
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009 323

Configuration Management at Massive Scale:
System Design and Experience

William Enck, Thomas Moyer, Patrick McDaniel, Subhabrata Sen, Panagiotis Sebos, Sylke Spoerel, Albert
Greenberg, Yu-Wei Eric Sung, Sanjay Rao, and William Aiello

Abstract—The development and maintenance of network de-
vice configurations is one of the central challenges faced by large
network providers. Current network management systems fail
to meet this challenge primarily because of their inability to
adapt to rapidly evolving customer and provider-network needs,
and because of mismatches between the conceptual models of
the tools and the services they must support. In this paper,
we present the PRESTO configuration management system that
attempts to address these failings in a comprehensive and
flexible way. Developed for and used during the last 5 years
within a large ISP network, PRESTO constructs device-native
configurations based on the composition of configlets representing
different services or service options. Configlets are compiled
by extracting and manipulating data from external systems as
directed by the PRESTO configuration scripting and template
language. We outline the configuration management needs of
large-scale network providers, introduce the PRESTO system
and configuration language, and reflect upon our experiences
developing PRESTO configured VPN and VoIP services. In doing
so, we describe how PRESTO promotes healthy configuration
management practices.

Index Terms—Computer network management.

I. INTRODUCTION

CONFIGURATION management is among the largest
cost-drivers in provider networks. Such costs are driven

by the immense complexity of the supported services and in-
frastructure. For a large provider, thousands of enterprises with
diverse services and configurations must be seamlessly and
reliably connected across huge geographic areas and rapidly
evolving networks. Moreover, the initial “turn-up” installation
and subsequent support of a single customer may span many
organizations and systems internal to the provider. The stakes
for the supported enterprise are extremely high: an outage may
result in loss of business, delays in “getting to revenue” since
service turn up precedes revenue, failure to meet contractual
obligations, or disruption of key organizational workflows.

Given the complexity and stakes, it may be surprising
that the common configuration management practice involves
pervasive manual work or ad hoc scripting. The reasons for

Manuscript received 4 April 2008; revised 30 October 2008. A preliminary
version of this article appeared in the Proceedings of the 2007 USENIX
Annual Technical Conference in Santa Clara, CA.

William Enck, Thomas Moyer, and Patrick McDaniel are with Pennsylvania
State University (e-mail:{enck,tmmoyer,mcdaniel}@cse.psu.edu).

Subhabrata Sen, Panagiotis Sebos, and Sylke Spoerel are with AT&T
Research (e-mail: {sen,psebos}@research.att.com, sspoerel@att.com).

Albert Greenberg is with Microsoft Research (e-mail: al-
bert@microsoft.com).

Yu-Wei Eric Sung, and Sanjay Rao are with Purdue University (e-mail:
{sungy,sanjay}@ecn.purdue.edu).

William Aiello is with University of British Columbia (e-mail:
aiello@cs.ubc.ca).

Digital Object Identifier 10.1109/JSAC.2009.090408.

this are multi-faceted. From a provider perspective, every
customer is in some ways unique. Though service orders have
a lot in common, many new installations made to realize those
orders represent unique combinations of services and network
configurations. Evolving requirements within customer net-
works, stale, incomplete, or imperfect information, and service
interactions make both “turn-up” as well as ongoing mainte-
nance of configurations complex and error-prone processes.
Moreover, the devices in the network and the definition of
services they support change at a dizzying rate. New firmware
versions, customer requirements, or supported applications
appear every day. Market demands further dictate that the
time-to-market for new services is a critical driver of revenue:
delays caused by tool configuration, extension, or development
can mean the difference between profitability and loss. In
short, there is an unserved need in provider networks for
tools that address these complex and sometimes contradictory
challenges while constructing service configurations.

In the PRESTO configuration management system [1],
network designers specify services in a template language,
which are subsequently combined by network operators to
create specific router configurations. PRESTO develops net-
work device configurations from composed collections of
configlets that define the services to be supported by the
target device. Our general-purpose scripting and configuration
template language extracts specific information from external
systems and databases to transform this information into com-
plete device configurations as directed by the PRESTO com-
piler. Extensive interactions with diverse engineering teams
charged with managing operational IP networks led us to
the conclusion that, to gain wide buy-in and adoption, the
PRESTO language must adhere closely to the complex and
often low level configuration languages supported by network
device vendors (e.g., for Cisco devices, the IOS command
language). PRESTO empowers network designers, “power
users” comfortable with native network device configuration
languages, and automates the unambiguous translation of their
design rules into precise network configurations. Specifically,
the PRESTO system generates complete device-native config-
urations, which can then be downloaded into a device and
archived by network operators.

In this paper, we present the motivation, design, and work-
flow of the PRESTO configuration management system. We
outline the challenges faced by a large network provider in
installing and maintaining millions of diverse devices for
thousands of customers and organizations, and reflect on the
failures of past network management systems to address these
needs. We outline the PRESTO workflow and configuration

0733-8716/09/$25.00 c© 2009 IEEE

324 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009

language and reflect upon our experiences implementing Vir-
tual Private Network (VPN) and Voice-over-IP (VoIP) within
PRESTO. In doing so, we describe how PRESTO promotes
healthy configuration management practices.

A significant effort in network management involves the
development of “greenfield” configs–configuration of new
routers or services in a new installation. Hence, PRESTO’s ini-
tial focus, and the focus of this paper, is on creating greenfield
configurations. Support for long term maintenance of routers,
called “brownfield” configuration, is currently evolving within
the PRESTO framework. While providing generic support for
brownfield configuration remains the subject of our ongoing
work, PRESTO currently supports limited brownfield config-
uration and will be briefly discussed.

The PRESTO system evolved out of decades of experience
in network management. Configuration management is about
more than just getting routing and filtering correct. It must
meld together many different services that exhibit subtle
interactions and dependencies. Therein lies the challenge of
configuration management in a provider network—How do we
glue together many information sources of myriad organiza-
tions in real time to build a functioning device configuration?
Revisited in the following section and throughout, it is the
lessons gleaned from our experiences in meeting that goal
that drive the PRESTO design.

The remainder of the paper proceeds as follows: Section II
discusses motivation and requirements; Section III describes
the PRESTO system; Section IV describes our experience
using PRESTO for two real applications within enterprise
networks supported by a large ISP; Section V discusses related
work; and Section VI concludes.

II. CONFIGURATION AUTOMATION

In this section, we discuss the need for automation by
describing current best practices and their limitations. We then
describe the challenges an automated configuration generation
system must face in large provider networks.

A router configuration file provides the detailed specifica-
tion of the router’s configuration, which in turn determines
the router’s behavior. Often, the configuration file is a repre-
sentation of the sequence of specific commands that, if typed
through the command line interface, determine the wide set
of interdependent options in router hardware and software
configuration. In practice, this may represent thousands of
lines of complex commands per router. These configuration
files are text artifacts—described in a device specific command
language, with a device specific syntax in a human and
machine readable format, in some cases in XML. Note that
a plethora of network devices beyond routers, e.g. Ethernet
switches and firewalls, rely on configuration files of this type.
To some degree, this state of affairs reflects natural technology
evolution and the marketplace—networks started (and often
still start) small and therefore often gravitated toward manual
or (ad hoc) scripted configuration.

Today’s configuration languages offer a myriad of complex
options, typically described in precise low level device-specific
languages, such as Cisco’s IOS command language [2]. While
the learning curve for such languages might be steep and

the cost of inadequate learning severe (small slipups may
cause large network outages), these languages are in extremely
wide use for the entire lifecycle of network management –
starting with configuration, but encompassing all other aspects,
including performance, fault and security management. The
tack that the PRESTO system takes is to leverage these
“native” languages, and empower the user of these languages
to enforce the precise translation of design intent into detailed
device configuration.

Our interactions with network designers revealed that using
templates to describe design intent is essentially universal.
That is, designers create parameterized chunks of design con-
figurations to describe intent. Accordingly, PRESTO provides
full and flexible support for template creation in the native
device configuration language.

