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ABSTRACT

Business and economic considerations are driving the extensive use
of service differentiation in Virtual Private Networks (VPNs) op-
erated for business enterprises today. The resulting Class of Ser-
vice (CoS) designs embed complex policy decisions based on the
described priorities of various applications, extent of bandwidth
availability, and cost considerations. These inherently complex
high-level policies are realized through low-level router configu-
rations. The configuration process is tedious and error-prone given
the highly intertwined nature of CoS configuration, the multiple
router configurations over which the policies are instantiated, and
the complex access control lists (ACLs) involved. Our contribu-
tions include (i) a formal approach to modeling CoS policies from
router configuration files in a precise manner; (ii) a practical and
computationally efficient tool that can determine the CoS treat-
ments received by an arbitrary set of flows across multiple routers;
and (iii) a validation of our approach in enabling applications such
as troubleshooting, auditing, and visualization of network-wide CoS
design, using router configuration data from a cross-section of 150
diverse enterprise VPNs. To our knowledge, this is the first effort
aimed at modeling and analyzing CoS configurations.

Categories and Subject Descriptors: C.2.3 [Network Operations]:

Network Management

General Terms: Design, Management, Measurement

Keywords: Configuration modeling, differentiated service

1. INTRODUCTION
Service differentiation using Class of Service (CoS) is being in-

creasingly adopted in a wide variety of network settings including
enterprise Virtual Private Networks (VPNs). The need to support
CoS differentiation arises from several considerations: (i) IP net-
works today carry traffic from a diverse set of applications with
very different performance needs such as low delay and low loss
for Voice over IP (VoIP) traffic, and high throughput for bulk data
transfer like FTP; (ii) different applications can have very differ-
ent relative importance to an enterprise customer, e.g., web service
transactions supporting a vital workflow are likely to be accorded
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much higher priority compared to traffic associated with brows-
ing external web sites; and (iii) economic considerations drive the
need to optimize the usage of existing network infrastructures un-
der finite capacity and cost constraints, while ensuring good perfor-
mance for important applications.

CoS designs embed inherently complex policy decisions based
on the described priorities of various applications, extent of band-
width availability, and cost considerations. Realizing these pol-
icy objectives involves configuring multiple routers in low-level,
device-specific configuration languages. Troubleshooting customer
complaints regarding poor performance involves tracing the con-
figured CoS treatment of individual flows by looking across router
configuration files, each of which can contain thousands of com-
mand lines. Misconfiguration could potentially lead to violations
of the service level agreements (SLAs), business service disrup-
tions for the enterprise, and penalties for the service provider. The
problem is daunting considering the large number of enterprise net-
works managed, their large size and geographical span, and the di-
versity of services and configuration options.

While managing network configuration is hard in general, CoS
configuration poses several unique challenges. First, CoS config-
uration is highly intertwined, with dependencies across different
parts of a configuration file. Second, the overall CoS treatment
seen by a flow between two end-points may be impacted by policy
blocks (i.e., parts of the configuration specifying CoS policy rules)
instantiated in multiple device, possibly on both input and output
interfaces of each device, and by multiple policy blocks even on a
single interface. Third, each policy block can transform a packet
before it enters the next policy block – for instance, a router may
mark a packet at the inbound interface to indicate the priority class,
and the actions of the router’s outbound interface or a downstream
router may depend on the marking. Finally, each policy block clas-
sifies flows into different classes using multiple access control lists
(ACLs), each of which can have hundreds of inter-dependent rules.

1.1 Contributions
In this paper, we make the following contributions:

• We draw attention to the prevalence of CoS, and the complexity
inherent in managing CoS configuration, a topic that is little known
outside the operational community. Our understanding has been
gleaned from repeated inspections of router configuration files from
a large number of enterprise VPNs, and through close interactions
with network designers. We believe our efforts pave the way for
the research community to further engage in the area.
• We propose a formal representation of CoS policies that is inde-
pendent of the underlying configuration syntax. This representation
is easily derivable from low-level configurations and can enable
us to systematically compose CoS policies across multiple policy
blocks within a single router and across multiple routers.
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Figure 1: An enterprise VPN spanning multiple sites.

• Based on our framework, we have built a query tool that enables
operators to determine how an arbitrary set of flows are treated on
an “end-to-end” basis. We use the term “end-to-end” throughout
this paper to refer to the fact that the tool can model the net ef-
fect that a flow would see if it were to traverse a given sequence
of devices, each of which could potentially have multiple CoS pol-
icy blocks. The set of devices of interest is assumed to be known,
though in the future, routing table information could be incorpo-
rated to automate the discovery of the devices involved. The tool
leverages binary decision diagrams (BDD) [14], a practical and ef-
ficient data structure for manipulating boolean operations. With
our tool, the computation time for query resolution is in the order
of seconds for the real-world datasets we considered.

While we believe our modeling approach is itself more general,
the current implementation of the tool is targeted at Cisco IOS con-
figurations, and enterprise VPN settings. Further, the focus is on
CoS policies instantiated in routers at the customer and provider
edge, at both the ingress and egress. We focus on these policies as
they reflect unique requirements of individual customers and tend
to change frequently. CoS policies in the core are not considered
as they reflect provider policies which are relatively homogeneous
and stable, and do not involve IP packet transformations.
• We have evaluated our tool on a cross-section of 150 differ-
ent enterprise VPNs. Even though the VPNs are managed by the
same provider, their CoS designs show significant diversity across

enterprises, perhaps reflecting the different application mixes and
cost considerations of each enterprise. Further, their designs show
a large degree of heterogeneity in terms of how different routers
within an enterprise are configured, reflecting the different func-
tionality offered by sites within an enterprise (e.g., a VoIP cus-
tomer service center may be configured differently than a data cen-
ter). The results also confirm the importance and effectiveness of
our approach in assisting operators to reason about network-wide
CoS operations. In particular, our tool enables operators to audit
the overall CoS design, identify potentially anomalous flow treat-
ments and configuration lines that are never triggered, and derive a
network-wide view of the CoS design which summarizes the traffic
classes that can be exchanged between every pair of VPN sites.

The rest of the paper is organized as follows. §2 presents the
background on CoS in enterprise VPN settings and motivates our
formal modeling approach. §3 describes a framework for modeling
CoS configuration. §4 outlines the design and key implementation
aspects of our CoS query tool. §5 describes potential usage sce-
narios for the tool. §6 studies CoS usage in practice and evaluates
the effectiveness of the tool in troubleshooting, auditing, and deriv-
ing network-wide CoS designs. §7 summarizes related works. §8
discusses some open issues, and finally §9 concludes the paper.

2. BACKGROUND AND MOTIVATION
Enterprise networks are increasingly moving from using dedi-

cated private lines to using VPNs, especially layer-3 Multi Protocol
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Figure 2: CoS treatment along an end-to-end path.

Label Switching (MPLS) VPN technology, to connect geographi-
cally disparate sites. In this architecture (see Fig. 1), each site has
one or more customer edge routers (CER), which can be jointly
configured by the enterprise customer and service provider. Each
CER connects to the provider network via one or more provider
edge routers (PER). Customer IP traffic from a CER is encapsu-
lated by MPLS labels at the ingress PER, carried over MPLS tun-
nels across core routers (referred to as Provider or P routers) in the
MPLS provider backbone, decapsulated by a remote egress PER,
and sent to the appropriate destination CER. Such provider-based
VPNs provide a scalable and secure way for service providers to
support different customers across a common MPLS backbone.

