy on the GENI testbed. We

begin by describing the architecture of DayTrader (a latency

sensitive enterprise application) that is used to study the impact

of cloud dynamics on application performance. We present

the deployment of DayTrader on GENI testbed and discuss

how GENI helps in emulating cloud dynamics. We discuss the

aspects of GENI that help gain control over the environment

to emulate cloud dynamics.

Fig. 3. DayTrader Application Architecture

A. Day Trader application

Figure 3 shows the architecture of DayTrader. It is a

benchmark application developed to evaluate the performance

of J2EE framework and inter-operability across multiple com-

ponents in a service-oriented architecture(SOA)[2]. Like any

other enterprise application, DayTrader follows the well-

established MVC architecture with a front-end component

(FE) that serves transactions from the users and presents

the response as a web page, a business service component

(BS) which is invoked by the front-end to perform internal

trading operations like buying and selling stocks, a back-end

database component (BE) which holds the user data including

account, quotes and holdings. The figure shows the different

complex interactions among various components. The front-

end contacts the database directly through a message server to

asynchronously process buy and sell stock operations. It can

also contact the database through a business service- marked

as TradeServices in the figure, either directly or through SOAP

servlet. SOAP is a client-server protocol for communication

across components deployed as web services through XML

document based messages. We can see many such component

interaction patterns in the diagram, potentially leading to many

paths a user request can take.

Each component is deployed as instances running on ap-

plication servers (Geronimo). The components are decoupled

from each other and can scale dynamically based on user load.

The application can be deployed within a single data-center

or across multiple data-centers with one or more instances

for each component. This way the application can guarantee

reliability and load balancing across many servers. We can

install our own load balancing mechanism or use the load

balancer offered by the cloud provider. User experience in such

applications can be improved by deploying the application

instances closer to the clients.

B. GENI testbed

1) Changing network parameters: GENI is a testbed that

provides a controllable and repeatable environment for con-

ducting experiments. It provides the ability to control the



Fig. 4. Single data-center deployment testbed

network parameters like link latency through delay nodes

that we use to emulate cloud dynamics which was discussed

in section §II. Though introducing delay in a link can be

done in any testbed using an application queue to store and

forward all packets, we require a more accurate and repeatable

environment which is challenging to simulate. GENI provides

precise control over the network parameters that can be

maintained consistent for an experiment.The experimenters

can also choose from various queuing options like naive

TailDrop and WRED in order to simulate network congestion.

The link bandwidth can be modified to induce change in the

transmission delay or introduce packet losses.

2) Federated sites: Most of the existing testbeds [13], [10]

provide the ability to use nodes from data-centers distributed

geographically, but requires an account to be created on

each of the sites. Also the resource guarantee policy vary

across these sites which makes it hard to perform coordi-

nated experiments using multiple federations. For instance,

we have observed in our experiments that PlanetLab nodes

are flaky and offers little guarantee of consistent performance.

GENI integrates various federation of testbeds under a single

framework so that experimenters can add nodes from different

sites into their slice and access can be gained with just a

single account on one of the federations. Moreover in GENI

slices the network latency experienced by ping between nodes

within a federation is negligible where as ping between nodes

in different federations is predominantly Internet delay. This

characteristic is consistent to what can be observed from

commercial cloud platforms. Based on these observations, we

believe that GENI would be a useful testbed for emulating

Geo-distributed data-centers similar to commercial cloud plat-

forms.

IV. CASE STUDY: PROFILING APPLICATION PERFORMANCE

In this section, we present a few experiments which study

the impact of variation in network latency on the application

performance. We deployed DayTrader on the GENI testbed

in two configurations, (i) All components within a single

federation and (ii) Components spread across two federations.

