Composing Middlebox
and Traffic Engineering
Policies iIn SDNs

Yiyang Chang*, Gustavo PetriT, Sanjay Rao*, and Tiark Rompf*
*Purdue University, LIAFA — Université Paris Diderot

IEEE INFOCOM SWFAN 2017

Votivation

* Middlebox deployment is common in enterprise
and ISP networks

* Both capital cost and management cost are huge

* Different IT teams manage different classes of
middleboxes

* How to integrate different requirements?

Composition is Non-trivial

« Alice manages routing module

» Implements a shortest-path Shortegt—path
algorithm routing

* Bob manages IDS module Alice \

| How to integrate”
* Enforces a policy that all

>

All traffic traverse
an |DS

traffic should traverse an IDS /

e Could these modules be easily
composed without Alice and
Bob being explicitly aware of
their respective
implementations?

Why Is Existing Solution Not
Sufficient?

e Pyretic first computes paths in Shortest path x

a general purpose language,
and composition is done after >
generating the paths

e But, things can easily go 5
wrong!

e Composition should be done
prior to generating packet-
forwarding policies

Our Solution

* We Investigate an approach where compositionality
IS supported prior to the generation of packet
forwarding policies

* Each application is written as a logic program, and
porovides a set of requirements that must be
respected by a synthesized solution

* A constraint solving engine iterates over these
requirements to search the solution space and find
a solution respecting all the requirements.

5

From Reqguirements to Rules

Requirements

(a) (b)

Source Code Source to SMT translation | SMT Input
Yol
O\\)\\O
N>
() (d)
SMT Model |_Packet-Forwarding Policy PaCke_t'FWd
Generation Policy

OpenFlow Rules

Composing Reguirements -
Revisit the Example

* Alice: Route from h, to hy

+ route(hg, hp, X) Shortest path

* Possible solution: X = [s1, S, S5,
but fails to enforce IDS.

-

« Bob: All routes go through IDS = 5=
Na

- hasIDS([s3 | X]).
hasIDS([S | X]) :- hasIDS(X).
routelDS(h,, hp, X) :-
route(h,, hp, X), hasIiDS(X).

* X =[s4, S3, S4, Ss]

Translating Requirements to
Constraints

* Naive composition may not
work!

e Classic shortest-path
formulation (logic form)

* x;;=11iflink </, /> isin the
path

(35 339_.12) A (33 xi,d)
V’?,], L g A (J 7£ d) = Elk’ L,k
\VI7>?~ mi,;j A (7 # S) = 3/6’, L,

* Solution contains a
disconnected loop!
* Add middlebox (node w) * We need a formulation
constraints supporting composition
3.7: mw,j

* Minimize the sum of all x;;

Walk-based Shortest Path
Formulation

* Walk-based shortest path
formulation: Find a valid walk
from a source node s to
destination node d.

| o (]
» Walk formulation explicitly = 5«
orevents the disconnected ha = — hp

loop

* Now safe for composition
with middlebox requirements

Walk-based Shortest Path
Formulation

Source node s is scheduled first.

/ If node /s visited in step k, and jis visited
Ts1 N b in step k + 1, an edge must exist between

’ nodes jand |
Vi, k, Tip NTjr1 = €5 ; _— J

VE, tp A tg1 = Tak »| The last node of the walk is destination
Vi, g, ki # = —zik V Lk node d. The walk has exactly k steps.
.7, k.1 T;, Tjdk ~_
Vi, Ky Ty = tr At most one node is visited in step k.
Vk‘a ity = —’tk+]
3k, Zae A k1 If node iis visited in step k, the walk has at

least k steps.

The destination node d exists in the path
and eliminates trivial solutions.

10

Safely Composing
Middlebox Requirements

* Translation of hasIDS()

3K, Ty k The node w must be traversed.

dk,w € W, z,, . |One of multiple IDS nodes in set Wis traversed.

:]kls k?sx’wl,kl A Lwg, ks A (kl < k2)

Node w1 must be traversed prior to weo.

11

More Composition Scenarios

* Bounding link utilization
* Multi-path routing

e Soft requirements to aid conflict resolution

12

Preliminary Results

* Path computation
e Shortest-path
» Shortest-path traversing a middlebox

* Implemented the walk-based formulation in
Microsoft Z3 SMT solver (Python API)

* Evaluated with K-ary fat-tree topologies

13

Running time

* Running time of finding the # of nodes Shortest- 1-middiebox

path (sec) (sec)

shortest path, and the shortest
path traversing one middlebox
on different K-ary fat-trees

0.3298

0.08526

80 2,226 11.94
* The performance is acceptable
for moderate-sized topologies. 180 40.67 262.6
* Offline phase of traffic 320 285.3 725.2
engineering
500 2037 3978

 Much room for performance
improvement

14

Future Work

e Generality
e Application beyond traffic engineering
e Performance
« We demonstrated our framework with an SMT solver. It is interesting to
explore the performance trade-offs with alternative solving engines,
such as |ILP solvers
e Source language

e Current input language has a Prolog-like syntax

* In the future we may consider a source level syntax more amenable to
network operators such as a user defined syntax for relational operators.

15

Conclusions

* |n this paper, we have explored how middlebox
requirements may be incorporated In traffic
engineering and SDN applications in a
compositional mannetr.

* We have argued that doing so requires
composition prior to the generation of packet-
forwarding policies, in contrast to current
approaches that perform composition after packet-
forwarding policies are generated.

16

Thanks!
Questions?

