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Abstract—In this paper, we conduct a detailed study charac-
terizing the performance of multi-tier web applications on com-
mercial cloud platforms and evaluate the potential of techniques
to improve the resilience of such applications to performance
fluctuations in the cloud. In contrast to prior works that have
studied the performance of individual cloud services or that of
compute-intensive scientific applications (e.g., map-reduce based),
our study focuses on multi-tier web applications. Our work is
conducted in the context of four real-world web applications
which we instrumented to collect the overall response time and
the time spent in each application tier, for each transaction. Our
results indicate that cloud applications undergo frequent periods
of poor performance that typically (i) are short-lived lasting a
few minutes; and (ii) may be attributed to a small subset of
application components, though different subsets may be involved
at different times. While geo-distributing applications can help
mitigate performance variability, coarse-grained approaches that
merely choose the best performing data-center (DC) provide only
modest benefits. More significant benefits could accrue, however,
if combination of cloud services located across multiple data-
centers (DCs) are chosen to serve each request.

Index Terms—Cloud Computing, Interactive Multi-tier Appli-
cations, Monitoring Framework, Performance Variability, Request
Redirection

I. Introduction

Cloud computing promises to reduce the cost of IT organi-

zations by allowing them to purchase just as much compute

and storage resources as needed, only when needed, and

through lower capital and operational expense stemming from

its economies of scale. Moving to the cloud is particularly

attractive for applications given the potential for better scala-

bility, resilience and disaster recovery.
While the advantages of cloud computing is triggering

much interest among developers and IT managers, a key

issue is meeting the stringent Service-level Agreement (SLA)

requirements on response times for multi-tier web applications

(e.g., customer-facing web applications, enterprise applica-

tions). Application latencies directly impact business revenue;

e.g., Amazon found every 100ms of latency costs them 1%

in sales [1]. Further, the SLAs typically require the 90th

(and higher) percentile latencies to meet desired targets [2].

Given the shared multi-tenant nature of commercial cloud

platforms, it is unclear whether such stringent SLA targets

can be ensured.
In this paper, we present one of the first performance

characterizations of multi-tier web applications on commercial
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Fig. 1. Data flow of a multi-tiered Enterprise Resource Planning
(ERP) application in a large university with thousands of users. FE,
BL and BE denote the user-facing front-end, business-logic and back-
end components, respectively.

cloud platforms. While researchers have studied the perfor-

mance variability in cloud platforms, these works have either

focused on individual cloud services (e.g., [3], [4]) or on high

performance computing applications which primarily require

minimizing completion time (e.g., [5], [6]). In contrast, our

work focuses on user-facing and interactive web applications

– an important class of applications that has received relatively

little attention.

Multi-tier applications typically have a large number of

components with complex interaction patterns and multiple

servers per component (Fig.1). We characterize the perfor-

mance of such applications by measuring overall application

response time and its constituent component processing times,

and inter-component communication latencies. Breaking re-

sponse time down into individual constituent delays is critical

to better understand and diagnose application performance. We

present a systematic methodology for instrumenting and moni-

toring multi-tiered applications at the granularity of individual

requests. Our monitoring framework is designed such that it is

online, easy to use with any cloud application and has minimal

impact on the performance.

Using our framework, we characterize the performance of

four different applications including two enterprise applica-

tions (StockTrader and DayTrader) that use conventional SQL

databases, a social application (Twissandra) which uses a non-

relational distributed database called Cassandra [7] and a

data-intensive web application (Thumbnail). We evaluate the

performance of these applications on two prominent cloud

providers (Microsoft Azure and Amazon AWS) using realistic

benchmarks over a two-day period.

Our results not only confirm that the high performance vari-

ability in the cloud is a key challenge in meeting application978-1-4673-6762-2/15/$31.00 c© 2015 IEEE



Fig. 2. Monitoring framework architecture for multi-tier applications.
For simplicity we show two application components, FE1 and BL1.

SLAs, but also shed new light on the characteristics of bad

performance periods. Almost 90% of the bad performance

periods observed were short-term, lasting for less than 4

minutes and half of these episodes occurred within 4-9 minutes

of each other. Interestingly, poor performance could typically

be attributed to a small subset of application components, with

different subsets being responsible at different times.

We next measure the performance of the applications si-

multaneously across two DCs and analyze the feasibility

of mitigating performance variability by leveraging the geo-

distributed nature of cloud applications. While the perfor-

mance of component replicas across two DCs is uncorrelated

as expected, surprisingly, we find that picking the best DC to

serve each request in a coarse fashion provides only modest

benefits. Our study indicates that much higher reductions in

latency could accrue if a combination of component replicas

(possibly located across multiple DCs) could be chosen to

serve each request. E.g., for Thumbnail, choosing the best DC

only reduces 95%ile (99%ile) latencies by 3.52% (6.82%).