A. Need for Automation

Decades of experience in network management have taught
us that manual configuration practices are limited in the
following ways, i.e., the configuration process is:

• costly, time-consuming, and unscalable: There is a signifi-
cant initial investment in the interpretation and documentation
of network standards and device-specific interfaces in devel-
oping any new service or support for a device. The result of
that investment is a “model” configuration document (some-
times termed an Engineering and Troubleshooting Guidelines
(ETG) document) used by enablers1 to manually configure
each target device. Typically performed by a large network
engineering organization, and depending on the complexity
of the service or device, this process can take many person-
months of effort to complete and is resource expensive. The
subsequent manual application of the model configurations to
customer networks is also costly—some large customers may
have tens of thousands of network elements, and applying a
new configuration to even a fraction of them verges on the
intractable.

• prone to misinterpretation and error: Even under the best
of circumstances, engineering guidelines will not be perfect.
Because network designers cannot anticipate all possible target
environments, the guidelines are necessarily ambiguous, some-
times imprecise, and often subject to multiple interpretations.
Thus, different enablers may interpret the same rules differ-
ently or adopt different local conventions. Differences between
interpretations can and often do result in configuration mis-
match errors. Making matters worse, while some errors might
be easier to detect, others might have no immediate effect.
These latter configuration problems are the most vexing, as
they may become manifest at periods of high load (possibly
the worst possible time) or introduce undetected security
vulnerabilities.

• fraught with ambiguous, incorrect, changing or unavailable
input data: Configuration information is not only spread across
multiple data sources, but may be incomplete and imperfect.
For example, customer order databases may not reflect the
latest needs of the customer, e.g., order updates may only exist

1Enablers are the personnel who implement a given service, either staff
on-site or within a provider’s organization.

ENCK et al.: CONFIGURATION MANAGEMENT AT MASSIVE SCALE: SYSTEM DESIGN AND EXPERIENCE 325

as emails to human contacts and may not quickly (or ever) be
reflected in a database. As another example, information such
as IP address assignments may be missing at the time of initial
configuration. Finally, rules might be ambiguous. We have,
for example, encountered examples where a particular service
mandated that a site may have dual routers with ISDN backup,
but it was not obvious which router must be the backup and
which the primary.

B. Requirements

The pervasive practices and technical organizational prob-
lems detailed above makes automation in provider networks
difficult. These issues lead to the following requirements, i.e.,
the configuration process must:

• Support existing configuration languages: While there have
been many prior efforts at automating configuration genera-
tion, most have focused on developing abstract languages or
associated formalisms to specify configurations in a vendor
neutral fashions, e.g., IETF standard SNMP MIBs (Sim-
ple Network Management Protocol, Management Information
Bases) [3], the Common Information Model (CIM) [4], and
the Common Management Information Protocol (CMIP) [5].
These information models define and organize configuration
semantics for networking/computing equipment and services
in a manner not bound to a particular manufacturer or imple-
mentation. However, such generalized abstractions invariably
introduce layers of interpretation between the specification
and device. Gaps open between general abstract specifications
and the concrete language of specific device configuration.
It is very difficult to avoid extending or creating specialized
common models to describe the realities of today’s rapidly
evolving devices and services. The artifacts of efforts to create
standards or libraries often lag the marketplace. In truth,
network experts often do not have the time or inclination
to understand such abstractions, and today nearly universally
find that working within native configuration interfaces is
much more efficient for both initial installation and later
maintenance.

• Scale with options, combinations, and infrastructure: Cus-
tomer configurations are dependent on, in particular, selected
service offerings, devices, firmware revisions, and local infras-
tructure. For example, consider a site connecting to a provider
backbone. The seemingly simple customer order has many
options—does the customer require multiple routers to connect
to the backbone or just one? Should each have multiple
links or one? Further, each router may have several WAN
(Wide Area Network) and LAN (Local Area Network) facing
interfaces, and each interface may admit specific naming con-
ventions that depend on the router model and the WAN card.
The physical local infrastructure (e.g., routers and network
topologies), will often have major impact on the workflow
and content of the configuration.

• Support heterogeneous and diverse data sources: Putting
together a router configuration involves collecting all nec-
essary router configuration information. Such configuration
information may not be all available in one central repository
at the time the information is needed, but rather maybe dis-
tributed amongst a variety of databases, which are populated

by upstream workflows. Take, for example, the customer order
database. The customer information may itself have arrived
at different times, and may be split across various forms. In
large operational networks, information regarding customer
orders and the resulting router deployment and maintenance
is potentially spread across various systems spanning many
internal organizations. An automated configuration system
has to be cognizant of the diversity of information sources
(and quality of data). Importantly, these data sources typically
have their own persistent databases (each representing large
investments), and a configuration management solution faces
a huge real-world hurdle if it were to attempt to replace or
replicate these databases, or even add a new persistent database
rather than extend an already existing one. To the greatest
extent possible, a configuration management system should
strive to be stateless if it is to succeed in diverse operational
environments.

III. THE PRESTO SYSTEM

Two kinds of users interact with PRESTO—domain experts,
which define services, and provisioners, which combine ser-
vices for specific routers. Domain experts initially codify the
configuration services and options in active templates. These
are the PRESTO equivalent of the ETG, where execution of
the “active” template by the compiler directs the interpretation
of the service definition for a particular environment. At
installation time, provisioners obtain necessary configuration
information from customers and other sources, that, when
combined with the templates written by the domain expert,
produce the end router configuration.

In practice, deployment is a multi-stage process including
requirements reconnaissance, initial configuration creation,
and device turn-up. PRESTO is concerned with the second
part of the process, the creation of the configuration. The
configuration creation process begins with a batch of one
or more new configuration requests resulting from a network
upgrade request or customer order. The requests are submitted
to PRESTO as a collection of specification inputs, where
the relevant environment data is provided as direct inputs
or extracted from supplementary inventory and configuration
databases. The data is cleansed and projected into a service or
device (application-specific) data model created for the target
configurations. Finally, an active template is executed for the
set of specified target devices resulting in complete device-
native configurations.

As discussed in Section II, automation is paramount to
massive scale configuration management. The remainder of
this section describes how PRESTO achieves automation and
realizes the requirements laid out in Section II-B. We first
present a template language based on configlets (modular sub-
parts of configuration text) that allow domain-experts to design
a scalable model for unambiguous configuration specification.
We then show how a two step architecture can normalize
and cleanse configuration inputs and promotes provisioner
feedback for process standardization.

A. PRESTO Template Language

The PRESTO template language lays out the foundation
over which the rest of the system is built. This allows domain

326 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009

experts to leverage knowledge of flexible native configuration
languages, e.g., Cisco IOS, while creating useful abstrac-
tions, defining services, which take the form of configlets
in PRESTO. Interestingly, this is in direct opposition to
traditional network management interfaces which provide a
single abstraction to which any policy would have to adhere.
PRESTO provides the following key characteristics:
• Data Modeling: Router configurations are modeled as an
amalgamation of services. A per-application data model uses
a relational database schema to capture router characteristics
specific to the desired service rules.
• Rich Template language: Service rules are defined with
respect to information available in the application specific
database. Templates present a straightforward definition of ser-
vice rules using data driven loops, conditionals, and variable
substitution.
• Support for Template Decomposition and Assembly:
PRESTO allows the architect to write multiple smaller tem-
plates targeted for very specific elements of a configuration,
i.e., services.

Before discussing specific details, we provide an example
scenario to aid in the understanding of language constructs and
design motivations. Consider the configuration of a gateway
router. The gateway connection may have one or more external
connections. If there are multiple connections, they may be
dispersed across multiple routers. Hence, these routers require
configuration knowledge of the other routers participating
in the gateway connection, e.g., IP addresses, to coordinate
failover, e.g., HSRP [6]. The template language must support
these relationships between connections on one router and
between routers.

We now discuss each part of the template language in turn.
After discussing the core language concepts, we introduce
additional language features that enable better software en-
gineering practices.

1) Data Model: The PRESTO template language revolves
around the data model. The templates require access to small
data chunks describing router properties. Furthermore, multi-
router relationships dictate a need to perform quick lookups
for peer specific information. Such a capability is required for
instance when configuring one router (eg., a spoke) involves
extracting information for another router (eg., the hub). A
relational database provides just this capability: router prop-
erties are stored in table fields and accessed as variables;
peer router properties are queried by specifying the router
hostname. Hence, the data model becomes a database schema.
We refer to this database as the provisioning database and
provisioning relational database schema where necessary to
remove ambiguity.

