
RelSamp: Preserving Application Structure in
Sampled Flow Measurements

Myungjin Lee, Mohammad Hajjat, Ramana Rao Kompella, and Sanjay Rao

Purdue University

Abstract—The Internet has significantly evolved in the number
and variety of applications. Network operators need mechanisms
to constantly monitor and study these applications. Given modern
applications routinely consist of several flows, potentially to many
different destinations, existing measurement approaches such
as Sampled NetFlow sample only a few flows per application
session. To address this issue, in this paper, we introduce RelSamp
architecture that implements the notion of related sampling where
flows that are part of the same application session are given
higher probability. In our evaluation using real traces, we show
that RelSamp achieves 5-10x more flows per application session
compared to Sampled NetFlow for the same effective number of
sampled packets. We also show that behavioral and statistical
classification approaches such as BLINC, SVM and C4.5 achieve
up to 50% better classification accuracy compared to Sampled
NetFlow, while not breaking existing management tasks such as
volume estimation.

I. INTRODUCTION

The tremendous success of the Internet, and the fertile

ground for innovation that it provides has spawned a diverse

range of applications, with new applications continually and

rapidly emerging and gaining in prominence. The last decade

alone has seen rapid growth in popularity of peer-to-peer

(p2p) systems (e.g., BitTorrent), online social networks (e.g.,

Facebook), online gaming applications (e.g., World of War-

craft), and so on. While Internet traffic was predominantly

dominated by the Web in the 1990’s, p2p traffic accounted for

over 60% of traffic around 2005, and more recently, video-

based applications such as YouTube are gaining in popularity.

Concurrent with the growth of new applications and changes

in popularity across applications, we are continually seeing

shifts in characteristics and communication patterns of existing

applications. The emergence of new applications, and their

rapidly changing characteristics require network operators to

continuously measure and monitor traffic characteristics in

their networks. These measurements allow operators to, for

instance, potentially re-provision their networks, detect any

new types of undesirable behavior within applications, and

in general, prepare their networks better against any major

application trends.
Now, consider a router at the edge of a large-scale campus

network or an enterprise network—typically referred to as a

gateway—where a network operator is interested in collect-

ing measurements. Typical enterprise gateway routers today

operate at 1-10 Gbps capacity and these line rates are poised

to increase further as technology scales. To monitor traffic at

these high rates, one could potentially use a high-speed packet

capture card (e.g., DAG cards made by Endace [1]). There are

two problems however: First, these capture cards tend to be

quite costly—a 10Gbps capture card alone costs around $20-

30K. Second, the volume of data one needs to collect is huge (a

1 TeraByte disk will be filled up in approximately 2 minutes).

Thus, most network operators prefer to collect flow records

provided by NetFlow supported by many modern routers.

Because collecting all flow records is also quite difficult,

operators use Sampled NetFlow which essentially computes

flow records on a sampled stream of packets. (At 10 Gbps, a

1-in-1024 sampling rate is typically used.)

Unfortunately, Sampled NetFlow fails to preserve applica-

tion structure that makes it ill-suited to monitor the new range

of applications evolving in the Internet today. In particular,

many emerging Internet applications (e.g., p2p or cloud-based

services) are routinely composed of many different flows to

potentially different servers/hosts that are often geographically

distributed. With random packet sampling, only a small subset

of flows, if any, are sampled for an application session. The

impact of this effect is two fold: First, application structure

becomes distorted in the sampled data. For example, assume

we are interested in the size of p2p applications in terms of

their network footprint (number of servers contacted, number

of flows, etc.). Reconstructing the application characteristics

from Sampled NetFlow records is clearly hard. Second, ap-

plication classification from sampled data becomes harder.

Several researchers have already pointed out the inadequacies

of simple port-based classification for emerging applications

such as p2p [2], [3], [4]. Several alternate approaches based

on statistical techniques, or host behavioral patterns have

emerged [3], [5], [6], [4], [7], but most of this work has

dealt with flow records computed from unsampled data. Since

these techniques may rely on traffic features across flows

(e.g., BLINC [4] matches the communication behavior in flow

records with specific graphlets), and sampling distorts flow

correlations, application classification becomes harder with

sampled flow records.

Motivated by these limitations of random packet sampling,

in this paper, we propose the notion of related sampling based

on the following key idea: Once a flow is sampled, all flows

that are part of the same application session, are sampled with

high probability. If we set this higher sampling probability

to 1, then all flows part of the application session will be

sampled. The downside is that all the available processing

and memory budget will be devoted to a smaller number of

application sessions. One could therefore consider choosing to

sample these related flows with a more modest 10% or 20%

probability. This will have the effect of sampling more number

of application sessions with slightly less fidelity (compared to

the 100% case) representing a trade-off between number of

application sessions and measurement fidelity.

In this paper, we propose an architecture called RelSamp to

explore the potential of related sampling. Ideally, flows corre-

sponding to the same application session must be identified as

related. However, since determining this is hard, RelSamp con-

siders all flows that contain the same source IP address created

within a given amount of time from each other as related. This

heuristic is motivated from a measurement study on a 13-hour

campus trace. The RelSamp architecture incorporates related

sampling with the help of three stages of sampling. First, we

use a host selection probability that controls which host gets

selected for subsequent packet selection. Once a host gets

selected, packets are subject to a flow-selection probability

that governs the probability with which a flow that contains

the host as the source IP address is created. Finally, the last

stage of packet sampling dictates the rate at which flow records

are updated. Thus, RelSamp biases packet and flow selection

in favor of hosts that are already admitted.