In all our experiments user workloads (HTTP requests) were

generated using load testing scripts like grinder running on

remote sites. We use workloads from the well-known DaCapo

benchmark suite [4] to initiate user sessions that follow Pois-

son arrival. The workload consists of a mix of user operations

0 20 40 60 80 100 113
0

2000

4000

6000

8000

10000

Time in minutes

U
s
e

r 
la

te
n

c
y
 m

s
e

c
 (

a
v
g

 p
e

r 
m

in
)

Fig. 5. A plot showing the observed application latency on replaying the
trace shown in figure 1(b)

like account, quote, buy and sell stock, register, update etc

each resulting in a variable amount of response data depending

on the user and operation.Our experiments show that GENI

provides precise control and repeatable environment for emu-

lating cloud dynamics. We also discuss some of the challenges

involved in replaying traces obtained from a commercial cloud

in a multi data-center testbed.

A. Single data-center deployment

Figure 4 shows our deployment of DayTrader within a

single federation (Utah) of the GENI testbed. The front-end,

business service and back-end components are deployed as

web services on the GENI nodes. Since all components are

located within the same federation, they are configured to

communicate among themselves using the LAN interface.

We emulate a change in the network latency with the help

of a delay node [5] that is provided as part of the GENI

infrastructure. As shown in the figure, the delay node is

introduced in the link between the business service and back-

end components to emulate a change in network latency

between the two components.

1) Replaying traces from commercial cloud platforms:

In this experiment, we emulated the database performance

problem observed in a real cloud which we had described in

section §II. We replayed the trace of the DB component latency

corresponding to figure 1(b) and measured the impact of the

latency variation on the response time of the application. The

delay on the link between the business service and back-end

components was changed every minute in accordance to the

trace data. Figure 5 shows the end-to-end application latency

corresponding to the input trace. The end-to-end application

latency is the sum of the processing delay at each application

component along the request path together with the com-

munication delay between the components. The application

response time more or less follows the input trace but appears

scaled up by a factor. This is because each user request

typically translates to multiple calls between the application

components as shown in figure 3. For example, a single user

request at the FE to fetch a user home page information

could result in multiple calls made to the BS with each call

fetching different blocks of information like user account,

stock holdings, last 5 transactions, etc,. The business service

in turn may run multiple database queries for each request

that it receives from the FE. An interesting fallout of such



0 200 400 600 800 1000 1200 1400
−1

−0.5

0

0.5

1

Time in Seconds

E
rr

o
r 

in
 P

e
rc

e
n

ta
g

e

 

 

Fig. 6. A plot showing the residual error percentage between the observed
link delay and the input trace.

200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

Observed network latency in msec

C
D

F

 

 

Day1

Day 2

Fig. 7. CDF showing the observed network latencies across Day 1 and Day
2.

interaction is that an increase in the latency in the BS-BE link

has a cumulative impact on the user perceived response time

of the application.

Replaying such traces might involve coarse adjustments

to the delay parameters via a delay node. But this helps in

emulating real cloud dynamics and studying the behavior of

various components of the application when subjected to short-

term and long-term performance fluctuations. The observations

made from the above experiment about the domino effect

due to a performance problem perceived by the user is an

example for the benefit that we get by replaying traces from

real cloud. We would be able to understand the impact of

such performance fluctuations on an application and improve

the design so that it can adapt in the best way possible. Only

controlled environment provided by open testbeds like GENI

helps in emulating such real cloud dynamics.

2) Accuracy and repeatability of GENI experiments: As

part of this experiment we study the accuracy of GENI testbeds

by analyzing the error percentage between the observed BS-

BE link delay obtained through ICMP and the input trace 1(b)

replayed on the link. To measure the accuracy of the trace

being replayed, we plot the deviation of the measured latency

values from the input trace values (expected values). Figure 6

shows a snapshot of the above plot obtained for a period of 20

minutes. The Y-Axis shows the error percentage (% deviation)

and the X-Axis shows the time in seconds. The graph shows

that the error percentage is less than 1% at all times in our

experiment. This shows that environmental parameters like

network latency can be accurately emulated in GENI testbeds.

