A Toolkit for Automating and Visualizing VLAN
Configuration

Sunil D. Krothapalli, Xin Sun, Yu-Wei E. Sung, Suan Aik Yeo and Sanjay G. Rao
School of Electrical and Computer Engineering, Purdue University

West Lafayette, Indiana, USA
{skrothap, sun19, sungy, yeo, sanjay}@ purdue.edu

ABSTRACT

Virtual Local Area Networks (VLANS) are extensively used in en-
terprise networks. However, their configuration remains an ad-hoc,
complex and error-prone process today. We believe that to elimi-
nate these difficulties, there is need for automation tools, and also
need for visualization tools. In this paper, we report on our experi-
ence building a VLAN management toolkit, which automates and
visualizes common VLAN configuration tasks. We begin by de-
scribing common misconfigurations, and their impact on network
performance and security. We next present a set of algorithms that
automate the VLAN configuration tasks. These algorithms form
the back end of the toolkit. The front end of the toolkit consists
of an interactive graphical user interface which provides visual-
ization of VLAN operations at multiple granularities, and can be
accessed remotely from a web browser. We are in the process of
deploying the toolkit at a large campus network which has thou-
sands of switches, and around 800 VLANSs. Our initial operational
experience shows that the toolkit is effective in both automating
configuration tasks, and identifying common misconfigurations. In
particular, we have found that (i) more than 40% of the VLANS in
the network have redundant links that may lead to security and per-
formance issues. (ii) more than 30% of the VLANS in the network
have missing links which may result in connectivity issues and (iii)
the root-bridge placements of more than 30% of the VLANs are
not optimum, which again may result in performance issues. We
believe these insights highlight the benefit and importance of such
a toolkit.

Categories and Subject Descriptors

C.2.3 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Network Operations

General Terms

Algorithms, Design, Management

Keywords
VLAN, Toolkit, Automation, Visualization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SafeConfig’09, November 9, 2009, Chicago, Illinois, USA.

Copyright 2009 ACM 978-1-60558-778-3/09/11 ...$10.00.

1. INTRODUCTION

Managing Virtual Local Area Networks (VLANS) is one of the
unique challenges facing operators of today’s enterprise networks.
VLANS are extensively used in enterprise networks and are often
used to address groups of users as a single unit to ease management
even though they are spread over physically disparate locations [9,
14]. In spite of the wide prevalence, VLAN configuration remains a
tedious and complex process. On one hand, VLAN configuration is
complex, because of the size and complexity of today’s enterprise
networks (some of them even surpass those of carrier networks [11,
12, 16]), and also because of the network-wide dependencies that
are inherent to VLAN design. For example, a simple configuration
such as adding a new host to a VLAN may require modifying the
configuration of multiple switches in the network (a process called
configuring the “trunk” links). On the other hand, there is a lack
of tools for automating, visualizing or validating VLAN configura-
tion. In fact, Almost all the VLAN configuration tasks are done in
a complete manual and ad-hoc fashion today.

There are many potential sources of errors that arise from this
ad-hoc approach to VLAN configuration. Such errors may result in
serious connectivity issues, security holes and network inefficien-
cies. For instance, redundantly configured trunk links may falsely
extend the traffic of a VLAN to the part of the network it is not sup-
posed to transverse. This may increase the susceptibility of the net-
work to ARP poisoning [17] and ARP storm [10] attacks. Further,
the lack of visualization and validation tools makes it extremely
difficult for operators to keep track of and troubleshoot their net-
works. Hence, there is an imminent need to develop systems that
can assist network operators in configuring VLANS.

In this paper, we report on our experience designing and imple-
menting a software toolkit which automates, visualizes and vali-
dates a set of common VLAN configuration tasks. The toolkit con-
sists of a back end, which implements a set of algorithms for au-
tomating the VLAN configuration, and a front end, which provides
an interactive graphical user interface for the operators to submit,
view and validate their desired operations. The back end is running
on one of our servers as a service process, while the front end can
be remotely accessed using a web browser like Mozilla Firefox.