Thus, the paper has the following main contributions:

First, we introduce related sampling that allows flows

that are part of the same application session to be sampled

with higher probability. Our architecture allows selecting a

large majority of flows from a given application session thus

allowing scalable monitoring and characterization of new and

emerging Internet applications. Second, using real traces, we

extensively evaluate the efficacy of RelSamp. In our results, we

observe that RelSamp is capable of obtaining 5-10x more flows

per application session compared to Sampled NetFlow and

flow sampling. We also show that the classification accuracy

of BLINC, SVM and C4.5 increases by up to 50% when

RelSamp is used instead of Sampled NetFlow.

II. UNDERSTANDING RELATEDNESS OF FLOWS

In this section, we first use a measurement study based on

real packet traces to understand how to capture the notion of

relatedness of flows. We then use this understanding to propose

our RelSamp architecture in the next section.

A. Capturing relatedness of flows

Typical measurement solutions operate at the granularity of

a flow consisting of the 5-tuple (source and destination IP

addresses, source and destination ports, and the protocol field).

However, application sessions typically involve many flows,

potentially to many different destinations. A Web application

session, for instance, consists of the set of flows a host

originates in order to download Web objects from different

Web servers. Thus, the fundamental unit of measurement in

our framework is an application session, defined as the set of

flows that correspond to a given application that originate at

a given host to one or many other hosts from a certain time

(t) with the maximum packet inter-arrival time (τ).

Figure 1 pictorially represents application sessions each of

which is depicted as an oval. For example, App1session1 and

idle >= τ

idle >= τ

App2Session1

HAP−2HAP−1

App1Session2App1Session1

App1

App2

HAP−3

App2Session2

Time

Fig. 1. HAPs vs application sessions. The ovals represent flows within a
given application session. The rectangles represent flows within a HAP.

App1session2 represent two sessions of the same application.

The x−axis shows the time and each arrow represents a flow

of a certain application type, originating from the same host.

While application sessions provide a useful conceptual

framework, it is difficult for routers in the middle of a network

to identify flows belonging to the same application session. In

recent years, it is no longer feasible to use port numbers to

represent applications directly, as many applications routinely

use non-standard ports [2], [3], [4]. Deep packet inspection

could be used to identify and detect applications, however such

techniques are too computationally expensive to be performed

in an online fashion at routers on high-speed links. While

researchers are beginning to look at online classification by,

for example, observing a few packets of a TCP session [6],

this research is still in its early stages.

In order to deal with the scalability issues posed by online

application classification in routers, we propose the notion

of a host activity period (HAP), defined as the set of flows

that originate at a host to one or more destinations from a

certain time (t) with the maximum packet inter-arrival time

(τ) regardless of their application class.

We observe that if a host runs exactly one application, then

the corresponding application session and HAP are identical

(assuming both definitions use the same threshold value τ). All

bursts of flows temporally close to each other originating from

the same host are put together in the same HAP. Thus, from

Figure 1, HAP-1 (a HAP is represented by a dashed rectan-

gle) encompasses two application sessions, App1session1 and

App2session1, while HAP-2 and HAP-3 share a one-to-one

correspondence with the actual application sessions.

B. HAPs vs application sessions

We now explore the relationship between HAPs and applica-

tion sessions using an empirical measurement study. Our study

is conducted using a 13-hour packet trace collected within a

campus network. The trace contains full payload data, which

enables us to identify the applications correctly using deep-

packet inspection techniques. We use a τ value of 30 seconds

for both the application session as well as HAP definitions

for this study. Small values of τ could result in splitting

application sessions (or HAPs) in too fine-grained fashion,

while large values could cause flows from many applications

to be present in the same HAP. We have varied τ between 3

and 600 seconds, and found 30 to be a reasonable choice. We

summarize our key findings (the graphs are shown in Figure 2):

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

H
A

P
 f
ra

c
ti
o
n
 (

to
ta

l
H

A
P

s
=

 2
2
2
5
2
)

of flows per HAP (log-scale)

(a) Number of flows per HAP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

H
A

P
 f
ra

c
ti
o
n
 (

to
ta

l
H

A
P

s
 =

 2
2
2
5
2
)

of distinct apps per HAP

(b) Number of applications per HAP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80 90 100

H
A

P
 f
ra

c
ti
o
n

HAP accuracy

All HAPs (total=22252)
HAPs with 2 or more apps (total=10512)

(c) Accuracy

Fig. 2. Number of flows and applications per HAP.

HAPs can have a large number of flows: We analyze the

distribution of number of flows that constitute a HAP in

Figure 2(a). We focus on only the set of HAPs that have

at least two flows. Out of these, 22% of HAPs consist of

exactly two flows. Out of the remaining ones, more than 50%

of them have at least 10 flows. About 15% of HAPs consisted

of greater than 100 flows indicating that host activity can be

quite intensive.

Most HAPs have a small number of applications: We observe

in Figure 2(b) that a majority of HAPs consist of a very small

number of applications, with almost 50% and 85% of HAPs

consisting of only one and two applications, respectively.

For HAPs with more than one application, there typically

exists one dominant application: We define the accuracy of a

HAP as the percentage of flows that belong to the application

that has the most flows in the HAP. Among those HAPs which

have more than one application, we observed that more than

80% of the HAPs have an accuracy of greater than 70%.

Implications for RelSamp design: Our results based on

this measurement study indicate that the notion of HAPs

approximates the application sessions. Further, given that

HAPs (application sessions) can have a large number of flows,

the results indicate the importance of capturing related flows to

get representative characterizations of applications. Note that

the existence of a few instances when a HAP may contain

multiple application sessions, does not pose explicit problems

in our measurement framework. This is since, we can post-

process the collected flow records within a HAP by applying

classification approaches such as BLINC [4] to split a HAP

into multiple application sessions. The efficacy of BLINC,

however, depends on how well we capture (most of) the

application sessions, which we address with RelSamp next.