We also plot the measured BS-BE link latencies correspond-

ing to the input trace along the X-axis and the CDF along

the Y-axis for two days in figure 7. We can see that the

measured values are almost the same on both the days with

very negligible variation. A cloud experimenter would require

Fig. 8. Multi data-center deployment testbed

0 50 100 150 200 250
0

500

1000

1500

Time in minutes

A
p

p
lic

a
ti
o

n
 l
a

te
n

c
y
 i
n

 m
s
e

c

 

 

DC1−DC1
DC2−DC2

Fig. 9. Time series showing the user latency in DC1 and DC2 without any
delay

such high degree of repeatability in the test environment for

running controlled experiments. For this trend to be repeated

across days, testbeds like GENI should provide consistent

resource guarantees to the experimenter.

B. Multi data-center deployment

The multi data-center deployment of DayTrader on GENI

is shown in figure 8. The setup has 3 nodes from Utah hosting

one instance of the front-end, business service and back-end

components and 2 nodes from Kentucky running an instance

of the front-end and business service. The instances internal to

the data-center communicate through the LAN interface while

the instances running on different data-centers communicate

using the stitched tunnel interface. All the components in

Utah (DC1) are internal while the business service running

in Kentucky (DC2) should communicate with the back-end

deployed in DC1 through Internet. We also have a delay

node in the link between the front-end and business service

components in DC1 to emulate cloud dynamics and study

the application behavior. We present the results from our

experiments with different delay values set between the FE

and BS in Utah.

In the first experiment we do not have any explicit delay set

between the front-end and the business service components.

Figure 9 is a time series showing the end-to-end application

latency for requests served in DC1 and DC2. We plot the user

latency in m sec along the Y-axis and the time in minutes

along the X-axis. We can see that the requests served by DC2

experience more latency than those served entirely in DC1.

As described in §IV-A1 each user transaction has multiple



0 50 100 150 200 250
0

200

400

600

800

1000

Time in minutes

U
s
e

r 
la

te
n

c
y
 i
n

 m
 s

e
c

 

 

DC1−DC1
DC2−DC2

Fig. 10. Time Series showing the user latency in DC1 and DC2 with a delay
of 250 ms between FE1 and BS1.

calls between each component internally and the number of

inter-component calls is maximum between BS and BE. All

database queries from BS2 to BE1 incur the cross data-center

communication cost and hence user experience is better in

DC1 than in DC2.

In another experiment we introduce a delay of about 250

ms between FE1 and BS1. We use the same user workload

and traffic pattern as the previous experiment. Figure 10

shows the time series graph of the end-to-end application

latency for both data-centers. As expected, we can see that

the response time in DC2 is better than that in DC1 due

to the increased FE1-BS1 link delay. We observe from the

results that faster transactions affect the response times of

slower requests. This can be seen from the DC2 application

response times in both the experiments. Database has limited

server connections and hence faster requests load the server

thereby affecting the requests from the other data-center. This

gives us the intuition that database component is the bottleneck

for scalability in DayTrader and similar applications. What-

if analyses of this kind help profile application performance

under emulated cloud dynamics.

In our experiments with the multi data-center testbed we

also wanted to replay traces obtained from real clouds sim-

ilar to those done in a single data-center deployment. This

requires modifying the link parameters dynamically during

the experiment run. We found that in a multi data-center

deployment GENI does not provide the capability to modify

link delay dynamically. Hence we use ProtoGENI [11], one

of the federations of GENI to emulate multi data-center setup

with delay nodes for changing network parameters on the fly.

The inter data-center links are emulated using delay nodes

with a large delay value.

The ideal test scenario would be to have nodes from

different federations like Utah and Kentucky in the same

slice created using the ProtoGENI interface and add delay

nodes to introduce a problem between system components.

The delay parameter would be changed periodically based on

traces from real cloud experiments while traffic flows and the

application behavior would be studied. Changing the delay

parameter should be oblivious to the experiment run which

requires the change to take effect without reloading the slice.

Nevertheless the introduction of delay nodes in GENI has been

a great advantage towards making it a controlled environment

for future cloud research.