The toolkit is in the process of being deployed at Purdue Univer-
sity, and has begun to be used by the operators. The campus net-
work of Purdue University has around 200 routers, 1300 switches
and 800 VLANSs. Our initial operational experience shows that the
tool is effective in both automating VLAN operations, and identify-
ing configuration errors. In particular, we found that (i) more than
40% of the VLANSs in the network have redundant links that leads
to security and performance problems; (ii) more than 30% of the
VLANS have missing links which result in connectivity issues; and
(iii) the root-bridge placements of more than 30% of the VLANs

H1 H2 H3 H4 H5 H6 H7 H8
VLAN 1 VLAN 2 VLAN 1 VLAN 2 VLAN 1 VLAN 1 VLAN 2 VLAN 2

Figure 1: A sample enterprise VLAN setup

are not optimum, which again results in performance problems. We
believe these insights highlight the benefit of the tool.

2. CHALLENGES IN ENTERPRISE VLAN
CONFIGURATION

In this section, we first give a brief background of VLANS, and
then highlight some of the key issues of VLAN configuration.

2.1 VLAN background

Operators reduce the complexity of their configuration tasks by
thinking about users as collective groups based on the role of each
user in the organization (e.g., what resources they should be able
to access). Example groups are engineering, sales, payroll, student
cluster, faculty cluster, etc. Today, these logical groupings are most
commonly implemented by VLANS, which take a set of users in
physically disparate locations and place them into a single logical
subnet, even if the users are connected to different switches. For
instance, an enterprise policy may permit access only for all sales
personnel, and it may be desirable to ensure these users receive IP
addresses from the same subnet so that routing policies and packet
filters can be applied to them as a group. Consider Fig. 1. S1~S4
are switches, and R1~R3 are routers. Notice that even though hosts
H1 and H6 are physically separated, they are both part of VLAN 1.
Likewise, hosts H2 and H8 belong to VLAN 2.

Each VLAN constitutes a separate broadcast domain. There-
fore, it is important to ensure that broadcast traffic is properly con-
strained to reduce unnecessary traffic for increased performance
and security. To achieve this, every link is configured to permit
only traffic for appropriate VLANSs. In Fig. 1, the link S1-H1 is
configured as an access link and forwards only VLAN 1 traffic.
The link S1-R1 is configured as a trunk link and permits traffic for
multiple explicitly specified VLANS (in this case, VLANSs 1 and 2).
As another example, the trunk link S4-R3 is configured to only per-
mit traffic of VLAN 2. Typically, a separate spanning tree rooted at
a root-bridge is constructed per VLAN. For example, the collec-
tion of bold links form the spanning tree of VLAN 1, and either R1
or R2 can be selected as the root-bridge. The root-bridge should
be chosen judiciously to minimize the resulting spanning tree size,
which in turn minimizes the broadcast traffic of the VLAN [3].

2.2 Challenges in VLAN configuration

In spite of the wide prevalence, VLAN configuration remains a
tedious, complex and error-prone process today. We believe that to
eliminate these difficulties, there is need for automation tools, and
also need for visualization tools, as we discuss below.

2.2.1 Need for automation tools

Today almost all of the VLAN configuration tasks are performed
in a complete manual and ad-hoc fashion. However, many of the
tasks are not easy or straight-forward, as a single task typically re-
quires making modifications to multiple dependent devices. Hence
configuration errors are not uncommon. Considering the example
of extending an existing VLAN to new locations. This happens
frequently as departments expand, new facilities get set up, etc.
However, to add a new host to the VLAN, the operator must cor-
rectly identify and configure all the trunk links that are on the path
between the access switch of the new host, and the root-bridge of
the VLAN, to allow traffic of this VLAN. Failure to do so may re-
sult in serious connectivity, security and/or performance issues, as
we will describe in detail in Section 2.3. In addition, the operator
may also need to change the root-bridge of the VLAN, to adapt to
topology changes. This will require him to correctly calculate the
spanning tree size for the current root-bridge, and potential alterna-
tives, and choose one that results in the smallest spanning tree size.
If the VLANS are large and span many buildings, it becomes very
difficult for the operator to correctly identify (and configure) all the
trunk links.