III. ARCHITECTURE OF RELSAMP

A. Design

The key idea of RelSamp is to create flow records by

sampling flows that are related to already sampled flows

with higher probability so that more flows within a HAP

are collected. This small bias, as we shall show later in our

evaluation, is remarkably effective at collecting many more

number of flows per application than with Sampled NetFlow,

thus facilitating better application classification as well as con-

tinuous and ubiquitous characterization of application traffic.

Flow

Memory

Update
a flow
record

Create
a flow
record

Flow−level

bias stage

Packet−level

bias stage

Host−level

bias stage

Packet
stream

ph

pp

fp

Fig. 3. Architecture of RelSamp.

The basic design of RelSamp is shown in Figure 3, and is

very similar to NetFlow in terms of the flow memory and the

flow record structure. It mainly differs from Sampled NetFlow

in its sampling mechanism. Conceptually, RelSamp consists

of three stages of sampling—host selection, flow creation and

flow update. The purpose of the host selection stage is to select

a HAP for measurement. Once a HAP is probabilistically

selected, the flow selection stage determines what percentage

of the flows within the HAP to observe. Flows for which

records exist are then updated periodically with a flow update

probability. The accuracy of flow statistics for each created

record is governed by the flow update probability. These three

stages together control the total number of sampled packets

affecting the CPU utilization, and the number of records

created affecting the memory utilization. We now describe the

individual stages in more detail.

Host sampling. There are many different architectural

options for sampling HAPs. One option is to maintain some

amount of state for active HAPs with a hash-table (call it

HAP table). If the source IP address of a packet is not already

contained in the HAP table, then the host could be sampled

with some probability, ph, and an entry could be created in the

HAP table. The advantage is that only HAPs with sufficient

volume will be sampled. Unfortunately, the above option has

two problems. First, it has to maintain extra state to create and

expire HAP table entries, that may be complicated. Second,

some number of packets would be missed before flow records

are created, that need to be accounted for. These packets may

belong to several flows, and it is not clear how to create

unbiased estimators for flow records.

Instead, in RelSamp, we sample HAPs using a hash-based

selection on IP addresses similar to flow-sampling in [8]. In

other words, we focus only on a subset of source IP addresses

that are selected by hashing these source IP addresses and

checking whether the hash lies within a pre-configured range.

By controlling the hash range to the total hash space, we

can control the host sampling rate. Because hosts are either

selected on the first packet or not at all, no packets are missed

before a host is selected at the flow-level. Thus, unbiased

estimators are easy to create in this framework, as we shall

describe in Section III-B. Further, it does not require any

additional HAP table state for maintaining HAP entries. HAPs

could be easily constructed by post-processing the sampled

flow records that contain the start and end timestamps anyway

(by checking whether the flows are separated by more than

τ). A potential concern with hash-based selection is that,

only certain hosts will be selected, while others may not be

sampled at all. We can easily solve this by changing the

hash function periodically. Alternately, we can choose higher

sampling probabilities for ph to minimize its impact.

Flow creation. Once a particular host is selected based on

the hash-based host selection, the packet is handed to the next

stage where a flow is created for the packet, if it does not exist

already, with a probability pf . This stage presents network

operators with the flexibility to choose what percentage of

flows for a given host are selected. At this stage, again one

can choose either hash-based or packet-based selection. Packet

based selection creates flow records for heavy-hitter flows,

while hash-based selection will create flow records for all

types of flows. We pick packet-based selection since volume

estimates are more accurate.

Flow update. The final stage in our RelSamp architecture

is the flow update stage. Packets for flows that are already

existing in the flow cache are updated with probability pp. This

gives an operator additional flexibility to specify the accuracy

with which individual flow records are updated. In Sampled

NetFlow, the flow creation and the flow update probabilities,

pf and pp are equal to the configured sampling probability.

The reason we split this base probability into two parts is

to provide network operators the ability to trade-off accuracy

of each flow with more number of flows per host. Thus, for

a given effective sampling rate pe (that dictates how many

effective packets are sampled), we can choose to provide a

higher pf that allows creating more number of flows, each of

which is updated with a lower sampling probability pp.

For the purposes of increasing related application flows,

which is the main goal of our architecture, we need to increase

the number of flows that share common source IP address

(by setting pf to be high). Of course, we still need to ensure

that the total number of packets lies within a given packet

sampling budget, pe, which naturally requires configuring the

value of either pp or ph to be small. The effect of reducing pp
is that individual flow statistics may suffer from higher errors.

The effect of reducing ph is that aggregate volume estimates

become more inaccurate, as scaling the volumes from the

observed hosts to the actual hosts becomes skewed as number

of hosts decreases. Thus, there is a natural trade-off among

these three variables, that need to be configured depending on

the objectives and the particular location at which sampling

is being performed. We evaluate this trade-off empirically in

Section IV using a real 10 Gbps trace at a campus edge.

B. Unbiased estimators

We now show how to construct unbiased estimators for

packet and byte counts per flow. Unbiased estimators are

critical mainly for volume estimation tasks without which

errors can be really high, especially for aggregates constructed

from individual flow records. We begin our discussion by

providing an estimator of per-flow packet counts. Note that

since host selection process is hash-based, no packets are lost

before selecting a host; thus, the packet count estimate is

dependent only on the pf and pp probabilities.