The schema definition is application dependent. Each ap-
plication has different requirements on data accessibility. It is
no surprise that defining the schema is the most delicate part
of applying PRESTO to a new application, hence complete
flexibility is required. Despite the supported flexibility, past
experience has resulted in a few recommended guidelines.
The data model should contain a ROUTER table indexed by a
globally unique identifying value, e.g., the router hostname.
One row will exist for each router in a provisioning re-

quest. The ROUTER table should contain the bulk properties;
however, whenever multiple instances of a property occur,
a new table should be created. For example, multiple LAN
or WAN interfaces are semantically equivalent. Sub-router
tables should use a multi-column primary key consisting of
the ROUTER table index and a unique identifier, e.g., interface
number. Upon querying the database for all LAN interface
records matching a specific router hostname, the template
language produces an interface loop. For example; suppose
LAN is a table holding all LAN-facing inputs. Then

SELECT * FROM LAN WHERE ROUTER=THIS_ROUTER

selects each LAN-facing interface on a given router. Iteration
specifics and syntax are discussed below.

2) Variable Evaluation: Variable substitution is integral to
any template language; PRESTO is no exception. Variables are
defined by the data model. Templates gain access to variables
by querying the provisioning database. The returned record
defines a variable namespace, or context, used to access the
variable, e.g.:

<CONTEXT.VARIABLE>

Variables of this form are directly substituted in the template
text.

Templates are written to produce a configuration file for one
router. PRESTO begins template evaluation by querying the
ROUTER table in the data model for the row corresponding to
the current router. The returned record populates the ROUTER
context, which consequently allows templates to use ROUTER
variables at any point. The template creates new contexts by
making a new database query; however, those variables are
only accessible within the defined context scope. When a
query returns multiple records, the template code within the
context is repeated, producing a loop. For example, SELECT

* FROM LAN WHERE ROUTER=THIS ROUTER has the effect of
configuring multiple LAN-facing interfaces.

3) Iteration: The PRESTO template language simulates
iteration by executing database queries that return multiple
records. The template designer creates a “for-each” loop by
defining a new context name, an SQL-like query, and a scope.
Each row returned by the query produces an iteration. For
example:

[INT:SELECT (*) FROM (WAN_INTERFACE) WHERE
(WAN_INTERFACE.HOSTNAME=<ROUTER.HOSTNAME>)]

interface serial0/<INT.SLOT>/<INT.PORT>
bandwidth <INT.BANDWIDTH>
ip address <INT.IP> <INT.MASK>

!
[/INT]

Here, INT is the name of the new context. The statement as-
sociates the INT context with the record returned by querying
the WAN_INTERFACE table of the provisioning database for
all fields ((*)) related to the current router hostname (note
the use of <ROUTER.HOSTNAME> in the query). The text
within the INT context scope, i.e., all text between the query
statement and the context closing statement, [/INT], is re-
peated for each returned record. Field names from each record
are accessible as variables within the context, as shown. Note
that new context definitions can be arbitrarily nested, but they
cannot define scopes spanning multiple parent scopes. That
is, the nested context’s closing statement must occur before

ENCK et al.: CONFIGURATION MANAGEMENT AT MASSIVE SCALE: SYSTEM DESIGN AND EXPERIENCE 327

its parent closing statement. This constraint is consistent with
loop structures in common programming languages.

4) Conditional Logic: Configuration statements are com-
monly dependent on router properties. For example, E1 (a
standard widely used in Europe) line cards required slightly
different interface specification than T1 (a standard widely
used in the US) cards. The PRESTO template language
supports the inclusion and omission of configuration options
with conditional statements. All conditionals have a label,
condition and scope, in general:

[COND LABEL CONDITION]
... template text
[/LABEL]

COND indicates a conditional statement; LABEL defines a
label; and CONDITION contains relational operators that
dictate if the template text between the condition statement
and the closing statement, [/LABEL], is included. The tem-
plate text can contain static strings, new contexts, or even
more conditionals. The CONDITION itself supports arbitrary
complexity of Boolean logic. Statements can be simple:

("<ROUTER.HAS_FEATURE_X>" eq "YES")

or more complex logic:

(("<ROUTER.HAS_FEATURE_X>" eq "YES") &&
(("<ROUTER.HAS_FEATURE_Y>" eq "YES") ||

("<ROUTER.FEATURE_Z>" ne "BASIC")))

5) Data Transformation: Configuration statements com-
monly require a transformation of an input variable. For exam-
ple, an interface IP address may be specified as IP and mask,
i.e., x.x.x.x/y, but the router configuration language requires the
IP and mask coded separately, i.e., x.x.x.x z.z.z.z. In another
case, the template designer may need to configure the network
address corresponding to the input value. To accommodate
such requirements, the PRESTO template language provides
a mechanism for arbitrary extension.

A function added to the language interpreter module is
referenced within a template as a context, variable, function,
and argument:

<CONTEXT.NEW_VARIABLE:function(args)>

Upon execution, arguments are evaluated (if they are variables)
and passed to the function. The function performs a specific
manipulation and returns the result to a new variable in the
specified context. The new variable’s value is inserted into the
template text, and it’s value is retained for later use within the
context.

To aid template design, the PRESTO template language
contains a core set of application agnostic functions. Some
functions provide generic computation abilities, e.g., calc()
performs simple arithmetic, sbsstr() returns a substring
specified by an offset and length, and matchre() provides
regular expression substring matching. Other core utility func-
tions perform useful conversions on common network values
such as IP address. For example:

<INT.NETIP:computeOffsetMaskIP(<INT.IP>,0)>

computes the network address of an IP specified in x.x.x.x/y
form. The function, however, can calculate any offset of the

IP, a useful feature when network policy dictates devices on
specific offsets, e.g., the gateway is commonly .1. Realizing
a new PRESTO function involves including its code in the
PRESTO language interpreter.

6) Hidden Evaluation: Configuration policy occasionally
requires values resulting from complex computations. While
additional domain specific functions provide ample mech-
anism, template designers are encouraged to keep domain
knowledge within the templates themselves. The motivation
is twofold. First, this reduces bloat of the core language.
Second, as function definitions require programming, and most
template designers do not possess the necessary skills, or are
simply unwilling, to create new functions. Therefore, we have
added only a small number of generic primitive operations to
the core language in an application.

As described to this point, the template language is not
conducive to performing complex computation within the
templates themselves. All functions return text that is inserted
into the end router configuration. Multi-step computations
therefore become difficult, if not impossible. To overcome this
issue, the language supports hidden evaluation:

[EVAL LABEL noprint]
... template statements
[/LABEL]

Statements within the LABEL scope produce no output.
Computation within EVAL blocks is not limited to simple

multi-step functional transformations. In practice, we lever-
aged the hidden evaluation interface to provided a multitude
of features. For example, database SELECT queries were used
to lookup values in supplemental data tables. Values were
assigned to higher level contexts, e.g., ROUTER, and used
throughout the template. The EVAL blocks also proved useful
to determine values that depended on multiple conditionals.
The conditional logic was performed once, and the value was
used many times thereafter.

7) Template Assembly: Managing one large template be-
comes unwieldy. Software engineering experience recom-
mends modular code. Templates are no exception. Using many
small templates, or configlets provides many beneficial
side effects. It allows a template designer to concentrate on
one feature at a time. For example, a configlet can be written
for each network access type used for the WAN interface of
a router. Later, depending on the router provisioning data, the
correct configlet is chosen. By including configlets on demand,
complicated conditional logic is avoided. Additionally, as con-
figlets are only inserted where applicable, they can be written
with certain assumptions in mind. This reduces complexity
within the configlets themselves. Finally, as configlets can
include other configlets, the template designer can exploit
commonality between configlets.