However, choosing the best combination of replicas reduces

the 95%ile (99%ile) latencies by 13.37% (20.42%).

II. Measuring Application Performance

In measuring the performance of multi-tier applications,

there are three main aspects to be considered. First, the

measurements should be done at the granularity of individual

application requests. While VM level performance counters

(e.g., CPU usage) might be good indicators, it is non-trivial to

translate such metrics into application performance. Second,

it should be possible to isolate and attribute the performance

of multi-tiered applications to its individual components to

facilitate better diagnosis. Finally, the instrumentation frame-

work should be easy to integrate with the application, impose

minimal overhead and propagate the measurements as quickly

as possible for analysis.

Black-box schemes for measuring performance (e.g., [8],

[9]) are application agnostic, but employ statistical infer-

ence techniques which do not provide accurate measurements

at the granularity of individual requests and components.

Annotation-based schemes (e.g., Dapper [10], X-Trace [11])

tag every request with a global identifier for tracing its path

in the application and thus provide accurate measurements

at the required granularity. Dapper is tightly coupled with

Google’s RPC infrastructure. While X-Trace is more generally

applicable, integrating it with multi-tiered applications is a

manual and time consuming process. We leverage X-Trace

but automate a large part of the integration effort using

Aspect Oriented Programming (AOP) [12]– a technique for

modularizing cross-cutting concerns in applications. The X-

Trace code that has to be integrated with all function end-

points in the application is separated into stand-alone modules

– aspects. Using aspects to modularize code reduces the

integration effort significantly. For instance, the Source Lines

Of Code (SLOC) for instrumenting the DayTrader application

is reduced from 1471 (without using aspects) to 366 (using

aspects) which is almost a 75% reduction in SLOC.

Fig. 2 shows the architecture of our monitoring framework.

The instrumented application ships the measurement logs to

a logging server (a process in the same compute instance) in

order to minimize application overhead. The logging server

in turn asynchronously moves the logs to a cloud storage.

We use a cache service to store logs (Amazon ElastiCache,

Azure Cache) since it is much faster than object stores (S3,

Blobs), and data loss can be tolerated. The Collection Server

(which performs the latency computations) is notified about

the availability of measurement logs through a Queue Service

(Amazon SQS, Azure Queues). Our framework has a small

overhead on application latency; for e.g., the median response

time of DayTrader shows an increase of only 10 milliseconds.

III. Applications and Test-bed Deployments

We choose four applications with different characteristics

for our measurement study. These applications differ in their

architecture, technology, components and interaction pattern

between the components. Thumbnail [13] is a data-intensive

web application for generating picture thumbnails. Stock-

Trader [14] and DayTrader [15] are used for stock trading

and represent widely used benchmark enterprise applications.

Twissandra [16] is a social application which uses a distributed

database system called Cassandra [7].

We deployed the applications on Microsoft Azure and Ama-

zon AWS clouds. Thumbnail and StockTrader are .Net based

applications and were naturally suited for deployment on Mi-

crosoft Azure, while Twissandra and DayTrader were deployed

on Amazon AWS. We ran each application simultaneously in

two separate DCs, both located in the U.S. The users were

located in a campus network, also in the U.S. User requests

were issued to both DCs simultaneously using the Grinder

load testing framework [17], [18]. Our measurement study was

conducted by load-testing each application continuously for a

period of 48 hours.

The workload for Thumbnail consists of fixed size 1.4 MB

images. The workloads for StockTrader and DayTrader were

obtained from the associated DaCapo benchmarks [19]. The

workload consists of several user sessions, each involving

a series of transactions like login, view home page, view

quote(s), buy/sell quotes, etc. For Twissandra, we made use

of the Twitter Streaming API [20] to obtain a real data stream

(Spritzer stream) to drive our experiments. We provision

applications to handle the workloads by performing compre-



(a) Thumbnail (b) StockTrader (c) DayTrader (d) Twissandra

Fig. 3. Application architecture and data flow for the four applications. All applications have a front-end (FE), business logic server (BL/BS)
and a back-end (BE). The BE is a Blob in (a), SQL databases in (b) and (c) and a Cassandra cluster in (d). In (b), the Order Service (OS)
handles buy/sell operations, while the Config Service (CS) binds the various components together. In (d), the BS is coupled with the FE and
hosted on the same server.
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(c) Twissandra
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Fig. 4. CDF of server response time for all applications, dissected by transaction types.

hensive stress tests with the same deployment configuration

and workloads used in our experiments.

IV. Characterizing Application Performance

In this section, we measure the performance of multi-tier

applications in the cloud and characterize periods of poor

performance.