Estimation of per-flow packet counts. Let s be the actual

number of packets for a flow f and c be the total number of

packets sampled in the counter. The unbiased estimator ŝ for

the number of packets is given by the following equation.

ŝ =
1

pf
+

c− 1

pp
(1)

Proof: Intuitively, packet selection process for a given flow

packet counter can be thought of as a sequence of rounds,

with each round involving a sequence of unsampled packets

finally terminating with a sampled packet. The final value of

the counter c indicates the total number of rounds. Let us

suppose ŝi be the random variable indicating the set of packets

comprising the round i. Assuming packets are sampled with

probability pi within the ith round. The unbiased estimator ŝi
is given by ŝi = 1/pi, which is the standard unbiased estimator

for a geometric random variable.

As the packet sequence length is the sum of the lengths of

individual rounds, ŝ =
∑c

k=1
ŝi. The probability for the first

round p1 = pf , and for all other rounds, pj = pp, 1 < j ≤ c.
Also, these individual random variables are independent of

each other. Thus, the unbiased estimator for the packet count

for a flow can be computed as follows.

ŝ =
1

pf
+

c−1∑

k=1

1

pp
=

1

pf
+

c− 1

pp

Variance estimate. The variance of this estimator can be

computed similarly as follows. First we compute the variance

of the individual sis as follows.

V ar[ŝi] =
1− pi
p2i

(2)

The above expression is the variance estimate of a standard

geometric random variable. Similar to the mean estimate, we

can sum the individual variances to obtain the total variance

of the estimate.

V ar[ŝ] = V ar[

c∑

k=1

ŝi] =
1− pf
p2f

+ (c− 1)
1− pp
p2p

(3)

Estimation of per-flow byte counts. Let bi (1 ≤ i < l) rep-

resent the byte size of individual packets for a given flow. The

total byte count of a flow is represented by b =
∑l

i=1
bi. Let

Sc be the set of indices of sampled packets with probability,

pp, and c (1 ≤ c ≤ l) denotes the cardinality of the set, (|Sc|).
Let bfirst represent the size of the first packet sampled. An

unbiased estimator b̂ of per-flow byte count b is as follows.

B̂ =
bfirst
pf

+
∑

i∈Sc

bi
pp

(4)

We can prove that this estimator is unbiased in a similar

fashion to the packet count estimator. Essentially, the byte

count estimators for each of the si sequence of packets is given

by B̂i = bi/pi, where bi is the byte count of the sampled packet

in round i. We can compute the estimate for byte count B̂
trivially by adding up the individual B̂is. Variance of the byte

count estimate, on the other hand, is hard to compute this way,

unless we assume packet sizes are distributed uniformly. This

assumption is not true in general; we have not yet been able

to compute a general formula for estimating this and consider

it part of future work.

IV. EVALUATION

We evaluate RelSamp in order to answer the following

questions: 1) How effective is RelSamp in sampling related

flows that belong to an application session? 2) Are the estima-

tors in RelSamp unbiased? What is the relative inaccuracy in

estimating flow volumes? 3) What are the limitations of using

random packet sampling in enabling traffic classification? How

effective is RelSamp in ensuring better classification accuracy

as compared to random packet sampling?

We answer these questions with the help of a prototype

of RelSamp we built by extending an open-source NetFlow

called YAF [9]. While there exist several variants of NetFlow,

we mainly compare with flow sampling and sampled NetFlow

since none of the variants (e.g., sketch-guided sampling [10])

are geared toward preserving the application structure similar

to our goal. We evaluate the efficacy of RelSamp with the

help of real traffic traces. The first dataset, CAMPUS, is an

OC-192 (10 Gbps) packet-header trace collected at the edge

of a large university campus. The trace is an hour long, and

consists of about 140 million flows and 1,293 million packets.

The purpose of using this trace is to answer questions about

how to choose the parameters of RelSamp in edge network

settings. Our second dataset, DORM, is a packet trace with

full payloads collected from a router on a large dormitory

building in the campus. Since we have no access to the

packet payload from the CAMPUS trace, this full-payload

trace allows us to evaluate the implications of RelSamp for

traffic classification by enabling deep packet inspection (DPI)

techniques to establish ground truth, i.e., determine the actual

application (see Section V). The trace is about 13 hours long.

We filter out traffic local to the university, and the resulting

trace consists of around 214 million packets distributed over

8.5 million flows and carrying around 139 GBytes of volume.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

#captured flows / #total flows in a HAP

Flow Sampling
Sampled NetFlow
RelSamp1
RelSamp2

(a) Flow coverage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Relative error of packet counts in a HAP

Flow Sampling
Sampled NetFlow
RelSamp1
RelSamp2

(b) HAP volume error

Fig. 4. Flow coverage and volume estimate of a HAP. We use τ = 30s and
use the CAMPUS trace for this experiment.

A. Sampling related flows

We explore the effectiveness of RelSamp in sampling flows

corresponding to the same HAP, and the sensitivity of the

results to the parameters of RelSamp using two configura-

tions; for a setting called RelSamp1, we use ph = 0.03,

pf = 0.76, and pp = 0.0001; another setting, RelSamp2

has ph = 0.005, pf = 1.0, and pp = 0.3. The two different

sampling settings result in similar effective sampling rate of

0.001, but have different proportion of ph and pp. Higher ph
essentially chooses higher number of hosts for consideration,

while lower pp results in slightly higher error for individual

flows. Depending on the importance of different objectives,

one could choose different settings. For comparison, we use

two other sampling schemes, Sampled NetFlow with 0.001

sampling rate and flow sampling (with 0.0015 flow sampling

rate such that 0.001 fraction of packets are sampled).