PRESTO stores all configlets in a template library. Con-
figlets can be included at any point. The language provides a
special syntax for including configlets:

[INCLUDE FROM (FEATURE) WHERE
(FEATURE.TYPE=SOME_TYPE)]

In our above example, the correct WAN interface configlet is
included using the <ROUTER.ACCESS_TYPE> variable:

[INCLUDE FROM (WAN) WHERE

328 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009

1 %% Find loopback0 and store the IP address in the ROUTER context for later use
2 [EVAL FIND_LOOPBACK0 noprint]
3 [LOOPBACK: SELECT (*) FROM (LOOPBACK) WHERE (LOOPBACK.ROUTER_ID=<ROUTER.ROUTER_ID>)]
4 [COND LOOPBACK0 ("<LOOPBACK.INTERFACE_NAME>" eq "loopback0")]
5 <ROUTER.LOOPBACK0:setValue(<LOOPBACK.IP_ADDRESS>)>
6 [/LOOPBACK0]
7 [/LOOPBACK]
8 [/FIND_LOOPBACK0]
9 %% Configure Back-to-Back Interface to Peer Router

10 [INCLUDE FROM (TEMPLATES) WHERE (B2B.TYPE=<ROUTER.B2B_TYPE>)]
11 %% Define the BGP configuration
12 router bgp <ROUTER.LOCAL_ASN>
13 network <ROUTER.LOOPBACK0> mask 255.255.255.255
14 [PEER:SELECT (*) FROM (ROUTER) WHERE (ROUTER.HOSTNAME=<ROUTER.PEER>)]
15 network <PEER.NETIP:computeOffsetMaskIP(<PEER.B2B_IP>,0)> mask 255.255.255.252
16 neighbor <PEER.B2B_IP> remote-as <ROUTER.LOCAL_ASN>
17 neighbor <PEER.B2B_IP> next-hop-self
18 [/PEER]
19 [WAN:SELECT (*) FROM (WAN) WHERE (WAN.HOSTNAME=<ROUTER.HOSTNAME>)]
20 %% If WAN port used as a full port configuration, include network and neighbor statements
21 [COND CONFIGURE_WAN ("<WAN.FULL_PORT_CONFIG>" eq "TRUE")]
22 network <WAN.NETIP:computeOffsetMaskIP(<WAN.IP>,0)> mask <WAN.MASK:computeMask(<WAN.IP>)>
23 %% The gateway is the second IP in the subnet (for this example)
24 neighbor <WAN.GW:computeOffsetMaskIP(<WAN.IP>,1)>
25 remote-as <WAN.REMOTE_ASN>
26 [/CONFIGURE_WAN]
27 [/WAN]
28 no auto-summary
29 !

Fig. 1. Example configlet defining the WAN routing protocol of a two-line two-router configuration

(WAN.ACCESS_TYPE=<ROUTER.ACCESS_TYPE>)]

8) Example Configlet: Once the data model and configlet
organization are determined, writing the configlets themselves
is straightforward. We now provide a quick example to show
how each of the language primitives come together. Consider
a network topology where the Internet edge has two access
lines, each connected to one router, and the two routers
establish load sharing of in and outbound traffic. One of the
more complex configlets defines the WAN routing protocol,
of which Fig. 1 shows an example.

The example begins by using an EVAL block (lines 2-8) to
acquire the IP address on the first loopback interface. Storing
this value at the beginning of the configlet makes the subse-
quent code cleaner and allows the value to be used at multiple
places without executing multiple queries. Next, a configlet
is included (line 10) to define the back to back connection
between the two routers. Multiple connection types may be
supported. Instead of using a large conditional statement to
pick the right interface definition, the INCLUDE statement
allows the relational database to perform the conditional logic
and simplify the code the domain expert must specify.

The BGP block (lines 12-29) defines the WAN routing
protocol configuration. First, the PEER context (lines 14-18)
is used to queries for network addresses specific to the peer
router. Next, the WAN context (lines 19-27) queries information
specific to the WAN connection (the data model specifies that
WAN interface specifics be placed in a separate table). The
configlet selects the correct table row using the HOSTNAME
foreign key. In this context, the Cisco IOS network and
neighbor commands require available information to be
translated using the computeOffsetMaskIP() function.
In this case, the remote peer is always the second IP in the
network, hence the domain expert can use the offset function
to code the neighbor’s IP directly.

The template language and data model provides a scalable
mechanism to describe configuration policy in native configu-

ration language; however, alone it does not meet the require-
ment of supporting heterogeneous and diverse data sources
(see Section II-B). We next present a two-step architecture to
overcome these difficulties.

B. PRESTO Architecture

In an ideal world, an engineer receives a request for a
group of related routers with all required input information
available and correct. This would allow a straightforward
execution of the active templates upon inputs. Unfortunately,
the information required to configure a router is not always
readily available. In large operational networks, the input
data for the configuration task spans the outputs of multiple
upstream workflows, which may arrive at different points
in time. It is therefore important to be able to work with
such partial information flows and to able to handle any
inconsistencies across the flows. In such a scenario, ubiquitous
flow-through or full automation becomes extremely difficult to
realize.

PRESTO achieves nearly full automation using a 2-step
process, see Fig. 2. The goal of automation is to minimize user
efforts. PRESTO minimizes manual processes in two ways.
First, it allows bulk requests, where applicable, to streamline
the process of creating the initial router configuration code.
Second, it requires only one point of user interaction at which
point users provide the most minimal effort, e.g., to correct
inaccurate or enter missing information, to allow automation
to complete. In PRESTO, data processing proceeds in two
steps, with user integration capabilities made available during
Step 1, the results of which are passed to Step 2.

Specifically, PRESTO uses a 2-step architecture to request
user input at the most ideal moment. The process begins
with the batch submission of one or more router configu-
ration requests to Step 1. Step 1 pulls together and parses
information from available input data sources, for example a
customer order database. The role of Step 1 is to normalize
and tabulate the input information and, if possible, apply

ENCK et al.: CONFIGURATION MANAGEMENT AT MASSIVE SCALE: SYSTEM DESIGN AND EXPERIENCE 329

Batch request
of related
routers

(short lived)

Parse inputs and
merge with

supplementary data

Tabular
Supplementary

Data
(long lived)

Provisioning
Database

(short lived)

Template
Library

(long lived)

Provisioning
Generator
(per router)

Router
Configuration

Text Files

Application Specific
Data Model

Input

Output

Application Specific
Master Template

Parse inputs and
apply default rules

Application Specific
Default Rules

Step 1

Step 2

Application Specific
Data Model

User corrects
and adds
missing

information

Fig. 2. 2-step PRESTO Data Flow

defaults or inference rules to fill in missing information.
Where defaults or inference are applied, the Step 1 output
will flag or annotate the output, for (optional or mandatory)
user inspection and possible refinement before resubmission to
Step 1 to ensure correctness. Note that the design of PRESTO
is intended to be input agnostic and can be adapted to a
number of different modalities (via web services, via database
invocations, or via stand-alone interfaces), and to operate
on inputs of various forms and origins (database extracts,
spreadsheets, XML forms). Whatever the implementation, the
goal of Step 1 remains the same: output the complete and
unambiguous information needed to configure all routers in
the batch.

Step 2 parses the cleansed inputs from Step 1 and places
the restructured data into a one-time database called the
provisioning database. Then, for each router in the request,
a master template is executed by the provisioning generator.
This execution combines the short-lived provisioning database
with up to two longer-lived databases: a template database
and an optional supplemental database. The template database
stores all pre-defined configlets for a particular service and
is queried by the master template to include appropriate
configlets, resulting in a configuration snippet or a completed
“ready-to-load” configuration file. The creation of supplemen-
tal database2 is service-dependent, and the database commonly
includes persistent data already naturally expressed in tabular
form, e.g., mapping from card names to interface type and
number of ports. Note the separation between the short-lived
provisioning data and the long-lived service rules database.

2Supplemental database is not used in the current services deployed with
PRESTO (see §IV), since decisions were made to include supplemental data
in the inputs from Step 1.

Step 2 is stateless with respect to provisioning requests; it
is simply a repository of configuration policy. This model
allows PRESTO maintainers to develop, scrutinize, and rapidly
deploy new service functionality to meet the demands of ever
changing network technology, instead of dedicating resources
to duplicate information stored elsewhere, e.g., in customer
order databases.

By dividing the processing in these two steps, we isolate
problems arising from inadequate information to Step 1,
and provide the system and its users opportunities to repair
fallout and resume automation before proceeding to Step 2,
which then produces the desired output. However, sometimes
processes require configurations before the complete set of
inputs is available, e.g., a customer site with two router
resiliency may deploy the routers at different times. In such
cases, Step 1 ensures all inputs mandatory for a minimal router
configuration are available, and Step 2 conditionally config-
ures services depending on input completeness. Experience
has demonstrated that performing such due diligence is not
always a straightforward variable comparison. For example, a
service may only be configured if a certain number of inputs
are present. To accommodate such cases, we extended the
PRESTO language enable checking of minimal requirements
as well as verbose warning and error messages to inform the
user of potential areas of concern.