2.2.2 Need for visualization and validation tools

Operators are also in need of visualization and validation tools
which can assist them in better understanding and troubleshoot-
ing their networks. VLANS in an enterprise can grow extremely
large and span many buildings. For example, all the classroom
machines in a university may be grouped into a single VLAN.
Without proper visualization, it is very difficult for operators to
keep track of important VLAN information, such as the number
of hosts in the VLAN, the buildings the VLAN spans, the switches
and routers involved, etc, Such information is crucial to operators
when they troubleshoot their networks, or when they make design
choices such as whether a large VLAN should be partitioned into
smaller ones, and how. Further, operators also need tools to assist
them in diagnosing their network problems. As we will see shortly,
“missing links” and “redundant links” are the common configura-
tion errors, and may cause serious performance and security issues.
It would be desirable to have tools to automatically identify such
misconfigurations in the network.

2.2.3 Why existing approaches are insufficient

While there are automated tools available today to prevent such
misconfigurations, they are inadequate. For instance, Cisco VLAN
Trunk Protocol (VTP) is a Cisco proprietary protocol that seeks to
eliminate the need for configuring trunk links. At a high level, VTP
allows an operator to create VTP domains, and each switch can be
configured to belong to one (and only one) VTP domain. When
a VLAN is added to one switch in a VTP domain, all the other
switches in the same domain will be automatically configured to
trunk the VLAN [8]. VTP can completely eliminate the need for
manual trunk link configuration only when all switches are con-
figured to be in the same VTP domain. However doing so will
require every switch to be part of the spanning tree of each VLAN.
This may impose prohibitive CPU overhead on the switches, and
may also introduce too much VTP protocol traffic [7]. If the net-
work consists of multiple VTP domains, then the VLANS that span
switches in multiple domains still require manual trunk link con-
figuration. Our prior work shows that this scenario is fairly com-
mon [9].

trunk allowed vlan

T
3 ‘\ 12]

‘/’ trunk allowed l
vlan1

=

H1 H2 L3
VLAN 1 VLAN 2 VIAN 1 VLAN 2 VLAN 1 VLAN 1 VLAN 2 VLAN 2

Figure 2: Examples of missing and redundant links that result
from VLAN misconfigurations.

2.3 Common misconfigurations and their im-
pact

Due to the complexity of VLAN configuration, and the lack of
tools, it is not surprising that many potential errors may arise from
the configuration process. In this section, we discuss two types of
common errors that arise from configuring trunk links, and their
impact on connectivity, security and performance.

2.3.1 Missing links

Figure 2 shows examples of misconfigurations. Host H4 which
belongs to VLAN 2 was recently added to the network, but the
trunk link R1-S2 was not configured to allow traffic of VLAN 2.
We term such a misconfigured link a missing link of VLAN 2,
since the link should have been configured to allow VLAN 2. Miss-
ing links usually cause connectivity issues. In this example, H4 is
disconnected from the rest of the hosts in the network, because it
cannot send or receive traffic through the link R1-S2.

2.3.2 Redundant links

Consider Figure 2 again. The trunk link R2-S4 was configured to
allow both VLAN 1 and 2, however there was no host from VLAN
1 attached to S4. This caused all broadcast traffic generated by
VLAN 1 to unnecessarily transverse this link. We term such a mis-
configured link a redundant link of VLAN 1, since it should not
be configured for VLAN 1. Redundant links can cause two types
of problems. First, they introduce security holes to the network.
By extending VLAN traffic to places it is not supposed to be seen,
redundant links increase the susceptibility of the network to ARP
poisoning attacks, where the attacker inserts fake ARP messages
to the network in order to spoof its IP address [17]. In addition,
by not restricting the broadcast traffic well, redundant links also
increase the susceptibility of the network to ARP storm attacks,
where an attacker outside the network may perform a port scan of
IPs of the network, causing a lot of ARP broadcast traffic to be
generated [10]. Second, Redundant links may also cause network
inefficiencies. More specifically, redundant links may unnecessar-
ily see broadcast traffic of other VLANs, which may reduce the
utilization of the links, or even cause serious congestion at the peak
time.