Our primary evaluation metrics are flow coverage, which

we define as the fraction of the flows captured by Sampled

NetFlow or RelSamp per HAP, and volume estimate defined

as the total number of packets per HAP captured by these

algorithms. Figure 4(a) plots the CDF of the flow coverage

obtained across the HAPs. Only HAPs with at least two flows

are considered; considering HAPs with one flow will shift the

curves slightly to the left. Each curve corresponds to results

with a particular sampling algorithm (Flow sampling, NetFlow,

and two settings of RelSamp). From the figure, we can make

several observations. First, NetFlow (topmost curve) is the

least effective in ensuring flow coverage—only 10% of the

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

E
s
ti
m

a
te

d
 v

a
lu

e

Actual value

(a) RelSamp1

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

E
s
ti
m

a
te

d
 v

a
lu

e

Actual value

(b) RelSamp2

Fig. 5. Scatter plot of actual and estimated packets counts.

HAPs see a flow coverage of 50% or more, with a median flow

coverage of only 10%. Second, as we move from RelSamp1

to RelSamp2, the flow coverage curve moves to the right. We

can see that RelSamp2 performs better than RelSamp1 due to

the fact that pf is higher in RelSamp2 setting than RelSamp1.

Our most aggressive setting RelSamp2 achieves more than

90% flow coverage for over 90% of flows. Our RelSamp1

and RelSamp2 curves clearly indicate almost 5-10x increase

in the median flow coverage compared to Sampled NetFlow

and almost 10x increase compared to the flow sampling curve,

which performs the worst in all the experiments due to its

inability to preserve any application semantics. As an aside, we

note that with the RelSamp2 setting, even though pf = 1.0, the

flow coverage can be observed to be less than 1 in Figure 4(a).

This is because there are multiple normal flows with the same

flow key in a HAP while NetFlow’s (in)active timeouts can

split a single flow into several flow records. That makes it

difficult to match the NetFlow’s output with HAPs exactly.

Thus, we treat all flows with the same flow key as a flow.

In Figure 4(b), we compare the relative error in estimating

a HAP’s volume for different sampling schemes, i.e., we con-

sider the error in estimating the total volume across all flows

that constitute a HAP compared to the ground truth. We can

observe once again that flow sampling curve is significantly

worse than the rest, with a relative error of almost 100% for

more than 95% of HAPs. Sampled NetFlow performs slightly

better compared to flow sampling, but still, the median error is

close to 100% error. RelSamp1 performs better than both flow

sampling and Sampled NetFlow, but because the individual

flow volume estimates are not that accurate, it also suffers

from worse error. RelSamp2 performs the best since it is the

most aligned with our goal, namely, higher flow coverage and

accurate flow volume estimates ensured by the higher value

of pp, which is set at 30%.

One could argue that RelSamp2 is strictly better than

RelSamp1, as it achieves a smaller relative error of HAP

volume estimates, and captures more flows per HAP. While

this is true, the advantage of RelSamp1 is that it uses a

larger fraction of hosts. This advantage may matter when

one considers other application characteristics where such a

difference is important. Overall, our architecture provides the

flexibility to choose arbitrary settings depending on the goals

of a network operator.

While we only discussed two settings of parameters here,

we briefly provide the intuition about which parameter controls

what characteristic of traffic. The host selection probability ph

controls the total number of hosts, and thus the total number

of packets, directly impacting the aggregate volume estimation

accuracy. On the other hand, flow selection probability pf
governs application awareness, while packet selection proba-

bility pp dictates the accuracy of per-flow statistics. Thus, there

exists a clear trade-off in configuring these three parameters

depending on the needs of the network operator, measurement

location, link capacity, and router resource constraints. As ap-

plication mix and characteristics evolve, operators need to tune

these parameters; we will pursue techniques to automatically

tune these parameters as part of our future work.

B. Unbiasedness of estimators

We empirically validate our unbiased estimators next. Fig-

ure 5(a) first shows the scatter plot of actual and estimated

packet counts for flows containing at least 1,000 packets using

the RelSamp1 setting. The two-sided errors from the figure,

though not strictly conclusive, indicate the unbiased nature of

our estimator. As flow size increases, the actual and estimated

flow sizes converge and the relative error becomes smaller.

We observe a similar trend for the scatter plot corresponding

to the RelSamp2 setting as shown in Figure 5(b), except that

the estimates are much more accurate than that of RelSamp1.

The reason for this is quite obvious; the packet sampling

probability pp under the RelSamp2 setting is quite high (30%)

compared to the (0.01%) setting in RelSamp1. This allows

RelSamp2 to be more accurate in the individual flow volume

estimates.

V. IMPACT ON TRAFFIC CLASSIFICATION

Network operators need to classify traffic to enable services

such as traffic differentiation and estimating volumes of indi-

vidual applications. While researchers have proposed several

approaches based on host-behavior [4], [7] and machine-

learning techniques [3], [5] for classification, most of this work

assumes unsampled data. Our focus, in contrast, is to study the

impact of sampling on traffic classification.

Annotator

Ground

Truth

Flow

Record1

Flow

Record2

Flow

Record3

RelSamp

Sampled

NetFlow

Flow

Sampling

DPI−based

Classifier

Packet

Trace

Annotated

Flow

Record2

Annotated

Flow

Record1

Annotated

Flow

Record3

C
la

s
s
ific

a
tio

n
 A

lg
o

rith
m

(e
.g

., B
L

IN
C

, S
V

M
, C

4
.5

)

Report

Fig. 6. Dataflow used for evaluation of classification techniques.