2.1 Service differentiation in VPNs
A primary consideration for service providers in designing en-

terprise VPNs is to satisfy various application needs such as delay,
jitter, and bandwidth. In this architecture, both the enterprise and
provider are faced with supporting traffic for applications with dif-
ferent performance requirements and service priorities over a com-
mon network infrastructure. Furthermore, in the provider back-
bone, services with different requirements such as VPNs, Internet,
multicast, and VoIP may coexist. At the edge of the network, be-
tween the enterprise and the provider, limited available bandwidth
capacity coupled with the high cost of deploying and provision-
ing additional capacity means that bandwidth needs to be carefully
managed across the applications competing for it. While the core is
typically overprovisioned, bandwidth must still be carefully man-
aged under failure scenarios.

Service differentiation is essential to traffic management in such
a heterogeneous environment. A provider and an enterprise cus-
tomer enter into service level agreements (SLAs) that describe the
agreed-to requirements on performance for different applications –
this involves complex choices based on application requirements
and behaviors, the relative priorities of applications used by that
enterprise, and cost. The routers in the VPN need to then be con-
figured appropriately to honor the SLAs. SLA violations can have
adverse consequences, potentially involving disruption of critical
enterprise activity and heavy penalties for the service provider.

2.2 Realizing service differentiation using CoS
Class of Service (CoS) is a way of realizing service differen-

tiation, by grouping traffic with similar service requirements and
treating each group as a class with its own level of service priority.
The Type of Service (ToS) field of the IP header of each packet in-
dicates the priority class to which it belongs. Typically, the first 6
bits of the ToS field encodes the class information, and these bits
are referred to as the Differentiated Services Code Point (DSCP)
bits. The DSCP bits are directly used by the CERs and PERs in
deciding the treatment that a packet must receive on the CER-PER



1 class-map match-any REALTIME

2 match access-group VOICE

3 match access-group INTERACTIVE-VIDEO

4 match ip dscp 46

5 class-map match-all ... ! OTHER class-maps

6 !

7 policy-map REALTIME-POLICER

8 class REALTIME

9 police 30000 conform-action set-dscp-transmit 46

exceed-action drop

10 policy-map CRITICAL-DATA-POLICER

11 class ROUTING

12 set ip dscp 48

13 class OTHER-CRITICAL-DATA

14 police 15000 conform-action set-dscp-transmit 26

exceed-action set-dscp-transmit 28

15 policy-map BEST-EFFORT-MARKER

16 ...

17 !

18 policy-map WAN-EGRESS-POLICER-QUEUE

19 class REALTIME

20 priority percent 35

21 service-policy REALTIME-POLICER

22 class CRITICAL-DATA

23 bandwidth percent 40

24 service-policy CRITICAL-DATA-POLICER

25 class class-default

26 bandwidth percent 25

27 service-policy BEST-EFFORT-MARKER

28 !

29 interface Ethernet0/1 ! INTERFACE TO LA BRANCH’s LAN

30 ... ! LAN INGRESS MARKING POLICY

31 !

32 interface Serial1/0 ! INTERFACE TO PER1

33 service-policy output WAN-EGRESS-POLICER-QUEUE

34 !

35 ip access-list extended VOICE

36 permit ip 192.168.1.0 0.0.0.255 any

37 permit ip any 192.168.1.0 0.0.0.255

38 ip access-list ... ! ACLs FOR OTHER TRAFFIC TYPES

Figure 3: Class of Service configuration of CER1.

and PER-CER links. Before forwarding an IP packet to the back-
bone, the PER encapsulates it with an MPLS label and maps the
DSCP value of the packet to a 3-bit field in the MPLS label re-
ferred to as the experimental (EXP) value. This EXP value is used
by P routers to differentially treat traffic in the core. Fig. 2 illus-
trates the overall process of realizing differentiated treatment along
an end-to-end path.

Based on the SLAs and customer input, the network designer
is tasked with determining the CoS policies to instantiate at each
CER and PER for a given VPN. Conceptually, there are three main
components to CoS policies:
• Marking: This component involves rules to determine how in-
coming traffic may be assigned to a particular class by setting ap-
propriate ToS values based on packet parameters. Typically, the
parameters used are a subset of the 6-tuple: source and destination
IPs and ports, protocol, and ToS. Note that the ToS field is included
as the classification decision may depend on the ToS field set by an
earlier device, e.g., a router at the customer premise.
• Policing: This component involves rules that determine whether
the packet arrival rate of a class conforms to the specified traffic
rates and what actions should be taken. For example, conformant
and non-conformant traffic of each data class could be assigned
different DSCP bits to indicate they must be treated differently. Al-
ternately, non-conformant traffic could simply be dropped.
• Queuing: This component applies queuing rules to outgoing router
interfaces that may experience congestion (e.g., a PER-facing CER
interface). The rules for each queue specify the discipline (e.g.,
RED, Weighted Fair Queuing) and allocated bandwidth of the queue,
as well as attributes (e.g., drop rate) for different traffic classes as-
signed to the queue.

1 class-map match-any REALTIME

2 match ip dscp 46

3 class-map match-any CRITICAL-DATA

4 match ip dscp 48

5 match ip dscp 26

6 match ip dscp 28

7 !

8 policy-map WAN-INGRESS-POLICING

9 class REALTIME

10 police 95000 conform-action set-mpls-exp-transmit

5 exceed-action drop

11 class CRITICAL-DATA

12 police 60000 conform-action set-mpls-exp-transmit

3 exceed-action set-mpls-exp-transmit 7

13 class class-default

14 police 75000 conform-action set-mpls-exp-transmit

0 exceed-action set-mpls-exp-transmit 4

15 !

16 interface Serial1/0 ! INTERFACE TO CER1

17 service-policy input WAN-INGRESS-POLICING

18 service-policy output WAN-EGRESS-QUEUE ! TO LA

19 !

Figure 4: Class of Service configuration of PER1.