3. ALGORITHMS FOR AUTOMATING VLAN

CONFIGURATION

By interviewing the operators, we have identified a set of most
common VLAN configuration tasks. These tasks can be broadly

classified into, (i) configuration tasks and (ii) visualization and val-
idation tasks. Configuration tasks normally involve extending an
existing VLAN into new parts of a network, and deploying a new
VLAN altogether in a network. Visualization and validation tasks
usually range from viewing the spread of a VLAN to finding sub-
optimal root bridge placements to detecting misconfigurations such
as missing and redundant links.

In this section, we present a set of algorithms for automating
those common VLAN configuration tasks. These tasks include (i)
finding the VLAN spread, (ii) finding the optimal root-bridge of a
VLAN, (iii) configuring a new VLAN, (iv) extending an existing
VLAN to new locations (v) finding redundant links in a VLAN and
(vi) finding missing links in a VLAN.

Input: The inputs to all the algorithms are: (i) Network configura-
tion file of all the switches and routers in the network, which can be
obtained by collecting the startup configurations from the switches
and routers. (2) Network link information, which is needed for con-
structing the Layer-2 topology of the network. This information
can be obtained through various sources. One way is through the
use of Cisco Discovery Protocol (CDP) information in a network
comprised of Cisco devices. (3) VLAN number, which specifies
the VLAN that the algorithm should run on.

Initialization: The following are the initialization steps that are
needed by every algorithm. These steps are performed at the start
up time of the tool.

1: Create a graph g(i,j) = (V,E) from the input network
configuration and links

2:

3: forall v/, v2in V do

4: find the shortest path between v/ and v2

5. end for

6:

Step 1 creates a graph of the network using the provided config-
uration files and link files. Steps 3-5 generate the shortest paths
for every pair of nodes in the network using the Floyd Warshall’s
all-pairs shortest path algorithm. This shortest path information is
stored in a matrix and will be used by every algorithm.

3.1 Finding the VLAN spread

Given the vast size of the enterprise networks, a typical VLAN
spreads across multiple sites via core and access switches and routers.
Finding the VLAN spread helps the operator visualize how and
where a VLAN spreads in the network. We will describe the vi-
sualization process in Section 4. In this section, we present the
algorithm for finding the VLAN spread.

LL=0;8=0

2:

3: Find the set of access switches which have at least an
access link configured for the input VLAN and label the
set as S.

4: Find the configured root-bridge (RB) for the VLAN.

5:

6: foreach as in set S do

7 find the shortest path from as to RB.

8: add the new links to set L which are not already
present.

9: end for

10:

11: return (L)

Description of the algorithm: Steps 3-4 find the access switches
and the root-bridge for the input VLAN, by parsing the input con-
figuration files. Steps 6-9 find the shortest paths from each access
switch to the root-bridge, using the shortest path matrix generated
in the initialization steps. Step 11 returns the unique set of links
from all the paths identified in previous steps to find the VLAN
spread.

The VLAN spread algorithm forms the basic building block for
most of other algorithms presented in this section.

3.2 Finding the optimal root bridge

Any router or switch in a network can be a potential root-bridge
for a VLAN. However it is important to place the root-bridge judi-
ciously so the resulting spanning tree can be minimized. We present
our algorithm for finding the optimal root-bridge for a VLAN.

T:L=0;8=0

8:

9: Find the VLAN spread links using the algorithm
described in section 3.1, and store them in L. Also
calculate the set S of all switches from the input network
configuration files.

10: foreach switch in S do

11: find the spanning tree SPT with S as the root bridge

12: if SPT is smaller than current minimum then

13: set SPT as the current minimum

14: set S as the current optimal root-bridge ORB
15: end if

16: end for

17:

18: return (ORB)

Description of the algorithm: The algorithm first invokes the
VLAN spread algorithm to find the set of links L. where the in-
put VLAN spreads. It also parses the network configuration files to
find the set S of all the switches in the network. Next, the algorithm
considers every possible switch in the set S to be a potential root-
bridge for the VLAN. It selects each switch under consideration as
the root bridge and creates a spanning tree for the input VLAN. The
switch results in the minimal spanning tree is chosen to be the op-
timal root-bridge. The algorithm breaks ties arbitrarily in the cases
more than one minimal spanning tree is found.