We shed light on (i) the effect of sampling on traffic

classification techniques; and (ii) the effectiveness of RelSamp

in aiding traffic classification when compared to NetFlow

and Flow Sampling [8]. In our study, we analyze BLINC,

a host-behavior based classifier, and two machine-learning

algorithms: C4.5 and Support Vector Machine (SVM). We start

our discussion by describing the methodology used to evaluate

them, and end with detailed results.

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
-3

10
-2

10
-1

10
0

A
c
c
u
ra

c
y
 (

%
)

Sampling rate

all-ports flows
std-ports flows

non-std-ports flows

(a) Accuracy for different categories of flows gen-
erated by Sampled NetFlow

 30

 40

 50

 60

 70

 80

 90

 100

 0.002 0.003 0.004 0.005 0.006

A
c
c
u
ra

c
y
 (

%
)

Sampling rate

RelSamp
Sampled NetFlow
Flow Sampling

(b) Accuracy for non-std-ports flows

10
2

10
3

10
4

10
5

 0.002 0.003 0.004 0.005 0.006

N
u
m

b
e
r

o
f
a
c
c
u
ra

te
ly

 c
la

s
s
if
ie

d
 f
lo

w
s

Sampling rate

RelSamp
Sampled NetFlow
Flow Sampling

(c) Number of accurately classified flows for non-

std-ports flows

Fig. 7. BLINC’s classification accuracy results.

A. Methodology

Our evaluations are conducted using packet traces collected

with full packet payload required to establish the ground-truth.

Figure 6 illustrates the dataflow to evaluate classification tech-

niques. Four different methodologies are parallelly applied to

the packet-level trace: a DPI-based classifier (to obtain ground

truth), RelSamp, Sampled NetFlow, and Flow Sampling. Raw

unsampled flows are annotated with application types using

a deep packet inspection (DPI) tool called tstat [11].

tstat provides ground truth by annotating each flow with

its application type after parsing its content searching for

signatures of applications it can recognize. In our evaluations,

we ignore flows for which tstat is unable to determine

their application type (e.g., encrypted flows). In our trace, less

than 8% of the total flows were unable to be classified by

tstat. The flows generated by RelSamp, Sampled NetFlow

and Flow Sampling are annotated by correlating them with the

unsampled flows. Sampled flows are then fed to the different

classification techniques.

Traffic flows conforming to well-known standard ports are

easy to classify using a simple classifier that takes port number

information for classification. However, classification of flows

that do not use their well-known standard ports is far more

challenging. We therefore dissect traffic into three categories

depending on their use of standard ports: (i) std-ports flows

which are flows that use any of the standard well-known ports

for that flow type (e.g., port 80 for Web, 110 for POP3, and

443 for SSL); (ii) non-std-ports flows which are flows that do

not use the standard known port for the flow’s application type;

and (iii) all-ports flows which include all flows independent

of their ports. In the DORM trace, we found that 42% of the

total flows were std-ports flows and the remaining 58% of the

flows were of the non-std-ports flows type. In the rest of the

analysis, we mainly focus on the second category.

We employ Reverse BLINC [12], an extension of original

BLINC, with the default values of configuration parameters.

Reverse BLINC overcomes the limitation of misclassifica-

tion of non-bidirectional traffic which existed in the original

BLINC version. For machine learning classification, we use a

well-known data mining software suite called WEKA [13]. We

use Sequential Minimal Optimization (SMO) [14] for training

SVM, and used parameter settings and features that have been

shown to work well in prior work [12].
We test classification techniques using one hour of packet

data from the DORM trace. The same trace is used as input

for all classification techniques. Supervised machine learning

techniques also require training, so we use another hour from

the same trace to train both SVM and C4.5. For each sampling

algorithm and sampling rate, we train and test SVM and C4.5

with data sampled using those settings. For example, if we

are to test SVM on traffic sampled with rate 0.001, the same

sampling rate of 0.001 is also used for training. We take

this approach to use features consistently during training and

testing, which in turn, can ensure accuracy of the classifiers.
For the parameter setting of RelSamp, while we fix ph = 0.2

and pp = 0.0001, we varied pf from 0.1 to 0.9. We set

parameter values which are higher than RelSamp1 setting

because host population and flow sizes in DORM trace are

smaller than those in CAMPUS trace. In addition, because we

wish to investigate the influence of pf on traffic classification,

we do not fix any given pe, but let it vary freely by varying

pf values. Thus, pe is higher than 1 in 1024 typically used in

OC-192 link, and ranged between 1 in 200 to 600.

B. Results

Figure 7(a) studies the impact of sampling on classification

accuracy with BLINC on the DORM trace. We define accuracy

as c/t, where c is the total number of correctly classified

flows, and t is the total number of flows. The x-axis shows

the sampling rate used and the y-axis shows the accuracy of

BLINC for the three categories of flows mentioned earlier. The

overall accuracy for all flows reduced from around 95% down

to 85% as the sampling rate was reduced from 1 to 0.001,

which might mislead one to conclude that sampling does not

affect classification accuracy. The overall accuracy includes

both std-ports flows as well as non-std-ports flows, on which

BLINC performs differently. When only std-ports flows were

considered, the accuracy was almost 100% across the range of

sampling rates as we expected. However, when only non-std-

ports flows were considered—arguably, the regime where the

need for sophisticated classifiers is most critical—the accuracy

decreased significantly from 90% over unsampled data all the

way down to 30% with a 1 in 1000 sampling.
Figure 7(b) compares the accuracy of BLINC when Rel-

Samp is used compared to when Sampled NetFlow and Flow

Sampling are used, focusing mainly on non-std-ports flows.

To ensure a fair comparison, we require that the packets

are sampled at the same effective rate with both schemes.