IV. EXPERIENCE

The PRESTO system has benefited from the insights of
network designers and engineers responsible for configuring
network elements for large commercial connectivity services.
A key measure of the value of such a tool, ultimately, is
how useful and usable it is in practice for this target user

330 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009

Fig. 3. Provider VPN

community. The PRESTO system is currently being used to
automate configuration generation for a number of different
commercial network services. In this section we first present
a general design flow to adapt PRESTO for a new service.
Second, we describe two unique provider-based services, VPN
and VoIP, that are currently supported by PRESTO, and their
PRESTO data models. Finally, we reflect on our continued
experiences automating configuration for these services.

A. Design a PRESTO tool for a New Service

Developing a PRESTO-based configuration tool for a new
service involves knowledge engineering (codifying expert
knowledge, initially only partially documented) and data mod-
eling (identifying service-specific information and business
rules), as well as front end user interface and back end
PRESTO template development. The main tasks involved are:
(i) identifying all the service-specific information required for
building the configs, and developing the resulting service-
specific configuration data models (i.e., a provisioning data
model and an optional supplemental data model).
(ii) understanding the workflow surrounding the provisioning
process and available data sources and determining how the
information in the above data model can be extracted.
(iii) collating the service-specific provisioning rules and build-
ing the service-specific templates based on engineering guide-
lines from the service designers and the associated data model
for the template database to store the configlets.
(iv) defining the workflow of the PRESTO-based tool and
developing service-specific code around the core service-
agnostic PRESTO system.

B. PRESTO for Virtual Private Networks

1) Customer Edge Router Configuration for Provider
VPNs: Enterprise networks are increasingly using provider-
based Virtual Private Networks (VPNs) to connect geographi-
cally disparate sites. In such a VPN, each customer site has one
or more customer edge (CE) routers connecting to one or more
provider edge (PE) routers in the provider network (see Fig. 3).
Incoming customer traffic from a CE is encapsulated at the
PE and carried across the provider network, decapsulated by a
remote provider edge router and handed off to the customer CE
router at a remote site of the same customer. Traffic belonging
to different customers is segregated in the provider backbone,
and the provider network is opaque to the customer. The
predominant method for supporting provider-based VPNs uses
MPLS [7] as the encapsulating technology across the provider
backbone.

Fig. 4. Template data model for VPN service.

A critical part of supporting the VPN service involves
configuring the CE routers. The tasks include configuring
ACLs (Access Control Lists), interfaces, WAN (Wide Area
Network) links and routing (e.g., OSPF and BGP). The key
challenges pertain to heterogeneity and scale. VPN services
enjoy a large and growing number of customers. A single
customer can have hundreds to thousands of different sites.
There are a wide range of features and options a customer
can select that impact the configuration. There are different
hardware elements (e.g., router models and interface cards),
different access type options for the CE-PE connection (e.g.,
Frame Relay and ATM), different interface speed options, and
so on. In addition to hardware options, customers choose from
a range of resiliency options varying the number of routers,
and access lines. This huge space of feature combinations and
the need to support a steadily increasing slew of new features
makes CE router configuration a prime candidate for PRESTO
automation.

2) PRESTO Data Models for CE Configuration: Recall
that PRESTO requires an application to define two mandatory
data models—a provisioning data model for short-lived data,
and a template data model for pre-defined configlets. The
provisioning data model provides a repository of data specific
to the current router request set. The VPN instantiation of the
provisioning data model placed as many fields as possible in
a central ROUTER table indexed by an unique ID assigned to
each router to be provisioned. This contained router-specific
information such as hostname, model number, software ver-
sion, and available customer information. Whenever multiple
instances of any type of data was required to build template
iterations, a new table was created, as replication has risk
in provisioning tasks. For CE configuration, this led to the
creation of tables for WAN interfaces, dial backup informa-
tion, and the logical interfaces that define VPN connections.
In total, the resulting provisioning data model consisted of one
main ROUTER table and 12 secondary tables, each containing
foreign keys to reference the ROUTER table.

The data model for the longer-lived template database
contained the configlets used to create the actual router con-
figuration. As shown in Fig. 4, the data model consisted of
7 feature tables, all referencing the TEMPLATES table in the
center. The master template operates on this template database,
collates the appropriate configlets, and produces a completed
router configuration file. To get a configlet, the master template

ENCK et al.: CONFIGURATION MANAGEMENT AT MASSIVE SCALE: SYSTEM DESIGN AND EXPERIENCE 331

uses relevant information from the provisioning database to
derive the name of the target template from the feature table.
The name is then used to key into the TEMPLATES table
to retrieve the corresponding configlet. This extra layer of
indirection enables records from multiple feature table to share
a single configlet. As a result, if a configlet is changed, only
the TEMPLATES table needs to be repopulated.

Configlets were grouped into feature tables by logical fea-
tures, specifically BASE, LAN, WAN, CARDS, RESILIENCY,
DAC, and B2B. The BASE table consisted of the configlet
required for all routers, e.g., hostname, password, loopback,
and motd commands. The LAN and WAN tables contained
configlets for various types of interfaces, e.g., frame relay
and ATM interfaces. The CARDS table contained configlets
for interfaces that are line card-specific. The RESILIENCY
table contained configlets defining the different resiliency
options required by the VPN service. The DAC table contained
configlets specific to various parts of the dial backup configu-
ration. The B2B table defined special interface definitions used
where CE routers are organized in back to back configurations.
Defining these feature tables as primitives or building blocks
allowed specialized configlets to be easily composed and
promoted knowledge and code reuse. A total of 86 configlets
containing 4569 lines of statements were created.

C. PRESTO for Voice-over-IP Networks

1) VoIP Router Configuration for Provider VoIP Networks:
Another key service that enterprise networks leverage is
provider-based Voice-over-IP (VoIP) networks to facilitate
voice communication between disparate sites. Similar to
provider-based VPNs, the VoIP service for a customer has
multiple VoIP sites connected via the IP backbone. Each
customer VoIP site uses one or more VoIP Routers (VRs) to
provide connectivity between the customer VoIP network and
the provider backbone (via PE routers). The VoIP network
consists of a heterogeneous set of VoIP Network Equip-
ments (NEs) (e.g., firewall devices, VoIP servers, etc) con-
nected to the VRs via Virtual Local Area Networks (VLANs),
and has grown at a rapid pace to meet customer demand.

A key challenge of supporting the VoIP service involves
configuring the VRs to accommodate a continuous grow-
ing set of NEs in the VoIP network. For each NE, the
configuration tasks include configuring VLANs, virtual and
physical interfaces, VRF (virtual routing and forwarding),
WAN (Wide Area Network) and LAN (Local Area Network)
links, and routing (e.g., BGP and OSPF). There are a wide
range of NEs a customer can use and require support for, and
configuration details of some tasks are different for NEs from
different vendors. In order to efficiently create and maintain a
disparate VoIP site with up-to-date NEs, automation of VR
configurations is necessary for greenfield deployment of a
new VoIP site, as well as incremental configurations for later
additions and removals of NEs. These characteristics make
VRs well-suited for PRESTO automation.

From the provider’s perspective, there are two key dif-
ferences between configuring VRs in the VoIP service and
configuring CE routers in the VPN service. First, while CE
router configurations are themselve heterogeneous due to the

various hardware elements and resiliency options available,
the VRs have homogeneous hardware components. The het-
erogeneity in VR configurations stems from the myriad of
VoIP NEs that can be connected to and need to be supported
by a VR. Second, in addition to handling complex greenfield
configurations as in the case of CE routers, the need for
effectively and correctly modifying parts of the configuration
to reflect the additions and removals of NEs makes VRs a
unique candidate for brownfield automation by PRESTO.

2) PRESTO Data Models for VR Configuration: While the
designs of the provisioning and template databases for VR
configuration are very similar to those for CE configuration,
here we describe the data models for VR configuration and
highlight their key differences.