2.3 Complexity of CoS configuration
In this section, we draw attention to a few key aspects of CoS

configuration that make CoS policies particularly complex to man-
age and understand. Our insights are drawn from extensive anal-
ysis of configuration data from operational enterprise VPNs (see
§6). Our discussion is conducted in the context of Fig. 3 and Fig. 4
which respectively present CoS configuration snippets of CER1
and PER1 in Fig. 2. The configurations are based on Cisco IOS
and are significantly simplified for ease of illustration.
Instantiated over multiple devices: CoS policies may be instan-
tiated at the CERs, PERs, and P routers, all of which may impact
the treatment of a flow traversing these routers. For example, poli-
cies in the ingress CER are customized to individual customers and
impact how different traffic flows are prioritized on the CER-PER
link. Policies in the ingress PER typically set the appropriate EXP
value in the MPLS label based on the DSCP marking from the
ingress CER, and traffic conformance. Policies in the P routers de-
termine the per-hop queuing strategy inside the core based on the
EXP bits and are typically homogeneous across enterprises since
they reflect provider-level priorities inside the backbone. Finally,
policies in the egress PER prioritize flows on the PER-CER link
according to their ToS values.
Diversity and dynamics of customer policies: The configuration
of the ingress CER is tailored to meet the unique requirements of in-
dividual customers. As our analysis of real enterprise VPN datasets
in §6.2 will show, CERs within an enterprise VPN may be very dif-
ferent and heterogeneous in terms of the data classes that each CER
supports, while the polices used across enterprises may be very di-
verse. Further, these policies are very dynamic, requiring configu-
ration changes over time to reflect the evolving nature of customer
requirements, emergence of new applications, and shifts in traffic
patterns (e.g., migration of a database server to another site).
Multiple policy blocks per device: The CoS configuration of each
router can be composed of multiple CoS policy blocks. Typically,
the output PER-facing interface of a CER is associated with two
policy blocks, corresponding to the policing and queuing rules.
In addition, every input interface may be associated with a policy
block corresponding to the marking rules, or the marking rules may
be merged with the policing rules on the output interface. Fig. 3
illustrates CER1’s configuration, which employs the latter style.
Lines 32-34 show the definition of the PER1-facing WAN interface,
which is associated with a single policy construct embedding two
egress policy blocks (policing and queueing). Lines 18-28 show
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the definition of the queuing policy block, and lines 7-17 show the
definition of the policing block. Each of these configuration blocks
starts with the keyword policy-map and is organized into multi-
ple sub-blocks, each of which starts with the keyword class. Each
of these sub-blocks corresponds to a particular class of traffic, and
defines the (policing or queuing) rules for that class. For instance,
for the REALTIME class, line 9 indicates that based on the param-
eter, traffic is either marked with a DSCP value of 46 to indicate
it is conformant, or dropped if it is non-conformant, while line 20
indicates that the queueing discipline to be used is a priority queue.
Specifying class membership using multiple large ACLs: Flows
are usually classified into different classes by using multiple ACLs.
For instance, in Fig. 3, the class membership is specified in lines 1-5
using configuration blocks that start with the keyword class-map.
Each class-map identifies matching flows with a list of criteria,
such as ACLs (lines 2-3) or packet parameters (line 4), and based
on the match-all or match-any keyword might declare a packet
to be a member of that class if all or any of the criteria is matched.
An ACL consists of a list of permit/deny rules evaluated sequen-
tially, and the membership described by an ACL includes all the
permitted flows. For example, the ACL used by line 2 describes
VOICE traffic with two permit rules (lines 35-37). Fig. 5 shows a
CDF of the total number of ACL rules used by CoS policies con-
figured in a CER, across all VPNs in our dataset. We see that more
than 100 ACL rules are configured for CoS in 20% of the CERs,
and the CER with the most ACL rules has more than 500 rules.
Discussions with the designers revealed that the large number of
rules may be due to (i) a customer not using contiguous subnet or
port ranges to classify applications; and (ii) evolution of classifi-
cation policies, when ACL entries are added without consolidating
existing entries. Given that each policy block can specify member-
ship of multiple classes, each expressed as a logical combination
of multiple ACLs with potentially hundreds of rules, manually de-
termining the class which each flow in a set of flows belongs to is
impractical from the perspective of operators.
Transformations of flows: Each CoS policy block may modify the
packet headers or MPLS labels, impacting how they are treated at
the next policy block or device. For instance, marking rules may
be instantiated in the input LAN-facing interface of a CER, which
can modify the DSCP header of a packet, which in turn affects how
the packet is treated by the policing and queueing rules. Likewise,
the treatment of a flow at the PER may depend on how it has been
marked at the CER. Fig. 4 presents a configuration snippet of PER1.
The configuration has a similar structure to that of CER1. For each
class of traffic, the appropriate EXP value in the MPLS label is set
based on the DSCP value and traffic conformance as shown in the
policy-map block in lines 8-15. Interestingly, we note that traffic
is labeled with the same EXP bits for multiple DSCP values of 48,
26, and 28. Thus, though the traffic belonging to these classes may
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Figure 6: Syntactic reference structure of configuration in Fig. 3.

be treated differently at the CER1-PER1 link, they are treated in the
same fashion in the backbone. Given such complexity in design, it
is necessary to consider potential transformations by every router
in determining the end-to-end treatment of a flow.
Potential for errors: CoS configuration is highly intertwined, with
several dependencies that exist across different logical blocks of
the configuration. Fig. 6 illustrates the syntactic dependencies of
CER1’s configuration. Configurations with such a highly inter-
twined structure are hard to manually navigate and prone to mis-
configurations. An example misconfiguration may involve real-
time traffic being incorrectly configured to enter the queue cor-
responding to best-effort traffic. As another example, errors may
arise due to the complex ordering relationships in the configura-
tion. For instance, consider the policy-map block in lines 18-28
of Fig. 3. If the class-map REALTIME had a catch-all clause (all
traffic is matched), then, no traffic would match the class CRITICAL-
DATA. This would imply that no traffic would be sent to that par-
ticular queue, even though this is not obvious from a casual inspec-
tion of the configuration. We refer to a situation where a policy
corresponding to a traffic class can never see traffic as a shadowed

policy. We discuss more examples of such errors in §6.

3. MODELING CLASS OF SERVICE
In this section, we present a model to extract the end-to-end CoS

policies between a pair of devices from low-level configurations.
We view such a model as an essential building block that can en-
able applications useful to operators such as troubleshooting, visu-
alization of network-wide CoS designs, auditing, and analysis of
configuration changes. Performing these tasks is challenging to-
day due to the complex nature of CoS configuration, motivating the
need for formal modeling of CoS policies.

In modeling CoS configuration, we had several objectives. First,
we wanted a formal representation of CoS policies that precisely
and unambiguously captures the policy goals, yet is independent of
low-level configuration syntax. Second, the representation should
be easily derivable from low-level configurations through a sim-
ple parser. Third, we wanted the representation to be amenable to
composition, i.e., it should be possible to compose the formal rep-
resentations corresponding to different policy blocks in a router, or
across routers to obtain an end-to-end view of the CoS design.

We provide an overview of our approach to achieve these goals
in §3.1, and discuss the details in the rest of the section.

3.1 Overview
We model the overall CoS policy as a function that we call a rule-

set that takes a multiple dimensional input and produces an output.
The input is a flowset, which is an arbitrary set of flows. A sin-
gle flow is identified by the 6-tuple IP header fields: source and



destination IP addresses, source and destination port numbers, pro-
tocol, and ToS byte. In addition, there may be other inputs that
model attributes outside the scope of a static analysis. For exam-
ple, a policing policy treats packets differently depending on their
conformance to the SLA. We handle this by having an additional
bit in the input that specifies whether the model should treat the
packets in a flow as conformant or not. The output provides infor-
mation about the treatment seen by a packet corresponding to each
flow (e.g., which queue would be used by the packet), how the
packet gets changed (e.g., how the routers modify the ToS byte),
and where the packet ends up (e.g., does it get dropped by a policer
if non-conformant).

Our overall approach consists of three steps:
• First, we construct a root ruleset that models each CoS policy
block of every device from the configuration files. For instance, for
the CER configuration in Fig. 3, two root rulesets are constructed,
which correspond to the policing rules (lines 7-17) and the queuing
rules (lines 18-28). For the PER configuration in Fig. 4, one root
ruleset is constructed corresponding to the policing rules (lines 8-
15).
• We initially begin with a representation of a root ruleset which is
itself expressed in terms of other rulesets. These dependencies mir-
ror the inherent nested structure of configuration, enabling the root
ruleset to be easily derivable from the low-level configurations. We
then show how a flat representation which eliminates these depen-
dencies may be derived. The flat representation makes it feasible to
compose multiple root rulesets.
• Finally, we model the end-to-end CoS policy as a sequence of root
rulesets in flat representation, with each root ruleset being allowed
to transform the input before sending it to the next root ruleset. We
take such a sequence and collapse it into one single ruleset in flat
representation that contains the overall CoS behavior.

3.2 Recursive representation of rulesets
A ruleset can be viewed as a generalization of access control

lists (ACLs), typically used for reachability control [18]. A stan-
dard ACL has only two basic actions: “permit” and “deny”. Thus,
it can be seen as a function that maps an input to one of these two
output values. A ruleset generalizes the notion in a few ways. First,
a ruleset may recursively depend on other rulesets. The ruleset at
the top of the recursive hierarchy is a root ruleset that encompasses
a single CoS policy block. The rulesets at the bottom of the hierar-
chy, which we refer to as leaf rulesets, capture the matching criteria
for a flow (typically by using ACLs). Second, a ruleset permits a
broader range of actions than simple permit/deny. Third, a ruleset
can have an output action that transforms an input and forwards it
to another ruleset. We note however that only the root ruleset is al-
lowed to have an output action that transforms the input – the other
rulesets in the hierarchy are restricted to having simple outputs.