V. CASE STUDY: EVALUATING ADAPTIVE SYSTEMS

A. An adaptive system

As discussed in section §II, the cloud environment is highly

variable and the problem could be isolated to individual com-

ponents within a data-center. Hence unlike the current redi-

rection mechanisms in data-centers which abandon a whole

deployment, it’s more efficient to use other components within

the same data-center which aren’t faulty. This way a system

can be built which can adapt to short-term variability across

components in the same data-center. Dealer is one such system

that adapts to the ever-changing cloud dynamics [19]. Dealer

makes use of the link and component latencies measured using

a monitoring system to predict path that would have the least

latency. It is important to note that Dealer can optimally

suggest paths which may involve components from different

data-centers.

Dealer needs the latencies across all inter and intra data-

center links and the computation latencies from every compo-

nent through which the user request can travel. This introduces

the necessity to run a monitoring system along with the

deployed application to report the latency values to Dealer.

This monitoring system should calculate and report the metrics

not only from individual VMs or physical nodes, but also from

the environment. In the initial stages of development, running

these systems on real cloud hinders the efficient comparison

of the algorithms given the problem with performance fluctu-

ations. Evaluating such adaptive systems by emulating cloud

dynamics is possible only in testbeds that not only provide

control over the VMs but also on the environment. Since GENI

provides the ability to control the network parameters in a

repeatable manner, it can be used as a testbed to evaluate such

adaptive systems.

B. Evaluation results

In this section we present the results of an experiment

that was conducted to evaluate the adaptive system. We use

a testbed similar to that in figure 8 except that all nodes

are within the same federation (Utah). Due to the challenges

involved in changing link delay dynamically on a multi-data

center setup that was discussed in section §IV-B, we emulate

cross data-center links using delay nodes with round trip delay

set to 41.2 ms. This value is obtained from measurements done

on the tunnel links between Utah and Kentucky nodes.

In this experiment we increase the delay in the link between

FE1 and BS1 from 5ms to 500ms, retain the value for about

20 minutes and then bring it back to 5 ms. We evaluate the

adaptive system by observing the response to such standard

input reference waveforms like step-up and step-down. The

input waveforms are actually delay values set in the FE1-BS1

link and the system response is the path chosen for future

user transactions. The results are shown in figure 11(b). The

link delay was stepped up at time 40 and the value was held

steady for about 20 minutes. We observe that Dealer redirects

the transactions from FE1 to BS2 within a few seconds.

Similarly the link delay was stepped down at time 60 and it



20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

Time in minutes

F
E

1
−

B
S

1
 D

e
la

y

 

 

(a) A step-up and a step-down input reference waveforms given
to the adaptive system.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Time in minutes

P
e

rc
e

n
ta

g
e

 o
f 

tr
a

ff
ic

 

 

DC1−DC1

DC1−DC2

(b) A plot showing the path taken by requests when the control
inputs are injected. This is the output response of the system to
standard step inputs.

Fig. 11. Evaluating an adaptive system under cloud dynamics

was observed that the request path changes from BS2 to BS1.

This experiment shows that the system is agile to performance

fluctuations within a data-center and it redirects the traffic

to a replica of the faulty component in another data-center.

Therefore we see that testbeds like GENI would be critical

for evaluating adaptive systems.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we argue that it is critical to get control over

the testbed environment for enabling new avenues of research

in cloud systems. We show the presence of performance

fluctuations in cloud services through a measurement study

on commercial cloud platforms and argue that it is important

to emulate the cloud dynamics on testbeds. We show the

importance and utility of control over testbed environment for

cloud developers to emulate cloud dynamics and profile their

application before a production deployment. As a case study,

we present a few experiments that profile a multi-tier enterprise

application DayTrader [2] by emulating cloud dynamics using

a federated, large-scale testbed GENI. Our experiments show

that GENI provides an accurate and repeatable environment

for running controlled experiments. We also highlight the

importance of a controlled environment in the research and

development of new cloud systems through the case study of

Dealer [19], a system that helps applications adapt to short-

term performance variations in cloud services.