Compared to Sampled Netflow, the benefits of using RelSamp

are significant for all sampling rates considered—for instance,

for an effective sampling rate of 0.002, the accuracy is 70%

with RelSamp and only 30% for Sampled NetFlow.

While RelSamp outperforms Flow Sampling from 0.002 to

0.004, the accuracy gap between RelSamp and Flow Sampling

only becomes about 8% after that range. To understand this re-

sult better, we investigated how much accuracy Flow Sampling

achieved for std-ports flows. Interestingly, the classification

results were worse than those of RelSamp and Sampled Net-

Flow (not shown for the brevity). Both of them approximately

achieve over 97% accuracy, but Flow Sampling only achieves

about 80% accuracy. Further, we checked total number of std-

ports flows as well as non-std-ports flows for Sampled NetFlow

and Flow Sampling. It turned out that while Sampled NetFlow

over-samples std-ports flows rather than non-std-ports flows,

the ratio between two is similar in case of Flow Sampling.

This is because Flow Sampling is unbiased in flow size but

there exists biasness in flow size between two categories in

our trace. Note that classification in BLINC is triggered by

a threshold in number of flows constituting a graphlet (a

signature to describe host’s common behavior for a particular

application). Thus, while the accuracies of both categories

of flows were influenced in case of Flow Sampling because

it balances the number of sampled flows in both categories,

Sampled NetFlow had worse accuracy in non-std-ports flows

classification because it less samples those flows.

We also looked at the actual number of correctly classified

flows for each sampling schemes. At the right-most data point

in Figure 7(c), while RelSamp classifies about 28,000 flows

correctly, other two methods successfully classify only about

2,000 flows. On the whole, RelSamp accurately classified

roughly 10 times more number of flows than Sampled Net-

Flow and Flow Sampling. Therefore, our RelSamp outper-

forms the other two sampling methods in terms of accuracy

as well as the absolute number of correctly classified flows.

We now discuss the reasons for the significantly improved

accuracy with RelSamp. Host-behavior based classifiers such

as BLINC work by observing communication patterns of

hosts. Sampling affects BLINC by providing distorted hosts’

profiles that do not reflect the actual social communication

between them. Actually, we found an example from our

dataset for the p2p graphlet to show distorted hosts’ profiles.

RelSamp was able to capture 55 flows which exceeds BLINC’s

threshold (fanout cardinality) for the p2p graphlet, but sampled

Netflow captured only 3 flows which is significantly below the

threshold leading to BLINC classifying them as unknown.

Figure 8(a) studies the impact of sampling by Sampled

Netflow on C4.5 and SVM for non-std-ports flows. As sam-

pling rate was lowered, accuracy decreased from 90% down

to 30% for SVM, and 98% to 80% for C4.5. We believe

the degradation with SVM occurs since it has the problem

of training overfitting [15], and thus requires the non-

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001 0.01 0.1 1

A
c
c
u
ra

c
y
 (

%
)

Sampling rate

SVM
C4.5

(a) Classification accuracy for non-std-ports flows gener-
ated by Sampled NetFlow

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.002 0.003 0.004 0.005 0.006 0.007 0.008

A
c
c
u
ra

c
y
 (

%
)

Sampling rate

C4.5- RelSamp
C4.5- Sampled Netflow

SVM- RelSamp
SVM- Sampled Netflow

(b) Comparing classification accuracy for non-std-ports

flows generated by Sampled NetFlow and RelSamp

Fig. 8. C4.5 and SVM classification results.

trivial process of choosing a representative training dataset

(e.g., using data-categorization mechanisms) to produce better

maximum-margin hyperplanes [16]. In contrast, C4.5 appears

relatively more robust to sampling. We hypothesize this may

be due to the different underlying machine learning algorithm

used, with the fine grained nature of the decision tree approach

potentially leading to more robustness. A more extensive study

using a wide range of traces is required to draw definite

conclusions regarding the relative robustness of different clas-

sification algorithms, and is deferred to part of future work.

Figure 8(b) compares the classification accuracy of C4.5 and

SVM for non-std-ports flows obtained with Sampled NetFlow

and RelSamp. The figure shows that RelSamp outperformed

Netflow by around 10% in C4.5 and 35% with SVM. We

believe this is because RelSamp captures more flows than

Sampled NetFlow (even though the number of packets sam-

pled in each scheme is the same), which potentially provides

better data for the training phase.

VI. RELATED WORK

Due to the importance of measurements in several network

management tasks, there exists a lot of prior work [17], [18],

[19], [20], [21] in architecting better sampling-based passive

measurement solutions. Despite their existence, to the best

of our knowledge, we are the first to introduce this notion

of related sampling that can be exploited to make sampled

flow records preserve application structure. In this section, we

outline some of these solutions and discuss how they differ

from our RelSamp architecture.

Several researchers have observed glaring deficiencies in

Sampled NetFlow and proposed solutions to address some

of them. For instance, Kompella et al. propose Flow Slices

as a solution to allow better tuning knobs for controlling

memory and CPU utilization in [18]; the notion of related

sampling is, however, absent in Flow Slices. Sekar et al. have

proposed cSamp [22] for network-wide flow monitoring with

a goal to minimize redundancies in routers sampling packets

independently. Traffic Sentinel [23] is another approach similar

in spirit to cSamp. RelSamp, on the other hand, is designed to

operate within a router; we will pursue extending RelSamp to

a coordinated setting as part of our future work. Beyond sam-

pling frameworks, a few past works have focused on providing

network operators with complete flexibility in choosing which

flows they want to sample. For example, Yuan et al. devised

ProgME [19] that provides operators the flexibility to configure

hyper-spaces called flowsets. While it offers operators with

great flexibility, it is not clear how to exactly define these

flowsets to preserve application structure. One other related

recent effort is FlexSample [20] by Ramachandran et al., in

which they provide a simple language to specify groups of

flows of interest using tuples on specific packet header fields.