3.3 Creating a new VLAN

When operators create a new VLAN, an important task is to cor-
rectly identify the set of trunk links to be configured to allow this
VLAN. We present our algorithm for automatically discovering the
set of trunk links. This algorithm takes an additional input which
is the set of access switches (S) that are to be included in the new
VLAN.

1: L =(); S = (the set of access switches)

2:

3: Find the optimal root bridge ORB using the algorithm
described in section 3.2.

4:

5: foreach switch in set S do

6: find the shortest path from ’switch’ to ORB.

7: add the new links to set L which are not already present

8: end for

9:

10: return (ORB, L)

Description of the algorithm: Given the set of access switches
for the new VLAN, the algorithm first decides the optimal root-
bridge placement, using the algorithm described in section 3.2. It
then identifies the set of unique links L from all the shortest paths
between the access switches S and the optimal root-bridge. The
algorithm finally returns the set L which contains the list of trunk
links the operator should configure to allow the traffic of the new
VLAN.

3.4 Extending an existing VLAN

We present our algorithm for extending an existing VLAN to
new part of the network. We focus on the task of finding the set of
trunk links that need to be configured. This algorithm takes an ad-
ditional input, which is the set of access switches S that the VLAN
is being extended to.

1: L =(); EL = (); S = (the set of new access switches)

: Find the VLAN spread links (L) using the algorithm
described in section 3.1. Also find the configured
root-bridge (RB).

w N

4:
5: foreach switch in S do

6: find the shortest path from the RB to the switch
7 add links to EL which are not present in L

8: end for

9:

10: return (EL)

Description of the algorithm: The algorithm first finds out the
configured root bridge, and the set of links L where the input VLAN
spreads. The algorithm then computes the shortest paths from each
switch in S to the root bridge. It then eliminates those links which
are already present in L to find new links EL which need to be con-
figured to allow traffic of the input VLAN. Finally it returns EL.

3.5 Finding redundant links in a VLAN
We present our algorithm for finding redundant links of a VLAN.

LL=0;L=0;RL=0(

2:

3: Find the VLAN spread links L using the algorithm described
in section 3.2. Also find the configured root-bridge RB

4: Perform an enhanced Breadth First Search (BFS) on the
network with RB being the source node. During the BFS,
explore a link (i.e., edge) and add the link to L’, only
if it allows traffic of the input VLAN.

5:

6: RL=I’-L

7:

8: return (RL)

Description of the algorithm: The algorithm first finds the set of
links and the root-bridge for the input VLAN. It then performs an
enhanced breadth first search on the network starting at the root-
bridge and explores an edge only if it is configured to allow the
traffic of the input VLAN. Using this approach, it is guaranteed to
find all the trunk links which are connected and allow traffic of the
input VLAN. These trunk links are stored in set L’. Next, the set
of VLAN spread links L (which are the links that connect the root-
bridge and at least one access switch) are removed from L’. The

remaining links in L’ are added to set RL. Finally, the algor
returns RL as the set of redundant links of the VLAN. By co
uring these links to disallow the VLAN, the unnecessary broac
traffic of the VLAN will be eliminated.

3.6 Finding missing links in a VLAN

We present our algorithm for finding the missing links of a V

LL=0;ML=0
2:
3: Find the VLAN spread links L using the algorithm
described in section 3.1

: foreach link / in L do

verify if [allows input VLAN

if [does not allow input VLAN then
add [to ML

9: end if

10: end for

11:

12: return (ML)

A

Description of the algorithm: Steps 1-3 find the VLAN spread
links L using the algorithm described in section 3.1. Once the
VLAN spread is found, the algorithm verifies the configuration of
each trunk link in the set L to see if it permits traffic of the input
VLAN. If the link does not allow traffic of the VLAN, it adds the
link to ML, the set of missing links. Finally the algorithm returns
ML.