In order to offer support for incremental configuration of
VRs to handle NE additions and removals, a VR configuration
was divided into smaller, self-contained configuration snippets
which are to be executed on top of a base configuration. The
base configuration is a standalone configuration file the router
can immediately load as its running configuration. In con-
trast, configuration snippets are to be applied via the router’s
command line interface or via replacing parts of the router’s
running configuration. For example, different configuration
snippets are created for the VR to communicate with different
NEs. This modular design is specific to the service require-
ment of VoIP networks and is significantly different from the
PRESTO output for VPNs, where a completed monolithic
“ready-to-load” configuration file is always generated.

The provisioning request for a VR consists of a list of
configuration tasks of various types. Each task contains in-
formation about the type of task requested and the necessary
parameters required to complete the task. PRESTO processes
this list in sequence, generates the configlet (a base configura-
tion or configuration snippet) for each task, and finally pushes
back a list of completed configlet to the enabler.

The provisioning database stored a provisioning request by
having each router in the ROUTER table to be associated with
a list of configuration tasks. Whenever PRESTO encounters a
new type of task, a new table was created to store the informa-
tion associated with the task. For example, in a list of 3 tasks,
if the first and the second tasks involve creation of VLANs,
and the third task requires creation of a LAN interface, a
total of 2 tables are created to store the provisioning request.
For VR configuration, this led to the creation of tables for
VLAN interfaces, LAN interfaces, BGP route advertisements,
etc. In total, the resulting provisioning data model consisted
of one main ROUTER table, and 13 secondary tables, each
corresponding to a supported type of configuration task and
containing foreign keys to reference the ROUTER table.

The template data model for VR routers had a similar 2-
level structure to the template data model for CE routers.
As shown in Fig. 5, configlets were grouped into 4 task
tables, all referencing the TEMPLATES table in the center.
A total of 13 configuration tasks were supported. For each
configuration task associated with a router, the master template
queries the appropriate task table to obtain the name of the
target template, uses the name to retrieve the corresponding
configlet from the TEMPLATES table, and finally generates a
completed configlet for the task. If the configlet corresponding

332 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009

Fig. 5. Template data model for VoIP service.

to a task was indepedent of the NEs, it was stored in the
GENERAL table; this included configlets for 10 tasks such
as configuring the base commands (e.g., hostname, loopback,
banner commands), adding static routes, and defining VLANs
for NEs. The BGP_NBR table contained configlets for cre-
ating BGP sessions between VRs and PEs or between VRs
themselves. The ETHERNET_INT table and VLAN_INT table
contained NE-dependent configlets for configuring Ethernet
and VLAN interfaces facing various NEs. A total of 64
configlets containing 2634 lines of statements were created.

D. Controlled Brownfield Support with PRESTO

Thus far, we have focused on using PRESTO to generate
greenfield configuration. Recently we have adapted PRESTO
to provide support for brownfield configurations. In this sec-
tion, we discuss how PRESTO was adapted for brownfield
configuration in the context of configuring VoIP routers (VRs)
due to their unique requirement for such a feature.

Recall that the design objective of configuration snippets
was to allow incremental VR configurations to handle addi-
tions and removals of NEs. This involves making changes
to VR configurations already in operation (i.e., brownfield
configurations) when NEs are later connected to or discon-
nected from VRs. While highly important, supporting changes
to brownfield configurations in a generic way is hard and
has remained an open research problem. In particular, a tool
needs to automatically infer the existing state of a brownfield
configuration in order to generate configuration changes cor-
rectly and ensure no negative impacts to other parts of the
configuration.

Instead, we offered limited support for changes to brown-
field configurations in a controlled setting, with the key
assumption that any prior changes, if any, was made only via
PRESTO. By making this assumption, the range of allowed
change configuration is tightly controlled by PRESTO, thereby
eliminating the need for inferring configuration states. To
achieve this, for each configuration snippet requested to reflect
NE additions, PRESTO also produces the associated backout
snippet to nullify the corresponding configuration snippet.
Then, the backout snippet can be archived and executed
later when the NE is removed. Fig. 6 shows an example
configuration-backout snippet pair for configuring BGP’s ad-
vertised routes. In total, 11 out of the 13 supported tasks have
their backout snippets defined. The remaining 2 tasks pertain
to core configuration and interface initialization, and they are

1 ! ConfigletType = Config, Task = AdvertisedRoute
2 router bgp <TASK.ASN>
3 network <TASK.IPADDRESS> mask <TASK.MASK> \
4 route-map <TASK.ROUTEMAP>
5 !
6 ! ConfigletType = Backout, Task = AdvertisedRoute
7 router bgp <TASK.ASN>
8 no network <TASK.IPADDRESS> mask <TASK.MASK> \
9 route-map <TASK.ROUTEMAP>

10 !

Fig. 6. Example configuration and backout snippets.

one-time configurations whose effects need not be rolled back
later.

E. Deployment Status and Lessons

We have implemented PRESTO systems for the VPN and
VoIP services, and they are currently under deployment for the
large ISP. Since deployment the PRESTO tool has been used
for configuring a majority of the routers in the VoIP service.

In developing a PRESTO-based configuration tool, the
results of defining configuration logic on top of native device
languages were immediately apparent. Expressing such logic
in the lingua franca of the configuration experts was simply
a requirement of fully capturing their desires. On the other
hand, the effects of heterogeneous hardware, impure data
sources, and guideline ambiguity were not fully realized until
the tool had matured. The remainder of this section describes
how features within the PRESTO framework mitigate these
challenges, using provider-based VPN configuration as the
focus of our discussion.

1) Configlet Modularity: Connection resiliency is the pri-
mary configuration option for the customer edge of the
provider-based VPN configuration. Depending on site require-
ments, the customer chooses from a vast array of router models
and connection technologies (e.g., Frame Relay, ATM) as well
as the number of routers and the number of access lines per
router. In developing the configlets for resiliency, we found a
basic tenet of software engineering to hold true, specifically:
develop in modular fashion. However, the extent of modularity
depends highly on the service rules required for an application.

For example, modularity was fundamental to the routing
configuration (BGP). The BGP configuration describes the
topology of the network, e.g., the network and neighbor
statements in Cisco IOS. Such statements are needed for
each router interface involved in BGP, but are the same for
both physical and logical interfaces. Hence, we created one
configlet containing network and neighbor statements
and dynamically included it from other configlets defining
different physical and logical interfaces.

Overall, configlet modularity played a significant role as the
template library grew to support more options. In our initial
designs, “parallel” configlets, i.e., configlets defining the same
service, frequently contained duplicate code. Changing this
code required burdensome duplication of changes and can be
dangerous if one configlet is missed. Increasing the modularity
of configlets decreased code duplication, which eased main-
tenance and increased reliability. Additionally, breaking up
configlets provided significant code reuse, resulting in faster
development of new features and hardware support.

2) Reliable Data Sources: Real deployment scenarios are
often plagued with incomplete and inconsistent configuration

ENCK et al.: CONFIGURATION MANAGEMENT AT MASSIVE SCALE: SYSTEM DESIGN AND EXPERIENCE 333

requirements. PRESTO overcomes this challenge using the 2-
step architecture; users refine and correct data inputs before
generating the end router configuration. Recall that PRESTO’s
primary goal is to reduce manual intervention, therefore we
desire as complete and correct a data source as possible.
While one may attempt to automatically reconcile multiple
data sources, doing so is non-trivial and may introduce user
confusion or result in invalid configuration requests.

Through our experience with the CE configuration tool,
we discovered a new data source requirement that exposed
the necessity for PRESTO to mesh with existing systems
and processes. Initially, we used a static input source that
provided most, but not all information necessary to configure
multiple routers related to a customer order. Step 1 parsed
the input, producing a spreadsheet for completion by the
enabler. While this model satisfied PRESTO’s goal of not
maintaining a new customer information database, existing
configuration processes caused it to unfairly push the data
management problem onto the enabler. For this application,
enablers commonly only configured one router at a time
due to process dependencies that impeded the availability
of information required to create configurations. Hence the
spreadsheets had to be maintained over significant durations.
Based on our learning from that experience, the current version
of the CE configuration tool interfaces directly with an existing
customer requirements database and pushes back updates
made by enablers. This experiences shows that data sources
allowing enabler effort to be propagated back not only keep
existing databases current, but are paramount to providing a
usable interface.