It requires maintaining extra state for approximate checking

of the predicates and is designed to provide sophisticated

monitoring of traffic subpopulations. RelSamp, on the other

hand, does not require any extra state; it is designed to be

simple for network operators to implement related sampling

mainly geared toward application monitoring. Influence of

sampled traffic on anomaly detections has been studied in the

past [24]. Our work, although not directly related, may benefit

anomaly detection as well.

Traffic classification is one of the main applications of

RelSamp which we have studied in this paper. In general three

main approaches emerged—deep packet inspection (DPI) [11],

[25], behavior-based [4], [7], and flow-feature based [3], [5],

[6]. While in high speed networks the use of packet sampling

is inevitable, all previous works have mainly focused on

unsampled traffic data. Two of these works [6], [5] have

hypothesized that the accuracy of their method will degrade

fairly quickly under packet sampling, but neither investigates

it further. Our work, in contrast, provides no new classification

mechanism, but instead provides a sampling scheme that can

improve the accuracy of traditional classification techniques.

VII. CONCLUSION

While the wide availability of NetFlow across many modern

routers makes it an ideal candidate for continuous, low-cost

monitoring of network application traffic at enterprise edge

routers, the sampling algorithms employed by NetFlow today

are inadequate to capture application behavior. In this paper,

we have presented RelSamp, an architecture based on the key

idea that related flows, part of the same application session,

are sampled with higher probability. Our evaluations on real

traces show the importance and viability of a related sam-

pling approach. We demonstrate that RelSamp is capable of

obtaining 5-10x more flows per application session compared

to Sampled NetFlow and increases the classification accuracy

of BLINC, SVM and C4.5 up to 50% in comparison with the

flows output by Sampled NetFlow.

ACKNOWLEDGMENTS

We thank William Harshbarger, Greg Hedrick at Purdue

ITaP for their immense help in obtaining the network traces.

This work was supported in part by NSF Award CNS 0831647,

1017898, 1017915 and a grant from Cisco Systems.

REFERENCES

[1] “Endace,” http://www.endace.com.
[2] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos,

“Is P2P dying or just hiding?” in IEEE Globecom, 2004.
[3] A. Moore and D. Zuev, “Internet traffic classification using bayesian

analysis techniques,” ACM SIGMETRICS Performance Evaluation Re-

view, vol. 33, no. 1, pp. 50–60, 2005.
[4] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: multilevel

traffic classification in the dark,” in ACM SIGCOMM, 2005.
[5] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification

and application identification using machine learning,” in Conference on

Local Computer Networks, 2005.
[6] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identi-

fication,” in ACM CoNEXT 2006, 2006.
[7] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh,

and G. Varghese, “Network monitoring using traffic dispersion graphs
(tdgs),” in IMC, 2007.

[8] N. Hohn and D. Veitch, “Inverting sampled traffic,” IEEE/ACM Trans-

action on Networking, vol. 14, no. 1, pp. 68–80, 2006.
[9] “YAF: Yet Another Flowmeter,” http://tools.netsa.cert.org/yaf/.

[10] A. Kumar and J. Xu, “Sketch guided sampling - using on-line estimates
of flow size for adaptive data collection,” in INFOCOM, 2006.

[11] M. Mellia, R. Lo Cigno, and F. Neri, “Measuring IP and TCP behavior
on edge nodes with Tstat,” Computer Networks, vol. 47, no. 1, pp. 1–21,
2005.

[12] H.-C. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and
K. Lee, “Internet traffic classification demystified: Myths, caveats, and
the best practices,” in ACM CoNEXT, 2008.

[13] “WEKA: Data-mining Software in Java.” http://www.cs.waikato.ac.nz/
ml/weka.

[14] J. Platt, “Sequential minimal optimization: A fast algorithm for training
support vector machines,” Advances in Kernel Methods-Support Vector

Learning, 1999.
[15] I. Mierswa, “Controlling overfitting with multi-objective support vector

machines,” in GECCO, 2007.
[16] T. Hiroyasu, M. Nishioka, M. Miki, and H. Yokouchi, “Application of

MOGA Search Strategy to SVM Training Data Selection,” in Proceed-

ings of the 5th International Conference on Evolutionary Multi-Criterion

Optimization. Springer, 2009, pp. 125–139.
[17] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better

netflow,” in ACM SIGCOMM, 2004.
[18] R. R. Kompella and C. Estan, “The power of slicing in internet flow

measurement,” in IMC, 2005.
[19] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-

grammable network measurement,” in ACM SIGCOMM, 2007.
[20] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani, “Fast

monitoring of traffic subpopulations,” in ACM/USENIX IMC, 2008.
[21] M. Saxena and R. R. Kompella, “A framework for efficient class-based

sampling,” in INFOCOM, 2009.
[22] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and

D. G. Andersen, “cSAMP: a system for network-wide flow monitoring,”
in USENIX NSDI, 2008.

[23] “Traffic Sentinel,” http://www.inmon.com/products/trafficsentinel.php.
[24] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled

data sufficient for anomaly detection?” in ACM/USENIX IMC, 2006.
[25] T. Choi, C. Kim, S. Yoon, J. Park, B. Lee, H. Kim, H. Chung, and

T. Jeong, “Content-aware Internet application traffic measurement and
analysis,” in IEEE/IFIP NOMS 2004.