4. VLAN MANAGEMENT TOOLKIT

We have developed a VLAN configuration toolkit which auto-
mates, visualizes and validates the common configuration tasks that
we present in Section 3. In this section, we describes the design
and implementation of the toolkit and all of its components. The
entire software package has been developed using the Java Enter-
prise Edition (Java EE) framework, which is the premier platform
for developing robust and scalable enterprise applications [4]. Most
of the components are similar to the Java EE framework [2] except
for the Enterprise Java Beans component, which is replaced by cus-
tom PerlC Modules component. The PerlC modules form the back
end, i.e., the implementation of the algorithms we presented in Sec-
tion 3, and replace the Enterprise Java Beans component of the Java
EE framework. Each PerlC module is written in either Perl or C
or sometimes a mixture of both, and is responsible for processing
a particular VLAN configuration task submitted by the user. The
result generated by the back end will be processed and finally dis-
played by the front end, which is the graphical user interface. The
communication mechanism between the JSPs and PerlC modules is
done through a root shell which is in contrast to the communication
mode between the JSPs and EJBs in a Java EE framework.

We have already described the back end algorithms in Section 3.
In this section, we provide detailed description of the front end of
the toolkit, i.e., the graphical user interface.

4.1 Configuration interface

Figure 3 presents a snapshot of the Virtual LAN Management
Tool. This interface can be accessed remotely using a web browser
such as Mozilla Firefox. It provide a set of configuration actions the
network operator can choose to perform on a VLAN. This includes
all the VLAN configuration tasks presented in Section 3. The web
interface also provides options to customize the output view and
the anonymization functionalities.

Virtual LAN Management Tool, Internet Systems Lab

Select action 0 perform:

Enter the VLAN number:

Choose the switches and roulers;

Select the graphical view option:

List the oore routers:

Enter if the configuration changed: @ Yes & No
Anonymize the grphical view: @ Yes 0 No

Figure 3: A snapshot of the web configuration interface of Vir-
tual LAN Management Tool

4.2 Visualization Interface

The visualization interface of the system is powered by the ZGR
Viewer [5], which is based upon the Zoomable Visual Transforma-
tion Machine [6], to generate high quality network graphs. Most of
the features available in the software, except the network wide fea-
tures, support both graphical and text based versions of the output.
Both the interfaces present their own advantages. The graphical in-
terface will help the operator gain a network wide qualitative view
of how a VLAN is organized. On the other hand, the text based
interface gives the exact details of which links are misconfigured
or need new configurations.

For each action the network operator submitted through the con-
figuration interface, a three-step process will be performed by our
toolkit. First, the corresponding back end PerlC module will be in-
voked and will produce the configuration result in a link file. The
link file contains both the control information as well as data infor-
mation. The control information is used to give priority processing
to nodes like root bridges to represent them uniquely in the output
for easy viewing. Next, the link file will be fed into a module we
term generator. The generator module will parse the input link file
and produce a dot file, which is a graphical representation of nodes
and links in text format. Finally, this graphical representation is fed
as input to the Graphviz Neato tool, which is an open source visu-
alization software [1]. The Neato tool will then generate a Scalable
Vector Graphics (SVG) format file which is displayed to the opera-
tor using the ZVTM viewer applet.

4.3 Multiview support

The graphical interface supports two output views: (i) a default
view, which shows the full topological spread of a VLAN, and (ii)
a core view, which shows only the set of nodes and links attached
to the core of the network. The core view is particular helpful when
viewing the spread of large VLANS, as the default view may give
too much information which a network operator may not really
need and tend to clutter the output. By using core view, the op-

i —

i

- —_ “ > "y

Root Bridge
\\ﬁ‘_. ya

b i

=i

Oneof the Access
Switches for VLAN Y

g e 18

o

Figure 4: Sample VLAN spread generated using the toolkit

erator can choose a list of routers and switches as the core, and
change the granularity of the output. We note that the core view
functionality can be easily disabled on flat networks where no such
core exists.

S. OPERATIONAL EXPERIENCE

We are in the process of deploying the VLAN configuration toolkit
at Purdue University, whose campus network has around 200 routers,
1300 switches and 800 VLANs. The campus operators have begin
to use the tool, and have provided valuable feedback to us. In this
section, we report our initial operational experience with the tool.
We are also in the process of releasing this tool to the wider com-
munity and hope to have experience from more networks in the
future.

We note that all the figures in this section are snapshots of the
visualization interface displayed to the users. The text boxes on the
figures were added manually later for clarification purpose.