3) Resolving Guideline Ambiguity: Natural language con-
figuration guidelines are inherently ambiguous. Edge cases
often lead to ad-hoc creation of local provisioning practices.
As enablers resolve interpretation difficulties, they relay res-
olution techniques to coworkers; however, often solutions
are not relayed back to a central location for validation
and incorporation into the guidelines. Such inconsistencies
cause obscure configuration errors that go long periods before
detection. Requiring new configurations to use a central unam-
biguous guideline repository overcomes regional differences,
and more importantly, it allows edge cases to be fixed once
and used forever.

The development of the template library for the CE con-
figuration tool revealed many ambiguities in the natural lan-
guage guidelines. The rule discovery process exposed various
inconsistencies between regional interpretation. After much
debate, inconsistencies were resolved, and the guidelines were
amended. Hence, the rule discovery process itself provided
great value to the CE configuration process. The existential
benefits continued as additional edge cases were discovered,
and validated solutions were incorporated into the template
library and used for all future configurations. In doing so,
PRESTO closes the loop between engineers designing guide-
lines and enablers implementing them.

V. RELATED WORK

Several industrial products (for example, [8], [9], [10], [11],
[12]) have emerged that offer support for configuration man-
agement. Many of these efforts have focused on developing

abstract languages to specify configurations in a vendor neutral
fashion, e.g., IETF standard SNMP5D MIBs [3], the Common
Information Model (CIM) [4], and the Common Management
Information Protocol (CMIP) [13], [5], [14]. These informa-
tion models define and organize configuration semantics for
networking/computing equipment and services in a manner
not bound to a particular manufacturer or implementation.
An example of the success of such an approach is the DSL
Forum’s TR-069 effort for DSL router configuration [15]. Yet,
general router configuration via this approach is challenging
given rapid technology evolution, driving network operators
and vendors towards competitive and differentiated advantage,
feature proliferation, and the need to continuously expand
networks and features while maintaining backwards compati-
bility.

Boehm et. al. [16] present a system that raises the ab-
straction level at which routing policies are specified from
individual BGP statements to a network-wide routing policy.
The system includes support to generate the appropriate pieces
of router configuration for all routers in the network. An ap-
proach to automated provisioning of BGP-speaking customers
is discussed in [17]. These efforts focus on BGP, just one com-
ponent of router configuration. Narain [18] seeks to bridge
the gap between end-to-end network service requirements, and
detailed component configurations, by formal specification of
network service requirements. Such specification could aid
synthesis of router configurations. In contrast to these efforts,
our focus in PRESTO is on the synthesis of complete, precise,
and diverse network configurations that are readily deployable.

Several initiatives have explored configuration management
systems for desktop, and server environments [19], [20], [21],
[22]. Networked and router environments often involve more
complex options and inter-dependencies than desktop envi-
ronments, and these solutions do not directly apply. That said,
there is much potential benefit from cross-fertilization between
these domains. Further, many of these works emphasized
deployment of configurations and placed relatively little effort
on deciding what the configuration of a node should be [21].

While the focus of PRESTO is the synthesis of con-
figuration files, others have looked at important orthogonal
issues related to configuration management. The Network
Configuration Protocol (NETCONF) [23], [24] effort provides
mechanisms to install, manipulate, and delete the configuration
of network devices. The NESTOR project [25] seeks to sim-
plify configuration management tasks which requires changes
in multiple interdependent elements at different network layers
by avoiding inconsistent configuration states among elements,
and facilitating undo of configuration changes to recover an
operational state. Others [26], [27] have looked at detailed
modeling and detection of errors in deployed configurations.

Others have proposed a completely new management and
control plane architecture [28]. Work by Greenberg et. al.
lead to implementations and extensions of the “4D” architec-
ture [29], [30], [31], [32]. While these systems reduce the
complexity of network control and management, they require
a complete “ground up” restructuring of the network elements
which is very costly. Meanwhile, PRESTO works within the
confines of existing router architectures.

334 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009

VI. CONCLUSIONS
The PRESTO system presented throughout represents a step

toward realistic automation of massive scale configuration
management. Central to the success of PRESTO are the
satisfied mandates for the treatment of complex and evolving
service definitions and customer requirements, dealing with
the hugely diverse and sometimes unreliable data sources,
and communication within the lingua franca of its user
community.

PRESTO attempts to balance these requirements by pro-
viding malleable and composable configlets that encode con-
figuration business logic directly in the target language.
Our experiences developing a PRESTO-based configuration
management tool for a VPN service clearly demonstrated
the utility of the framework. In short, PRESTO promotes a
healthy configuration management environment by actively
cleansing existing customer information databases, identifying
unaccounted for edge cases, and eliminated redundant fixes of
such problems.

Note that PRESTO, in its current stage, accounts for green-
field and controlled brownfield configuration management.
While highly important, a complete configuration management
system must support generic change of live systems. Support
for generic brownfield scenarios requires great care to avoid
negative consequences, e.g., performance, security, and con-
nection problems, and are the subject of ongoing work.

ACKNOWLEDGMENTS

We would like to thank Charles Kalmanek and Jennifer
Rexford for their invaluable inputs during the initial design
phases of PRESTO, the AT&T Labs engineering team for their
support, and Brian Freeman for his many helpful suggestions
on improving the paper.

REFERENCES

[1] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,
S. Rao, and W. Aiello, “Configuration management at massive scale:
System design and experience,” in Proc. USENIX Annual Technical
Conference, Jun. 2007.

[2] Cisco Systems, Inc., Cisco IOS Configuration Fundamentals Command
Reference, 2006, release 12.4.

[3] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (snmp),” http://www.ietf.org/rfc/rfc1157.txt, May
1990.

[4] Distributed Management Task Force, Inc., http://www.dmtf.org.
[5] “ISO 9596: Common management information protocol,” ISO, 1998,

http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?
csnumber=29698.

[6] T. Li, B. Cole, P. Morton, and D. Li, “RFC 2281, Cisco hot standby
router protocol (HSRP),” Internet Engineering Task Force, Mar. 1998,
http://www.ietf.org/rfc/rfc2281.txt.

[7] E. Rosen, A. Viswanathan, and R. Callon, “RFC 3031, Multiprotocol
Label Switching Architecture,” Internet Engineering Task Force, Jan.
2001, http://www.ietf.org/rfc/rfc3031.txt.

[8] “Cisco IP solution center,” http://www.cisco.com/en/US/products/sw/
netmgtsw/ps4748/index.html.

[9] “Intelliden,” http://www.intelliden.com/.
[10] “Opsware,” http://www.opsware.com/.
[11] “Voyence,” http://www.voyence.com/.
[12] Cisco Systems Inc., “Cisco works small network management solu-

tion version 1.5,” http://www.cisco.com/warp/public/cc/pd/wr2k/prodlit/
snms ov.pdf, 2003.

[13] U. Warrier, L. Besaw, L. LaBarre, and B. Handspicker, “RFC 1189,
common management information services and protocols for the in-
ternet (CMOT/CMIP),” Internet Engineering Task Force, Oct. 1990,
http://www.ietf.org/rfc/rfc1189.txt.

[14] “ISO 9595: Common management information service,” ISO, 1998,
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?
csnumber=30585.

[15] “DSL forum TR-069,” http://www.dslforum.org/aboutdsl/tr table.html.
[16] H. Boehm, A. Feldmann, O. Maennel, C. Reiser, and R. Volk, “Network-

wide inter-domain routing policies: Design and realization,” Apr. 2005.
[17] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang, “Automated provi-

sioning of BGP customers,” in IEEE Network Mag., Dec. 2003.
[18] S. Narain, “Network configuration management via model finding,” in

Proc. Large Installations Systems Administration (LISA) Conference,
Dec. 2005.

[19] P. Anderson, “Towards a high-level machine configuration system,” in
Proc. 8th Large Installations Systems Administration (LISA) Conference,
1994.

[20] M. Burgess, “Cfengine: a site configuration engine,” in USENIX Com-
puting systems, Vol 8, No. 3, 1995.

[21] P. Anderson and E. Smith, “Configuration tools: Working together,” in
Proc. Large Installations Systems Administration (LISA) Conference,
Dec. 2005.