More formally, a ruleset is represented as a table F that maps
an input N-tuple flow f to an output action. Each column j in the
table is associated with either a basic field value (e.g., source IP) of
the input flow f (denoted by vj(f)), or another ruleset Fj , which
is itself represented as another mapping table. Let varsF = {j|
column j is associated with a basic input field}. For j ∈ varsF ,
the cell Fij specifies a match expression. The match expression
can include wildcards, and ranges of values just like for standard
ACLs. For j 6∈ varsF the cell Fij contains a subset of possible
outputs that could be produced by ruleset Fj . In addition, for each
row i, an output action act(i) gives the output of this row. Given
an input flow f we evaluate a ruleset by recursively evaluating the
Fj for each j 6∈ varsF . Flow f is said to match a row i if and only
if it matches every cell in row i. The output of table F given an
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Figure 7: Recursive ruleset representation of CoS configuration in

Fig. 3. Columns in italics refer to rulesets which are not shown.

input flow f , denoted F (f), is defined as the output action for the
row with the smallest index i that matches f , i.e., the action for the
first-matching row is taken. If no match is found until the end of
the table, a special output empty is associated with the flow.

Example: Fig. 7 shows how the example configuration pre-
sented in Fig. 3 can be depicted using two recursive hierarchies
of rulesets. Fig. 3 has two CoS policy blocks describing the polic-
ing rules (lines 7-17) and queueing rules (lines 18-28). Each of
these blocks corresponds to a root ruleset as shown in Fig. 7(c)
and Fig. 7(d), respectively. Each ACL can be represented as a leaf
ruleset, while configuration constructs such as class-map corre-
spond to intermediate rulesets. For instance, Fig. 7(a) and 7(b)
respectively show the ruleset representation of the ACL VOICE
and the class-map REALTIME. Intermediate and root rulesets are
expressed in terms of other rulesets lower in the hierarchy. For
instance, consider Fig. 7(b). The first two columns refer to the out-
puts of the rulesets VOICE and INTERACTIVE-VIDEO. The first
row is matched as long as the ruleset VOICE produces an output
of permit. The second row is matched for flows not matching the
ruleset VOICE, but matching the ruleset INTERACTIVE-VIDEO.
The remaining rows are matched in a similar fashion. Likewise, in
Fig. 7(c), each column refers to the output of the ruleset indicated,
and the output action of each row corresponds to a policing rule to
be invoked. For example, the policing rule P2 (line 12 in Fig. 3) is
invoked only if both the CRITICAL-DATA and ROUTING rulesets
are matched, and the REALTIME ruleset is not matched.

3.3 Flat representation of rulesets
The representation of a ruleset as defined in §3.2 is recursive in

that it may depend on other rulesets. While this recursive repre-
sentation is easily derivable from the configurations, we require a
non-recursive, flat representation for composing multiple rulesets.
The flat representation of a ruleset F consists of a set of unique
output actions {al}, and an associated subset S(F, al) including
all inputs (simply abbreviated as Sl when the context is clear), for
which action al is triggered. The subsets are non-overlapping (e.g.,
l 6= l′ =⇒ Sl ∩Sl′ = ∅). Note that the non-overlapping property
makes the ordering of the actions irrelevant.

We now present expressions that can construct the flat represen-
tation of a ruleset from its recursive representation using set oper-
ations. Let M(F, k) denote the set of flows that match row k of
ruleset F . Let FM(F, k) denote the set of flows that match row k

of function F and none prior to it. We can define S(F, A) to be the
set of flows for which the function F produces an output action A.
Then,

S(F, A) = ∪∀k,act(k)=AFM(F, k) (1a)

FM(F, k) = ∩k−1
i=1 (¬M(F, i)) ∩ M(F, k) (1b)

M(F, k) = ∩j 6∈varsF
S(Fj , Fkj) ∩j∈varsF

{f |vj(f) ∈ Fkj} (1c)
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Figure 8: Example of composing a tree of rulesets. Sl and al are

separated by "|". C and NC respectively denote conformant and non-

conformant flows.

3.4 Composing rulesets
Once each CoS policy block (e.g., marking, policing, queuing)

of each device (e.g., CER, PER) is expressed using a flat ruleset
representation, these rulesets can be composed into a single rule-
set that captures the end-to-end CoS policies. There are two key
considerations when composing rulesets. First, an output action
may change the input flow, e.g., the marking action, which sets the
DSCP bits to some specific value. Second, some action may change
the path of the flow. For example, a policing policy may choose to
drop non-conformant traffic while allowing conformant traffic to
continue on the path. This leads us to the following formulation.
An end-to-end policy can be described by a tree of nodes with each
node of the tree having a ruleset. Each unique output action in a
ruleset is a triplet (tag,func,next), where tag is a sequence
of string tags recording output actions encountered so far, func is
a mapping of the input (e.g., setting the DSCP bits), and next is
a reference to another node. Note that next can also be an empty
reference – in this case, the semantic is that the flow stops here. All
leaf nodes have a single triplet with an empty next for all incom-
ing flows. An input flow starts at the root of the tree and will then
get forwarded to the next node until reaching a leaf node. Two
types of leaf nodes drop and done exist to respectively signal the
discard of the flow and the end of the path traversed by the flow.
The func, if exists, transforms the input at each ruleset, and the
end-to-end treatment received by the flow is the concatenation of
all the tags on the path.

We can now more formally describe the composition steps needed
to collapse a tree of rulesets. Given a node n and a child node n′,
we combine them by replacing the ruleset in node n′ with a com-
bined ruleset and redirect any node that previously referred to n

to now refer to n′. In particular, let S and S′ be the flat repre-
sentations for the rulesets in nodes n and n′, respectively. We can
derive the flat representation of the combined ruleset (denoted by
S′′) by using a cross-product construction with S and S′, where
we replace the flows in S belonging to triplets having next = n′

with flows in S′ using the funcmapping, and leave the other flows
in S unchanged. More formally, we define the set of flows S′′

l→l′

associated with the combined action al→l′ in S′′ as follows:

S′′
l→l′ = {f |f ∈ Sland al(f) ∈ S′

l′} (2a)

al→l′ = (tagl → tagl′ ,funcl′ ◦ funcl,nextl′ ) (2b)

Note that if S′′
l→l′ is empty, we just delete it from S′′.
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Figure 9: Overview of CoS query tool.

With ruleset composition, any tree can be flattened into a single
node representation. Thus, we can derive the sequence of tags that
explain the per-ruleset treatment of a set Sl of flows along the path,
the funcl(Sl) will describe how the flows are transformed at the
end of the path. By examining the path of tags, design patterns and
any misbehavior can be easily discovered.
Example: Fig. 8(a) shows an example tree of flat rulesets including
marking (M), policing (P) and queueing (Q) policies. Each output
action is stored in a tag (e.g., M1 contains the marking action set
dscp=10). For the M ruleset, any flow not from 1.2.2.0/24 sub-
net is marked with DSCP of 40, and any flow from 1.2.2.0/24 is
marked with DSCP of 10. The P ruleset examines the DSCP value
of flows output from the M ruleset and performs the corresponding
output action. Note that for flows marked with DSCP of 10, non-
conformant traffic is dropped, which is modeled with next point-
ing to a drop node. For flows marked with DSCP 40, no action is
taken. The rules for the Q ruleset are simple: flows marked with
DSCP of 10 goes into Q1 queue, and flows with all other DSCP
values goes into the Q4 queue. Flows leaving the Q ruleset enter
a done node, indicating that the end of the path is reached and the
end-to-end treatments of the flows can be reported. Fig. 8(b) and
Fig. 8(c) respectively show the rulesets after composing the M and
P rulesets, and after composing the M, P, and Q rulesets.