Finally we share our experience with conducting controlled

experiments on GENI. GENI provides a highly programmable

interface and flexible APIs to design innovative experiments.

GENI integrates multiple individual federations into a unified

large-scale testbed which is useful in profiling applications

under different deployment scenarios. Introduction of features

such as delay node in GENI is an important first step towards

providing a controllable environment. A future direction for

such testbeds would be to provide dynamic control of network

parameters that can be used to replay more traces obtained

from cloud experiments. Also cloud application developers

would use non-controllable platforms in GENI like Planet-

lab [10] to emulate geo-distributed clients that generate traffic

in their controlled experiments. Emulating cloud features like

data-stores (For eg Blobs, Queues, CloudStore, BigTable [1],

[9], [3], [16], [20]) would be important for enabling new

avenues of research in cloud systems. We believe that by

expanding its horizons GENI has the potential to become a

testbed that enables advanced research in cloud systems.

REFERENCES

[1] Amazon Web Services. http://aws.amazon.com.
[2] Apache DayTrader Benchmark Sample. http://cwiki.apache.org/
GMOxDOC20/daytrader.html.

[3] CloudStore. http://kosmosfs.sourceforge.net.
[4] DaCapo DayTrader Workloads. http://www.dacapobench.org/daytrader.
html.

[5] Emulab Delay nodes. http://users.emulab.net/trac/emulab/wiki/
BridgeNodes.

[6] Emulab: Network Emulation Testbed. http://emulab.net.
[7] Global Environment for Network Innovation. http://www.geni.net/.
[8] Google App Engine. http://code.google.com/appengine.
[9] Microsoft Windows Azure. http://www.microsoft.com/windowsazure/.
[10] Planetlab : An Open platform for developing, deploying and accessing

planetary-scale services. http://planet-lab.org.
[11] ProtoGENI: The Control Framework for GENI Cluster C. http://www.

protogeni.net/trac/protogeni.
[12] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the

internet impasse through virtualization. Computer, 38(4):34–41, 2005.
[13] A. Avetisyan, R. Campbell, I. Gupta, M. Heath, S. Ko, G. Ganger,

M. Kozuch, D. O’Hallaron, M. Kunze, T. Kwan, et al. Open cirrus:
A global cloud computing testbed. Computer, 43(4):35–43, 2010.

[14] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proc. of the ACM
symposium on Cloud computing (SoCC), 2010.

[15] D. N. et al. The eucalyptus open-source cloud-computing system.
In Proc. of Cloud Computing and Its Applications [online], Chicago,
Illinois, Oct 2008.

[16] F. et al. Bigtable: A distributed storage system for structured data. In
Seventh Symposium on Operating System Design and Implementation

(OSDI), Nov 2006.
[17] M. A. et al. Above the Clouds: A Berkeley View of Cloud Computing.

Technical Report UCB-EECS-2009-28, EECS, University of California
at Berkeley, Feb 2009.

[18] R. G. et al. The Open Cloud Testbed: A Wide Area Testbed for Cloud
Computing Utilizing High Performance Network Services. Technical
Report arXiv:0907.4810v1, CS, Cornell University, Jul 2009.

[19] M. Hajjat, S. Narayanan, D. Maltz, S. Rao, and K. Sripanidkulchai.
Dealer: Dynamic Request Splitting for Performance-Sensitive Applica-
tions in Multi-cloud Environments. Technical Report TR-ECE-11-10,
Electrical and Computer Engineering, Purdue University, Apr 2011.

[20] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[21] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing
public cloud providers. In Proceedings of the 10th annual conference
on Internet measurement, pages 1–14. ACM, 2010.

[22] G. Wang and T. Ng. The impact of virtualization on network perfor-
mance of amazon ec2 data center. In Proc. of the IEEE Infocom, 2010.