5.1 VLAN Spread

Figure 4 depicts the spread of a VLAN, which is one of the tasks
the operator can perform through the graphical user interface. As
we can see in the graph, the VLAN spread shows all the nodes
(i.e., routers and switches) in the network that the VLAN spreads
to. The “leaves” in the graph are the access switches that connect to
the end hosts of the VLAN. Note that the end hosts are not shown
in the graph. The VLAN spread graph also shows the configured
root-bridge of the VLAN.

5.2 Finding optimum root Bridge placement

Figure 5 shows an example where the current root-bridge place-
ment is different from the optimum. In this case, the number of
spanning tree links with optimal root-bridge is 19 as compared to
20 with the current placement. We have performed this operation
on all the VLANS in the network. The result shows that the root-
bridge placements of about 30% of the VLANSs are not optimum.

5.3 VLAN Extension

The output of VLAN extension is a set of links to be config-
ured to permit traffic of the VLAN. Figure 6 portrays a scenario
where such configuration changes are needed as the VLAN is be-
ing extended to new access switches which do not already allow

Optimal Root Bridge
with minimal
spanning tree

——

Current placement,
non-optimal,
resulting in larger
spanning tree

Figure 5: The placements of the optimal root-bridge, and the
current root-bridge are shown. Optimum root-bridge results in
smaller spanning tree of the VLAN.

the VLAN. In the graph, the new access switches are drawn in dark
color, and the trunk links which need to be configured are marked
in bold.

5.4 Finding redundant trunk links

Figure 7 depicts the redundant links identified using the tool for a
VLAN. The redundant links are marked in bold. We see that there
is a lot of redundancy even for a single VLAN and this leads to
superfluous broadcast traffic on all these links. Our toolkit does a
good job in identifying all of the redundant links.

We have run the tool for every VLAN in the network. In sum-
mary, around 42% of the VLANSs have at least one redundant link,
and 5% have more than five redundant links. The main reason for
the high presence of redundant links is the evolution of the network.
As the network evolves, hosts may be removed, or be moved from
one VLAN to another, etc., but the configurations on the trunk links
often failed to be updated. This highlights the importance of having
the VLAN configuration toolkit which automates the discovery of
the trunk links.

5.5 Finding missing trunk links

Figure 8 shows an example where a VLAN has several links
missing, i.e., these links should have been configured to allow the
VLAN, but were not. The missing links are shown as dotted lines
in the VLAN spread. From the figure, one could find that nodes
A and B (which are switches) are disconnected from the rest of the
hosts in the VLAN and hence all the hosts attached to the two nodes
are also disconnected. If these hosts are servers which host critical
services, it would result in severe unavailability issues.

We have run the tool for every VLAN in the network. We found
that around 32% of the VLANS have at least one missing link, and
about 2.5% have more than five missing links. We have manu-
ally checked the switch and router configuration files to validate
these results, as well as discussed our findings with the operators.
It turned out that most of the missing links were indeed configura-
tion errors. This again highlights the importance and benefit of the
VLAN configuration toolkit.

One of the Access
Switches of VLAN X

TN

..... Link which needs.
= configuration to
allow VLAN X

VLAN Extension on -
new switches in the

....—__|‘__'__q —
network | - \r__-

Figure 6: VLAN Extension to new switches. The new switches
are drawn in dark, and the trunk links that need configuration
are in bold.

6. RELATED WORK

Several works have studied VLAN design in enterprise networks.
Garimella et al. [9] characterizes VLAN usage in one operational
network and exposes several degenerate designs. Sung et al. [16]
shows the feasibility of adopting a systematic approach in the VLAN
design of greenfield networks that are yet to be deployed. Other
works include the use of traffic data [13, 15] to expose degener-
ate design patterns, understand VLAN traffic patterns, and corre-
late cross-layer faults. By contrast, this work focuses on designing
systematic algorithms for automating common VLAN operational
tasks. Further, the experience of designing and implementing the
VLAN configuration toolkit, and the insight from its initial deploy-
ment are also unique. There also exists industry efforts like the
Cisco VLAN Trunk Protocol [8] to manage VLANSs, however such
efforts are limited in functionality. For instance, VLANs that span
multiple VTP domains still require manual configuration of trunk
links (see Section 2.3). Our work complements these industry ef-
forts by not only automating the trunk link configuration tasks, and
also visualizing and validating the effect and impact of the tasks.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our experience in designing and im-

plementing a toolkit for VLAN configuration, which addressed plethora

of unique challenges network operators face in managing VLANs
in enterprise networks. The back end of the tool implements a set
of algorithms that automate a range of common VLAN operation
tasks. The front end of the tool provides an interactive graphical
user interface which can be accessed remotely using a web browser.
To the best of our knowledge, this is one of the first research works
to develop tools for automating and visualizing enterprise VLAN
operation.