4. A TOOL FOR QUERYING COS TREAT-

MENTS OF FLOWSETS
Based on our model in §3, we have designed and implemented a

query tool that can trace the end-to-end CoS treatments of flowsets.
In building the tool, our primary focus was on efficient and practical
composition of rulesets in a real-time fashion. As a secondary goal,
we were interested in augmenting the tool with auxiliary informa-
tion such as router forwarding tables. In the rest of this section, we
discuss our approach to achieve these goals.

4.1 Efficiently operating on rulesets
Fig. 9 shows a conceptual overview of the query tool. The tool

consists of two phases. In the preprocessing phase, based on the
configuration file of each router in the network, the appropriate
rulesets for each CoS policy block are created. Next, the flat ruleset
representation for each CoS policy is derived. The query process-
ing phase takes two inputs: (i) a set of flows described by an ACL,
whose CoS treatment needs to be determined; and (ii) a sequence
of routers that may be traversed by the flowset, over which the anal-
ysis must be conducted. Based on the sequence of routers specified
in the input, the preprocessed rulesets for the relevant CoS policies
on the path are loaded, and these rulesets are composed with the
input flowset to generate all possible end-to-end treatments that the
set of flows may receive when they traverse the path.

Flattening and composing rulesets (Equations (1) and (2)) re-
quire performing set operations such as union, intersection and
comparison. In general, performing such operations on large multi-
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dimensional rulesets is computationally expensive. In fact, in our
datasets, we found that intuitive approaches to combining rulesets
using simple cross-products of ACLs in the recursive representa-
tions of the rulesets could result in computation times of several
days even for a single enterprise VPN.

To effectively describe a set of flows and perform various opera-
tions on flowsets, we use binary decision diagrams (BDD) [14] as
the underlying data structure. A BDD is an efficient data structure
that can compactly and canonically represents a boolean function
as a directed acyclic graph, BDDs have been widely used in formal
verification of digital circuits, and we have been inspired by their
use to encode firewall rules in recent studies [19, 20, 12, 13].

In our context, a single flow is captured by a 6-tuple including
source and destination IP addresses and ports, protocol, and ToS
byte. Every bit in each of these fields corresponds to a BDD vari-
able – for instance an IP address is modeled with 32 BDD variables.
Performing standard set operations such as intersection, union, and
complement using BDDs is straightforward. It is also easy to deter-
mine membership, i.e., whether a particular flow belongs to a given
flowset. We refer readers to [14, 20] for more detailed information
about BDDs.

While standard set operators for manipulating BDDs are easily
implementable, one atypical operation we need in our context is the
func operator which may require the transformation of a subset of
nodes in a BDD in order to support marking actions during rule-
set composition. The steps that we employed to transform a BDD
involve first removing all BDD nodes corresponding to bits in the
ToS byte using a technique called existential quantification [15],
constructing a separate BDD using the new ToS value alone, and
merging the two BDDs together using set-union to create the trans-
formed BDD. While in our context, transformations primarily in-
volve a modification of the ToS byte, we defer an investigation on
whether more general transformation functions can be efficiently
supported by BDDs to future work.

Fig. 10 illustrates how we leverage BDDs to compose rulesets.
First, the flat representation of each root ruleset is precomputed
using BDDs by performing the set operations specified in Equa-
tion (1). For instance, in Fig. 10, the ruleset corresponding to
the marking policy block might be represented by multiple BDDs
(SM1 and SM3), each corresponding to a set of flows that are asso-
ciated with marking actions M1 and M3, respectively. This com-
putation itself leverages standard BDD operations. The network
operator enters an ACL which is converted to a flowset described
by a BDD (fin). The intersections of fin with SM1 and SM3 in-
dicates the subset of input flows that are marked M1 and M3. In
this example, the intersection of fin and SM3 is a null set, indicat-
ing all flows are marked as M1. Since the marking policy changes
the ToS byte, an explicit transformation (T ) of the output BDD is
required before the next stage is entered. A similar process is now
followed for the policing policy, and the remaining stages.

Usage Flowset ACL representation

troubleshooting a flowset operator specified operator specified

auditing a CER universal permit any any

address space permit AS(CER) any

auditing a path universal permit any any

between CERs address space permit AS(CER1) AS(CER2)

Table 1: Potential usage of the query tool. AS(CER) denotes the ad-

dress space of CER.

4.2 Considering forwarding information
In the basic version of our tool, the operator specifies a flowset

whose treatment needs to be determined, and the list of routers in
the path of interest. While this is already useful, the value of the
tool would be greatly augmented if it could automatically identify
the routers involved.

Our tool takes a first but limited step towards this goal by identi-
fying the source and destination CERs and PERs. To achieve this,
the tool makes use of the PER forwarding tables for each CER
interface. Specifically, each PER has a separate forwarding table
known as a VRF (Virtual Routing and Forwarding), one per CER-
facing interface. This table is looked up by the PER to forward
traffic arriving from the CER. Using this information, we determine
the address space of each CER interface by finding all addresses in
the VRF for which the CER interface is used as the next hop. When
an operator wishes to determine the flow treatment between two 2
IP addresses, the CER interfaces to which they belong is first iden-
tified based on the extracted address space information. Once the
CERs are determined, it is easy to determine the PERs to which
they are attached by correlating interfaces whose IP addresses fall
into the same subnet from the router configurations. It is possible
that for redundancy/load-sharing reasons, a CER may be attached
to multiple PERs, or may have multiple links to a PER. In such sce-
narios, we determine all possible paths between the pair of CERs,
and trace the CoS treatment along each path.

In some VPNs, traffic between two CERs may be relayed through
other intermediate CERs. Our tool may be extended to provide in-
formation about the CoS treatment at each intermediate CER, if in
addition to forwarding tables, routing table data is also utilized so
intermediate CERs can be determined. We note that our analysis in
§6 focuses on VPNs where all sites can directly communicate with
each other, and this issue does not arise.

Our tool currently does not consider the P routers in the MPLS
backbone, as we did not have access to configuration and forward-
ing table information of P routers. While our techniques can be
extended to P routers if this information is made available, the de-
signer indicated that CoS policies in the P routers are typically ho-
mogeneous queueing policies that are rarely activated due to band-
width overprovisioning in the backbone, and do not involve flow
transformations.

5. APPLYING THE TOOL
The tool enables an operator to input a flowset using an ACL.

This flexibility enables us to apply it to various scenarios (sum-
marized in Table 1). We describe some of the scenarios we have
explored below:
• Troubleshooting and what-if analysis: In its basic usage, the
tool could take an operator-specified ACL as input, to study the
CoS treatment of any flow(s) of interest, locate the root cause of a
potential problem, or conduct a what-if analysis. For a single flow
and path, we see a single possible end-to-end treatment. However,
if a flowset is provided, or if there are multiple paths that may be
taken for redundancy reasons, then the output may include multiple
possible flow-treatments.
• Auditing individual routers: The tool can be used by an op-



erator to trace all possible flow treatments within a router. This
may be useful to determine potential misconfigurations such as
the presence of policies in the router that are never triggered and
non-standard flow treatments. A first interesting mode involves us-
ing the universal flowset (the set of all possible flows). A second
mode, particularly to our enterprise VPN scenario, involves using
a flowset which corresponds to all traffic sourced from addresses in
the address space of a CER, determined using forwarding informa-
tion as described in §4.2. While using address space information
helps detect anomalous flow treatments that are potentially present
in the network today, using the universal flowset helps detect latent
errors that may not exist today, but could arise if the address space
of the CER changes.
• Auditing policies across a pair of routers: Similar to the above,
the tool could be used to understand all possible CoS patterns be-
tween a pair of routers either by using (i) the universal flowset; or
(ii) the flowset corresponding to all traffic with source and destina-
tion addresses corresponding to the address space of the two CERs.