[22] N. D. et al, “A case study in configuration management tool de-
ployment,” in Proc. Large Installations Systems Administration (LISA)
Conference, Dec. 2005.

[23] “Network configuration (netconf),” http://www.ietf.org/html.charters/
netconf-charter.html.

[24] R. Enns, “NETCONF configuration protocol,” http://www.ietf.org/
internet-drafts/draft-ietf-netconf-prot-12.txt, Feb. 2006.

[25] Y. Yemini, A. Konstantinou, and D. Florissi, “NESTOR: An architecture
for network self-management and organization,” IEEE J. Select. Areas
Commun. , vol. 18, no. 5, pp. 758–766, May 2000.

[26] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in Proc. 2nd Symposium on Networked Systems
Design and Implementation (NSDI), May 2005.

[27] A. Feldmann and J. Rexford, “IP network configuration for intradomain
traffic engineering,” in IEEE Network Mag., Sep. 2001.

[28] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach to
network control and management,” SIGCOMM Comput. Commun. Rev.,
vol. 35, no. 5, pp. 41–54, 2005.

[29] H. Ballani and P. Francis, “Complexity oblivious network
management,” Cornell University, Tech. Rep., 2006. [Online]. Avail-
able: http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/
cul.cis/TR2006-2026

[30] ——, “Conman: taking the complexity out of network management,”
in INM ’06: Proc. 2006 SIGCOMM workshop on Internet network
management. New York, NY, USA: ACM, 2006, pp. 41–46.

[31] ——, “CONMan: A Step towards Network Manageability,” in Proc. of
ACM SIGCOMM, 2007.

[32] T. S. E. Ng and H. Yan, “Towards a framework for network control
composition,” in INM ’06: Proc. 2006 SIGCOMM workshop on Internet
network management. New York, NY, USA: ACM, 2006, pp. 47–51.

William Enck is a Ph.D. candidate researching
network and systems security in the Systems and
Internet Infrastructure Security Laboratory in the
Computer Science and Engineering Department at
Penn State University. William received a B.S. (with
highest distinction and honors) and M.S. in Com-
puter Science and Engineering from Penn State in
2004 and 2006, respectively. His research efforts
have included telecommunications security, specif-
ically modeling and characterizing SMS vulnerabil-
ities, systems and hardware security, and large-scale

network configuration.

Thomas Moyer is a Ph.D. candidate researching
network and systems security in the Systems and
Internet Infrastructure Laboratory in the Computer
Science and Engineering Department at Penn State
University. Thomas received a B.S. in Computer
Engineering from Penn State in 2006. His research
interests include systems security, distributed system
security, and large-scale network configuration.

ENCK et al.: CONFIGURATION MANAGEMENT AT MASSIVE SCALE: SYSTEM DESIGN AND EXPERIENCE 335

Patrick McDaniel is an Associate Professor in the
Computer Science and Engineering Department at
the Pennsylvania State University and co-director
of the Systems and Internet Infrastructure Security
Laboratory. Patrick’s research efforts centrally fo-
cus on network, telecommunications, and systems
security, language-based security, and technical and
public policy issues in digital media. Patrick was
awarded the National Science Foundation CAREER
Award and has chaired several top conferences in
security including, among others, the 2007 and 2008

IEEE Symposium on Security and Privacy and the 2005 USENIX Security
Symposium. Patrick is the editor-in-chief of the ACM Journal Transactions
on Internet Technology (TOIT), and serves as associate editor of the journals
ACM Transactions on Information and System Security and IEEE Trans-
actions on Software Engineering. Prior to pursuing his Ph.D. in 1996 at the
University of Michigan, Patrick was a software architect and program manager
in the telecommunications industry.

Subhabrata Sen (M’01) received a Bachelor of
Engineering (First Class with Honors) degree in
Computer Science (1992) from Jadavpur University,
India, and M.S. and Ph.D. degrees in Computer Sci-
ence from the University of Massachusetts, Amherst,
USA, in 1997 and 2001, respectively.

Dr. Sen is currently a Principal Member of Tech-
nical Staff in the Internet & Network Systems Re-
search Laboratory at AT&T Labs—Research, where
he has been since 2001. His research interests
include IP network management, traffic analysis,

network data mining, security and anomaly detection, peer-peer systems, and
end-to-end support for streaming multimedia. He is a member of the ACM.

Panagiotis Sebos is a freelancer working on various
diverse networking projects. His research interests
include network design problems, network man-
agement, IP/Optical integrated networks, real time
operating systems and user interfaces.

Sylke Spoerel received a Dipl.-Ing.(BA) in techni-
cal computer science from the technical academy
Stuttgart, Germany in 1989. She completed the
CCIE in 2000.

S.Spoerel is currently a Principal Member of
Technical Staff in the Edge-based VPN Service
development at AT&T LABs, where she has been
since 2001. Her development interests include IP
network management, virtual private networks and
controlled interworking of services.

Albert Greenberg is an ACM Fellow, and a Prin-
cipal Researcher at Microsoft, which he joined in
Jan 2007. At Microsoft, he is working on data
center networking, enterprise network management,
and monitoring. From 1983 to 2007, Albert worked
at AT&T Bell Labs, where he was named an
AT&T Fellow and was awarded AT&T’s Science
and Technology Medal., and where he worked on
packet and flow measurement and analysis, traffic
matrix inference, anomaly detection, configuration
management, IP/MPLS control plane monitoring,

MPLS/GMPLS control and management, IP traffic and network engineering,
IP fault management and troubleshooting, new route control architectures,
database and systems applications, network security, scheduling, wireless and
satellite networks, massively parallel computation, and parallel simulation.

Yu-Wei Sung was born in Taipei, Taiwan, in 1980.
He received the B.A.Sc. degree in computer engi-
neering from the University of Toronto, Toronto,
Ontario, in 2004, and the M.S. degree in electrical
and computer engineering from Purdue University,
West Lafayette, IN, in 2006. He currently pursues
his Ph.D. degree at Purdue University.

From May 2002 to August 2003, he was an
intern at the IBM Toronto Lab, where he worked
on database analysis and J2EE demo development.
Since summer 2006, he has worked on a system for

automated network element configuration provisioning with AT&T Research,
Florham Park, NJ. His research interests are in computer networks and
distributed systems, with a focus on overlay networks, peer-to-peer systems,
and enterprise network management.

Mr. Sung is a recipient of the University of Toronto Scholar Award and
W.S. Wilson Medal from the University of Toronto, and Estus H. and Vashti
L. Magoon Outstanding Teaching Assistant Award from Purdue University.

Sanjay G. Rao received the Bachelor’s degree in
Computer Science and Engineering from the In-
dian Institute of Technology, Madras in 1997 and
the Ph.D from the School of Computer Science,
Carnegie Mellon University in 2004.

He is an Assistant Professor in the School of
Electrical and Computer Engineering, Purdue Uni-
versity, West Lafayette, where he leads the Internet
Systems Laboratory. He was a visiting researcher in
the Network Measurement and Management group
at AT&T Research, Florham Park, New Jersey in

Summer 2006. He played a leadership role in the End System Multicast
project which pioneered live streaming using peer-to-peer systems, now a
mainstream research area and an emerging commercial sector. His research
interests are in Peer-to-Peer systems, and Network Management.

Prof. Rao has served on the Technical Program Committees of several
workshops and conferences including ACM SIGCOMM, IEEE Infocom, and
ACM CoNEXT.

William Aiello is a Professor at the University of
British Columbia which he joined as Head of the
Department of Computer Science in December of
2004. He received his B.S. in Physics from Stanford
University and his Ph.D. in Applied Mathematics
from M.I.T. in 1988. After a year post doctoral
fellowship at M.I.T. he spent 9 years at Bellcore
working in complexity theory, graph theory, par-
allel computing, routing theory and cryptography.
In 1998 he joined AT&T Labs where he stayed
for six years, the last five as Division Manager of

Cryptography and Network Security Research. While at AT&T he designed
several elements of DOCSIS and PacketCable, the cable industrys packet
protocols and Voice over IP service, respectively; he was responsible for
near- and long-term design and architecture issues for securing AT&T’s VoIP
service, and for long term research for securing IP backbone and enterprise
networks. Current research interests include graph theory, network security,
and cryptography.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