We are in the process of deploying the tool at Purdue University.
Our operational experience from the initial deployment shows that,
the tool not only automates the configuration tasks, but also assists
the operators in visualizing and validating the effect and impact of
the tasks. The initial operational experience confirms the effective-
ness of the tool, and also highlights its benefits.

— Redundant Link L T
disconnecting — /
G-5and 5
anats
/ A Subtrees of
ﬁ T edundant Hke

———

S

R

Figure 7: Redundant links in a VLAN. The links in bold are
redundant. The node in dark color is the root-bridge.

NodeB [~ | | NodeA

"\, Missing Links which
need configuration
for VLAN X

Figure 8: Missing links in a VLAN. The trunk links that should
have been configured to allow the VLAN is shown in dotted
links. Switches A and B are disconnected from the VLAN.

In the future, we plan to deploy the tool in other networks and
hope to gain more experiences. We also plan to augment the tool
to help incremental network evolution, with advanced functionali-
ties such as evaluating network designs and recommending the top
K changes that operators must do to get maximum performance
benefits.

8. REFERENCES

[1] Graphviz - graph visualization software.
http://www.graphviz.org/.
Java 2 enterprise edition technology center. http://java.sun.
com/developer/technicalArticles/J2EE/Intro/.
Spanning tree protocol root guard enhancement.
http://www.cisco.com/en/US/tech/tk389/tk621/
technologies_tech _note09186a00800ae96b.shtml.
[4] Sun developer network. http://java.sun.com/javaee/.
[5] Zgrviewer, a graphviz/dot viewer.

http://zvtm.sourceforge.net/zgrviewer.html.

[6] Zvtm. http://zvtm.sourceforge.net/.

[2

—

[3

[t}

(71

(8]

(91

[10]

[11]

(12]

Cisco. Troubleshooting vlan trunk protocol (VTP). Online document.

http://www.cisco.com/application/pdf/paws/
98155 /tshoot-vlan.pdf, 2007.

Cisco. Understanding vlan trunk protocol (VTP). Online document.
http://www.cisco.com/application/pdf/paws/
10558/21.pdf, 2007.

P. Garimella, Y.-W. E. Sung, N. Zhang, and S. Rao. Characterizing
vlan usage in an operational network. In ACM SIGCOMM workshop
on Internet Network Management (INM’07), Kyoto, Japan, 2007.

S. Kumar. Impact of distributed denial of service (DDoS) attack due
to ARP storm. In Proc. of 4th International Conference on
Networking (ICN), 2005.

F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding light on
the glue logic of the internet routing architecture. In In Proceedings
of ACM SIGCOMM, 2008.

D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and

A. Greenberg. Routing design in operational networks: A look from
the inside. In In Proceedings of ACM SIGCOMM, 2004.

[13]

[14]

[15]

[16]

[17]

A. Mansy, M. B. Tariq, N. Feamster, and M. Ammar. Measuring
vlan-induced dependencies on a campus network. In Proc. ACM
SIGCOMM IMC, 2009.

S. K. Sadhukhan and D. Saha. Auditing campus-wide local area
networks (lans) for virtual lan configurations using a simple network
manager. Technical report, Indian Institute of Management (IIM).
K. Sripanidkulchai, C. Issariyapat, and K. Meesublak. Inference of
network-wide vlan usage in small enterprise networks. In Proc. of
IEEE Workshop on Automated Network Management, 2008.

Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A. Maltz. Towards
systematic design of enterprise networks. In Proc. of the ACM
CoNEXT Conference, 2008.

S. Whalen. An introduction to ARP spoofing. Online document.
http://packetstormsecurity.nl/papers/
protocols/intro_to_arp_spoofing.pdf,2001.