6. EVALUATION AND RESULTS
We have applied our tool to study the CoS designs of several op-

erational enterprise VPNs. In this section, we describe our datasets
and present results from our analysis.

6.1 Data Sets
We collected router configuration files from 150 enterprise VPNs

(ENT1∼ENT150). 40% of the enterprises have more than 10 CERs
while 5% have more than 100 CERs. Note that these numbers only
reflect the number of CERs, and the size of each enterprise site be-
hind a CER can be much larger. These enterprises employ VPNs
with any-to-any connectivity (i.e., any site can directly communi-
cate with any other site). The dataset contains CER configuration
files from these enterprises, and the relevant PER configuration files
from the MPLS backbone. All the routers in our dataset are Cisco
routers managed by a tier-1 ISP. In addition, we have information
regarding the VRF forwarding tables of every PER on each CER-
PER interface, as described in §4.2.
Running Time: To get a sense of the running time of our tool, we
ran the tool with a query involving the universal flowset (the most
computationally expensive query) on all CER configurations across
all enterprises. On a dual-core Intel Itanium 2 1.6GHz system with
32GB of RAM, the median time across all CER configurations was
1.56 seconds, with values ranging between 0.27 and 6.55 seconds.
The larger computation times were in general associated with CERs
with larger ACLs. These numbers are very encouraging, and indi-
cate the potential for operators to use the tool for tracing flowsets
in an interactive fashion.

6.2 Usage of CoS in practice
In this section, we present a high-level analysis of our datasets to

better understand the prevalence and usage of CoS policies in oper-
ational networks. CoS configuration is the largest single functional
piece in CER configurations in our datasets, with 20%−60% of the
configuration lines of all CERs associated with CoS alone. Further,
we have observed that CoS-related changes are among the most
frequent in the VPNs we studied, with each CoS-related change
involving modifications to several configuration blocks.

Each CER in these VPNs is configured to support up to four dif-
ferent data classes – C1, C2, C3, and C4 (in order of decreasing
priority). C1 is the real-time class, designed for jitter and latency
sensitive applications like voice and video. C2 is the premium
class, designed for critical business applications such as database
transactions. C3 is the bulk data class, designed for medium pri-
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ority business applications such as email and file transfers. C4 is
the best-effort class, designed for the remaining background traf-
fic. In addition, other classes may exist to handle network manage-
ment traffic, such as SNMP query traffic, and traffic correspond-
ing to routing updates. Considering the data classes alone, each
CER could be configured to use the 4 data classes in 16 (24) pos-
sible ways (which we refer to as combinations), corresponding to
whether a particular data class is present or not. For instance, one
combination could include both C1 and C4, and another combina-
tion could include C1 or C4 alone.

Fig. 11 studies the diversity of CoS configuration of CERs within
an enterprise. The X-Axis is the number of combinations that are
present in an enterprise, and the Y-Axis is the fraction of enterprises
that contain fewer than a particular number of combinations. We
see that 60% of the enterprises are homogeneous, containing just
one single combination (i.e., the same set of classes are configured
in all CERs). However, the other enterprises show more diversity,
with some having as many as 7 different combinations that are con-
figured. This heterogeneity may stem from variations in bandwidth
capacity provisioned across sites, and the unique CoS requirements
of each site. For example, a site hosting the VoIP customer ser-
vice center may only need high priority real-time class, while a site
with multiple applications may need a mixture of voice and data
classes. As another example, data centers and head offices are of-
ten provisioned with higher capacity to the provider backbone than
peripheral locations.

Fig. 12 studies whether all, or only a subset, of the 16 possible
combinations are actually configured. Each combination is taken,
and the number of enterprises with at least one CER that uses the
combination is considered. It is interesting to see that all possible
combinations are configured for some VPN. In addition, some com-
binations are more popular than the others – 8 combinations (com-
binations 9 to 16) are each present in over 10 enterprises. These
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combinations correspond to different arrangements with the class
C3 (i.e., C3 alone, or C3 plus a subset of other classes), with the
largest combination (present in 100 enterprises) being the use of C3
alone. Further discussion with the designer indicates that C3 is the
recommended default class for customers. Finally, we observe that
even across homogeneous enterprises, 11 combinations are used,
indicating significant diversity in CoS usage across enterprises.

Overall, these results show that (i) the use of CoS is prevalent
in enterprise VPNs, (ii) there is significant diversity in CoS usage
across enterprises, and (iii) there exists a large degree of hetero-
geneity in how routers within an enterprise are configured. These
results strengthen the case for formal modeling of CoS policies.

6.3 Tracing end-to-end CoS design patterns
An application of our tool is to identify all possible treatments

that a flowset may receive on an end-to-end path. This can help
an operator analyze the design patterns used in putting together the
CoS design, as well as identify potentially anomalous patterns.

Fig. 13 pictorially shows the output obtained with our tool, when
run on the end-to-end path between the two CERs (CER1-PER1-
PER2-CER2) in ENT6. The left side of the figure shows three poli-
cies within CER1, the central portion shows the marking policy at
the ingress interface of PER1, and the right side shows the queuing
policy at the egress interface of PER2. At CER1, on the input inter-
face, traffic from the customer site (denoted by S) could be marked
using markers M2, M3, or M4, as belonging to C2, C3, or C4. Traf-
fic corresponding to each of these classes is policed according to
different parameters (dictated by policers P2, P3, and P4), and the
compliant/non-compliant traffic of different classes is then queued
in separate queues Q2, Q3 and Q4. Some interesting parts of the
design deserve further discussion. First, a subset of traffic marked
as belonging to each of these classes are simply transmitted (de-
noted by a policing rule Tx) without checks for compliance and
are respectively queued in the appropriate class based on markings
obtained at the input interface. This traffic corresponds to SLA
probe traffic, which may be injected to help determine that the traf-
fic corresponding to a particular class meets the performance met-
rics specified in the SLAs. Since the operator may explicitly desire
to test the performance of compliant traffic, the traffic must not be
subject to normal policing checks and should not be re-marked as
non-compliant. Second, a subset of traffic marked as belonging to
C2, C3, and C4 in the input interface are overridden and re-marked
as corresponding to network management traffic by the policer Pm.
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This traffic typically corresponds to SNMP query traffic and BGP
routing update traffic, that must be treated separately from the data
classes. In fact, we can see this traffic is queued separately in Qm.

Customer traffic leaving CER1 enters the ingress interface of
PER1. Based on the ToS byte of each packet, PER1 changes the
EXP field in its MPLS label (see §2.2). With network management
traffic, the EXP value is set unconditionally. However, the EXP
value of data traffic is changed conditionally based on compliance
to pre-set traffic parameters. Interestingly, traffic corresponding to
two of the data classes C2 and C3 is provided with an identical
EXP value, indicating that while the differentiation between traffic
belonging to C2 and C3 occurs at the enterprise edge, the traffic is
treated identically in the MPLS core. However, traffic in C4 con-
tinues to be treated at a lower priority level inside the core.

Finally, the right side of the figure shows how traffic is treated as
it comes out of PER2, and before entering CER2. We see that while
C3, and C4 traffic enter separate queues, the same queue is used
for C1, C2, and network management (NM) traffic. Note however
that the treatment handed out to these 3 traffic classes can still be
different (e.g., with different drop probabilities during congestion).

This example illustrates the power of our model in automatically
extracting the patterns used by the designer in identifying treat-
ment corresponding to various flows. It also highlights the need for
a systematic model, given the significant complexity of possible
treatments received by a flowset.