A. Decomposing application delays

Overall performance: Fig. 4 shows a CDF of the performance

of all applications separated by different transaction types for

the experiment described in §III. Since our focus is on cloud

performance, we exclude Internet delays incurred between

the user and the front-end servers of the applications. We

refer to this delay as server response time. The figure shows

that there is significant variation in server response time

across all applications and transaction types. For example, the

coefficient of variation ( standard deviation

mean
ratio) for Thumbnail

and DayTrader [Login] is about 6 and 2, while the ratio of

99.9%ile to median is about 232 and 44 respectively.

Dissecting server response time: Fig. 5 dissects server re-

sponse time into its constituent elements (component process-

ing times and inter-component communication latencies). It

shows that while some elements show more variation than

others (e.g., FE-CS, DB in StockTrader), in general there is

variability in all elements.

To identify the set of elements that are responsible for poor

performance, we split the experiment data into 30 second

time-windows. We consider server response time (constituent

element) to be high during a window if its average during

that window exceeds the 95%ile of server response time

(constituent element) measured across the entire experiment.

Fig. 6 shows the percentage of times each combination of

elements was high when server response time was high. It

can be observed that at any given time, only a subset of ele-

ments contribute to poor performance. Further, while in some

applications, certain elements contribute to poor performance

more frequently (e.g., DB in twissandra), in general, different

subsets of elements affect the performance at different times

across all applications.

Correlations across elements: Fig. 7 shows the correlation

coefficients across all pairs of elements, for StockTrader. In



(a) Home transactions (b) Quote transactions (c) Post transactions

Fig. 5. Boxplots showing server response time and its constituent elements (processing and communication delays) for 3 transaction types
for StockTrader. The bottom (top) of each box represent the 25%ile (75%ile), and the line in the middle represents the median. The whiskers
extend to the highest datum within 3*IQR (inter-quartile range) of the upper quartile and points larger than this value are considered outliers.

(a) Thumbnail (b) StockTrader (c) DayTrader (d) Twissandra

Fig. 6. Percentage of combination of elements (i.e., processing and communication delays) that were high simultaneously when the server
response time was high.

Fig. 7. Correlations across various elements of StockTrader. Values
range between -1 (strongly anti-correlated) and +1 (strongly corre-
lated).

general, there is little correlation in performance across ele-

ments. In cases where there is some correlation, we found that

the degradation in the performance of a downstream element

in the application graph affected the upstream elements (e.g.,

degradation of BS-CS affected FE-BS in StockTrader). Similar

trends were also observed for other applications.

B. Characterizing episodes of bad performance

We characterize periods of bad performance seen by the

applications and investigate their duration and frequency. We

begin by identifying Bad Performance Episodes (BPEs), where

server response time is persistently high (as defined in §IV-A).

However, since a period of high server response time may

be interrupted by occasional non-high time-windows, a BPE

is identified by marking groups of consecutive time-windows

where atleast 70% of them have a high server response time.

Duration and frequency: Fig. 8(a) shows a CDF of durations

of BPE for all applications. The figure shows that most of

the performance problems that affect applications in the cloud

are short-lived (90% of BPE’s last for less than 4 minutes).

Fig. 8(b) shows a CDF of the inter-BPE time, measured as the

time between the end of a BPE and the start of a new one. The

figure shows that performance problems happen frequently

within short intervals (half of the BPE’s occur within 4-9

minutes of each other, and that the 90th percentile has a

value of about 45 minutes or less). These results indicate that

dynamic scaling based on addition of new server instances is

inadequate since bringing up new server instances can take

tens of minutes in commercial clouds.
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Fig. 8. BPE duration and frequency.

Analyzing persistence: We use auto-correlation to analyze

persistence– i.e., the tendency for server response time to

remain in the same state from one time-window to the next. We

use average server response time for every 30 second window

to build the uni variate time-series used for auto-correlation.
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Fig. 9. ACF plots for server response time for all applications with max time lags of 500.

Fig. 10. Thumbnail deployment across DCA (U.S. North Central)
and DCB (South Central). Nodes represent component replicas and
lines represent communications between them. Solid (dotted) lines
represent communications within (across) DC(s). There are 8 possible
combination of replicas that can serve a request. A combination
denotes the location of the FE, BE and BL component replicas,
respectively (e.g., ABA indicates requests served by FEA, BEB and
BLA replicas, respectively).

We consider a 95% confidence bound (up to 5 lag values)

for the analysis. In Fig. 9, we show the auto-correlation

function (ACF) at varying time lags for all the applications.

The figure shows that the average server response time has

significant dependence with adjacent time-windows (and is

thus predictable) for an interval of 1 − 10 minutes (2 − 20

lag values) but becomes highly uncorrelated after that.