6.4 Detecting shadowed policy configurations
One application of our model is that it can help highlight shad-

owed policies (see §2.3). For instance, a CER may have a queuing
policy that pertains to four different classes. However, it is possible
that no traffic is ever classified as belonging to one of the classes,
and hence that portion of the queuing policy is never exercised.

In identifying shadowed policy configurations within a CER, we
consider two types of shadowing: (i) Universal Shadowing: Here,
we consider classes shadowed when the universal set of flows (see
§5 and Table 1) are fed through a CER – this indicates that a por-
tion of policy configuration is never utilized regardless of what traf-
fic may flow through the CER; (ii) Address Space Shadowing: we
consider shadowing that occurs only when the input flow contains
a source address in the address space of the CER. This indicates
that a portion of policy configuration is not utilized given the cur-

rent address space assignments to the CER, but might be used later
when the address space changes.

Fig. 14 shows the prevalence of shadowed policies in the 150
enterprises. The number of CERs where a particular type of shad-
owing is present is computed for each enterprise, and a CDF is
plotted. We see that around 35% of the enterprises have some
CERs with classes shadowed, and 5% of the enterprises have more
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Figure 16: CoS matrix for enterprise ENT83.

than 5 routers shadowed. While the presence of shadowing might
correspond to an inadvertent error made by the operator, it may
also correspond to legacy configuration lines or actual design in-
tent. For example, the tail in Fig. 14 corresponds to enterprise
ENT139, where 36 CERs have universal shadowing of class C4
in the policing and queueing policy configurations. A potential be-
nign explanation is that this was due to a deliberate design intent
to remove class C4 from these routers. To achieve this change, the
operators possibly modified the marking policy to no longer mark
flows as corresponding to C4, but did not remove the policing and
queuing rules already configured for that class. While a judgement
regarding whether a particular example represents genuine design
intent, or an error can only be made by the appropriate operators, a
tool like ours can bring such examples to the operators’ attention.

6.5 Mapping network-wide CoS designs
Using our tool, one may obtain network-wide views of CoS de-

signs. To derive such views, we consider a simple abstraction,
called a CoS matrix that models how various traffic classes can be
exchanged between two CERs (see Fig. 15(a) for an example). We
can visualize a CoS matrix with a directed graph. Here, each node
represents a CER annotated with a set of classes configured (de-
noted d:) and classes that may actually be active (denoted a:) tak-
ing shadowing into account. A bidirectional link between two nodes
indicates that when only the address spaces of the two CERs are
considered, they can communicate in a symmetric fashion using a
particular set of traffic classes as annotated on the link.

We have obtained such graphs for all enterprises in our datasets,
and we discuss some interesting examples that point the value of
our model and abstraction below.

Fig. 15(a) illustrates the CoS matrix for ENT1, a simple VPN
with two CERs. The annotations on each CER indicate that policies
corresponding to C1, C3, and C4 are defined in the configuration,
but only traffic corresponding to C1 may exit the router once shad-
owed policies are considered. Further, the two routers have a link
between them annotated with C1 indicating that C1 traffic may be
exchanged in either direction. Fig. 15(b) depicts the CoS matrix for

ENT20, which has three CERs. In this case, traffic corresponding
to C2 and C3 may exit each router, which is consistent with what
is configured by the network operator. However, it is interesting to
see that once the address spaces of the CERs are considered, each
router pair may only exchange C3 traffic. These examples high-
light the value of our model that can enable us to reason about what
traffic can be effectively exchanged between two VPN sites.

To show the value of our CoS matrix abstraction in reasoning
about the network design, Fig. 16 considers ENT83, a more com-
plex VPN with 9 CERs. It is interesting that 4 of the routers,
namely CER3, CER4, CER5, and CER6, form a clique and ex-
change traffic corresponding to C1 and C3 as shown by the dotted
lines. However two other routers (CER1 and CER2) are exclu-
sively configured with C1 and can only exchange C1 traffic with
other sites. We hypothesize that these two sites correspond to voice
call centers and only involve voice traffic. In contrast, the other
sites may include both voice and data traffic. Another interesting
aspect is that CER1 and CER2 are each co-located with another
router (i.e., CER1b and CER2b). This corresponds to a primary-
backup arrangement, where each site has two CERs, with one con-
figured as a primary and another configured as a backup. The
backup router normally does not involve traffic but may take over
if the primary fails. Finally, we note that a primary-backup ar-
rangement is also used with CER3. Interestingly, we observed that
CER3 has a default route back to itself. Discussions with the de-
signers shows that this is an indication that CER3 is a gateway site,
through which all traffic to the Internet is routed. It makes sense
that such redundant arrangements are mainly employed for critical
sites such as CER1, CER2, and CER3 that correspond to voice cen-
ters or gateway sites, where the costs of having redundancy setups
may be worthwhile.

One interesting observation is that in some enterprise VPNs, we
have seen examples of asymmetric classes between CER pairs. For
example, a pair of CERs may be able to communicate in C1 in
one direction, but not in the reverse direction. While we are un-
able to confirm the exact reasons behind this, we hypothesize that
there may be two possible scenarios. First, this could correspond
to streaming video traffic, or certain traffic types which are usu-
ally purely unidirectional. Second, it is possible that the two sites
are not intended to exchange C1 traffic in practice. To know this
for sure, we would need to combine actual traffic data exchanged
between sites with our CoS model.

6.6 Non-standard flow treatments
One application of our model and tool is in detecting whether

various application flows are treated in a correct and expected fash-
ion, and to identify any non-standard flow treatment that is a depar-
ture from best practice. To investigate this further, we used our tool
to collect a list of standard flow-treatment patterns that are expected
to hold and confirmed them with network designers. These patterns
capture the expected consistency in treatment of flows throughout
the marking, policing and queuing stages of the CERs. While we
have observed several patterns, in this paper we only list three most
significant and interesting ones, denoted by P1∼P3.
• P1: Flows marked as belonging to a data class by the marking
stage are usually re-marked by the policing stage as belonging to
the same class, but either conformant or non-conformant. A depar-
ture would be a case where a flow marked as belonging to a data
class (say C1) is re-marked by the policing stage as corresponding
to a different data class (say C2).
• P2: Flows leaving the policing stage marked as a particular data
class should go to the corresponding queue. A potential departure
is a scenario where a flow does not go into any queue defined in the
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configuration. In such cases, the flow enters a default queue and
could see non-deterministic and likely degraded performance, be-
cause the behavior of default queues is vendor and model-specific.
• P3: Flows that exit the CER should be explicitly marked by the
CER. A departure is a concern since the treatment of the flow is not
deterministic, and depends on how that flow was marked prior to
entering the CER.

In detecting the presence of non-standard flow treatments for
CERs, we have considered cases where non-standard flow treat-
ments could occur for (i) flows that correspond to the address space
of the CER; and (ii) the universal flowset (see §5 and Table 1). For
space reasons, we present results only when the address space of
the CER is considered.

Fig. 17 shows the departure from standard flow treatments across
all enterprises, considering the address space of each CER. Each
curve corresponds to one of the particular standard flow treatment
conditions that were violated. The X-Axis shows the number of
routers in an enterprise for which such departure from standard
treatment exists, and a point (X, Y ) shows that Y % of the enter-
prises have at most X CERs with non-standard treatment. For all
three patterns, there is no departure from standard treatment for
nearly 80% of the enterprises, and at most 5 routers for 95% of the
enterprises. This result indicates although non-standard flow treat-
ments are not prevalent, they do exist in a small set of routers in a
few enterprises.