V. Exploiting Geo-distribution to Mitigate Per-

formance Variability

In this section, we discuss new opportunities for tack-

ling performance variability by leveraging the geo-distributed

nature of cloud applications. Our insights are based on si-

multaneously measuring the performance of each application

across two DCs. We observed that across all applications, the

correlation coefficient for each element of server response

time across the two DCs is low. E.g., for StockTrader, the

correlation coefficients are 0.04 for server response time and

0.27, −0.01, −0.02 and 0.01 for the FE, BS, OS and DB

processing delays respectively.

We now explore opportunities to exploit this lack of corre-

lation to achieve better performance. Specifically, we consider

two schemes:

1) Best DC selects the DC with better average server response

time for each time-window. Each request is served entirely by

a single DC. This is representative of coarse-grained schemes

that load-balance application traffic across entire DCs as a

whole (e.g., Akamai [21]).

2) Best combination selects the combination of replicas that

achieves the best performance for each time-window. Note that

replicas can be located in different DCs (Fig. 10). Choosing
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Fig. 11. Exploiting geo-distribution to mitigate performance variabil-
ity in Thumbnail.

replicas across different DCs is feasible since cloud applica-

tions are often built with loosely-coupled components [22].

To evaluate these schemes, we deploy the Thumbnail appli-

cation in 2 DCs (Fig. 10). Requests along each combination of

replicas were sent with equal probability. Fig. 11(a) shows a

box-plot of server response time for all possible combination.

Surprisingly, the delays of combination that cross DCs overlap

significantly with combination restricted to one DC. E.g., the

median server response time for AAA and BBB are 832 and

792 msec, respectively. Interestingly, both ABB and BAA have

lower values of 724 and 735 msec, respectively.

To further analyze the potential of these schemes, in

Fig. 11(b) we plot a CDF of average server response time,

for each strategy. For reference, we also include the average

server response time for the AAA and BBB combination.

The Best DC scheme (best of AAA and BBB) reduces the

95%ile server response time by 3.52% over a scheme that

always sticks to one DC. Best combination, on the other



hand, reduces it by 13.4%. Moreover, the improvements are

even more pronounced for the 99%ile server response time.

While Best DC scheme improves the performance by about

6.8%, Best combination achieves a 20.4% improvement. This

shows that simply picking the best DC to serve requests does

not produce the best performance. Instead, choosing the best

combination of replicas across multiple DCs has the potential

to achieve better performance.

VI. Related Work

CloudCmp [4] provides a systematic comparison of the

performance and cost of storage, computing and networking

services across different cloud providers. It aims to guide

customers in selecting the best-performing provider for their

applications. [3] characterizes the impact of virtualization on

the networking performance of Amazon EC2. [23] develops

micro-benchmarks of EC2 and introduces corresponding levels

of background load in a laboratory-based cloud to measure the

impact on latency of multimedia applications. Measurement

studies like [6], [24] focus on the applicability of cloud

computing for Many-Task Computing workloads used by the

scientific computing community. Works like [5], [25] study the

performance of map-reduce or High Performance Computing

applications with task completion time as their primary metric.

YCSB [26] provides a framework that facilitates performance

comparisons of the new generation of cloud data serving

systems like BigTable, Cassandra, Azure, SimpleDB, etc. Our

work is distinguished from all these works in that our focus

is on (i) measuring performance of applications in live cloud

settings rather than individual cloud services; and (ii) studying

multi-tier web applications rather than scientific computing ap-

plications. Further, we investigate ways to mitigate variability

in the performance of geo-distributed cloud applications.

VII. Summary and Conclusions

In this paper, we have presented one of the first perfor-

mance characterizations of interactive multi-tier applications

deployed on commercial cloud platforms. Our results show

that periods of poor application performance are (i) short-

lived (90% lasting for less than 4 minutes); (ii) frequent (half

of such periods occurring within 4-9 minutes of each other);

and (iii) typically involve only a small subset of application

components (though different subsets could be involved at

different times). Our results also show that coarse-grained

approaches that merely load-balance application traffic across

entire DCs have limited benefits. In our experiments, while

the 99%ile server response time could be reduced by 6.8% for

Thumbnail, more significant benefits of up to 20% reduction

could be achieved if different combination of cloud replicas

located across multiple DCs are chosen to serve requests. In

[27], we have presented an initial design of such a scheme that

dynamically splits requests for each application component

among its replicas in different DCs. The scheme addresses sev-

eral practical issues including determining the right time-scale

for adaptation, ensuring the system is responsive yet stable,

estimating the performance of various possible combination

while keeping overheads low, and ensuring the capacities of

various component replicas are not exceeded.
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