We further analyzed the cases involving departures from stan-
dard treatments, and discussed these cases with designers and op-
erators. We summarize some of the insights from those discussions:
• Change in configuration practices, and handling of legacy routers:

The departures from pattern P1 corresponded to cases where flows
that traverse a CER could be marked on the input interface as corre-
sponding to a particular data class, and could then be re-marked on
the output interface as corresponding to another different data class.
This was not expected, as the standard expected flow treatments in-
volved each CER marking the flow only once, or re-marking as
conformant or non-conformant traffic for the same data class. Dis-
cussions with operators revealed that this departure was potentially
due to changes in configuration practices, as well the handling of
legacy routers. While the earlier practice was to configure marking
policies in the input interfaces of routers due to vendor capabilities
existing at the time, the newer practice was to configure marking
policies in the output interfaces of routers as underlying vendor ca-
pabilities evolved. Legacy routers configured using the earlier ap-
proach were not typically modified unless an actual policy change
was involved, in which case the policy changes were made on the
output interfaces, which is consistent with the newer practices. The
legacy configuration in the input interface was left behind, though
the best practice would have been to remove that.

• Underestimating performance of network through misconfigura-

tion of probe traffic: The departures from pattern P2 corresponded
to cases where traffic corresponding to SLA probes from some
CERs were incorrectly queued. Recall from §6.3 that SLA probes
are used to monitor the performance of each traffic class and ensure
that it is in compliance with the requirements. Incorrect configura-
tion of the SLA traffic does not impact the performance of the ap-
plication itself; however, it could impact the monitoring results. In
this scenario, the SLA probes were incorrectly assigned to the de-
fault queue which receives a lower priority than any other queues.
This would result in the probes underestimating the performance
compared to what the traffic classes are actually experiencing.
• Pre-marked customer traffic: We found examples where flows
that traverse a CER could potentially not be marked at all (neither
at the policing nor marking stage) by the CER, thereby departing
from pattern P3. The operators indicated that these scenarios likely
corresponded to cases where an explicit agreement with the cus-
tomer stipulates that the customer would properly mark all traffic
before it reached the CER. While best practice would have been for
the CERs to explicitly re-mark the traffic, the net treatment received
by correctly pre-marked flows would not be affected.

7. RELATED WORK
In recent years, the modeling and understanding of network de-

signs, and detection of errors through configuration analysis has
evolved into an important area of research. Researchers have looked
at routing designs [17, 5], route redistribution policies [16], reach-
ability analysis in enterprises [18], modeling of BGP policies [10,
6, 4], and intra-domain traffic engineering [11]. Industry-driven ef-
forts have attempted to simplify configuration through the use of
templates [1, 3, 9], or vendor-neutral configuration languages [7, 8,
2]. In contrast to these works, our focus is on CoS policies in enter-
prise networks, an important area that has received little attention.
The CoS domain offers several distinguishing challenges such as
highly intertwined and nested configuration, policies instantiated
over multiple routers, and the use of large ACLs. Further, manag-
ing CoS configuration involves tuning class memberships and CoS
policies at the granularity of individual flows, and misconfigura-
tions can result in SLA violations and adverse consequences.

The analysis of CoS configuration has some similarity to the
analysis of firewall rules in that both domains deal with large ACLs
and operate at the granularity of flows. Further, our use of BDDs
has been inspired by [20, 12, 13]. However, while much work on
firewall analysis deals with issues related to misconfiguration of in-
dividual ACLs, our focus is on modeling CoS policies in a network-
wide fashion across multiple routers. Recent works on distributed
firewalls [20, 12, 13] and enterprise reachability [18, 5] do consider
combining ACLs across devices. However, the actions are simple,
involving just a permit/deny of flows. With CoS, each router could
be associated with multiple policies (marking, policing, queueing),
each of which could have multiple ACLs corresponding to dif-
ferent classes, and actions could be much more complex, poten-
tially involving packet transformations. Our approach could thus
be viewed as a generalization of modeling simple ACLs.

8. DISCUSSION AND OPEN ISSUES
In this section, we discuss some key aspects of our work, and

open issues:
Scalability of ruleset composition: While our modeling frame-
work allows for the composition of an arbitrary number of rule-
sets, our current tool implementation focuses on configuration of
the CERs and PERs. Thus, relatively few rulesets need to be com-



posed despite each router may have multiple root rulesets, corre-
sponding to each of the marking, policing and queueing policies.
We believe that this is reasonable in our MPLS VPN settings given
that the CoS policies in the CER and PERs exhibit significant het-
erogeneity across customer networks and change frequently over
time, while the CoS policies in the P routers reflect provider poli-
cies, and tend to be homogeneous and stable. That said, one im-
portant question pertains to the scalability of our approach with the
number of rulesets that need to be composed. We believe that the
use of BDDs helps ensure better scaling properties than naive cross-
product techniques, and in the general, the computational complex-
ity would depend on the number of distinct flow treatments, and the
types of flow transformations that may occur. In practice, we ex-
pect the number of distinct flow treatments to be bounded, and the
flow transformations to be relatively simple (such as changing the
ToS byte), which would help contain the complexity. We defer a
more detailed investigation of these issues to the future.
Combining with routing information: In this paper, we focus on
composing rulesets given a set of routers, as well as use forward-
ing table information to determine the appropriate CERs and PERs
for a given flow. An interesting direction for future work involves
automatically determining the entire set of routers on the path, per-
haps through the use of routing table information. Availability of
such information will also enable use of the tool in settings such
as “hub-and-spoke” VPNs where traffic between two sites may tra-
verse through intermediate PERs and CERs.
Extension to other vendors: Our tool is currently based on Cisco
IOS. An interesting future direction is to extend our approach to
support other vendors such as Juniper and Alcatel. Based on a pre-
liminary inspection of configurations of these vendors, we believe
a modeling approach such as ours is still important and relevant.
The primary effort in adapting to other vendors involves the devel-
opment of a language-specific parser that can derive the formal rep-
resentation that we have proposed. One open question is whether
our model is expressive enough to capture all configuration options
of these vendors. In general, we believe that if a configuration lan-
guage uses ACLs to describe matching flows that belong to a traffic
class (as is the case with Cisco IOS), it fits naturally into our model.
Visualizing CoS matrix: While our CoS matrix abstraction can
help identify the set of classes that can be exchanged between ev-
ery pair of VPN sites, a ripe avenue for future work involves devel-
oping better visualization techniques that can compactly show the
CoS design for large-scale VPNs. One simple heuristic that we be-
lieve can significantly help involves identifying sites that exchange
exactly the same set of classes with other sites and collapsing them
into a single instance.

9. CONCLUSION
In this paper, we have shown how to model CoS policies from

low-level device configurations. Our approach centers around rule-

sets, a formal representation of configuration policies. Our repre-
sentation captures CoS policies in a manner independent of config-
uration syntax, allows the composition of policies across multiple
policy blocks within and across devices, and enables us to deal with
issues such as the transformation of flows across stages.

Based on our model, we have built a tool that can trace the end-
to-end CoS treatments of an arbitrary set of flows. The tool has
computation times in the order of seconds on real datasets and is
conducive for use by operators in an interactive fashion.

Using our tool, we have conducted the first study on CoS designs
of operational networks and analyzed a cross-section of 150 differ-
ent enterprise VPNs. Our analysis shows that the usage of CoS
is widely prevalent, points to significant diversity in CoS designs

across enterprises, and indicates that a large degree of heterogene-
ity exists in terms of how different routers within an enterprise are
configured.

The results also confirm the importance and effectiveness of our
model in assisting operators to reason about network-wide CoS
operations. In particular, we have demonstrated the potential of
the tool in extracting all possible flow treatments across a given
set of devices, identifying non-standard and potentially anomalous
flow treatments and shadowed configuration policies, and deriving
network-wide views of CoS designs.

Moving forward, we are interested in leveraging the concept of
rulesets to model other areas of network configuration, extending
our tool to consider other vendor configurations, and enhancing the
capability of our tool by incorporating models of routing design,
control and data plane reachability, as well as traffic data.
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