

Optimizing Quality of Experience for Long-Range UAS Video Streaming

Russell Shirey, Sanjay Rao, and Shreyas Sundaram School of Electrical and Computer Engineering Purdue University

Motivation

- ▶ UAS Systems are seeing rapid growing interest in long-range distances (e.g., exceeding Visual Line of Sight (VLOS)).
 - Regulations are beginning to support long-distance UAS flights globally.
- Many UAS applications involve recording and streaming video.
 - Critical quality requirements.
 - Locations are determined by mission requirements, not optimal connectivity.
- Our focus: addressing the challenges for UAS video streaming at long-range distances.
 - Design a new video streaming algorithm to address the challenges of long-range UAS flight networks, and achieve good performance.

Contributions

- Real-world measurement of fixed wing UAS flights at long-range distances.
 - Long dropouts (and periods of poor throughput).
 - Performance depends on flight path (especially orientation).
- Design Proteus, the first system for video streaming in long-range UAS settings.
 - Control theoretic approach combines 'terminal cost' with model predictive control, optimized based on the UAS flight path.
- Proteus significantly improves performance compared to a state-ofthe-art video streaming algorithm.
 - Reduced rebuffering ratio from 14.33% to 1.57% at the furthest distance, while maintaining other metrics comparable.

Motivating measurements

- Fixed-wing UAS flight tests.
 - ▶ Faster and longer endurance than multirotor.
- Circular orbits with distances 0.5 to 4.5 miles from the Ground Control Station (GCS) – beyond VLOS (with special approval).
- Tested with tactical radios (S-band and point-to-point).
- Omnidirectional antennas on the UAS for dynamic flight.

Flight measurement observations

- Dropouts are common in UAS settings.
- Dropout duration increases with distance.
- Coming towards the GCS orientation experiences more dropouts.

Proteus design rationale

- Optimize for long-range UAS flight.
 - Increase usable range to edge of connectivity, where dropouts are common.
- Focus on near real-time video streaming (< tens of seconds delays).</p>
 - Minor delays are acceptable in many situations, and allow extension of mission range to previously inoperable areas (e.g., disaster response or military to safely rescue and guide personnel).
- Adaptive Bit Rate (ABR) algorithms are applicable to our scenario.

State-of-the-art ABR does not work well for UAS settings

- Existing ABR algorithms focus on traditional Internet, not UAS flight.
- Example: MPC [Yin, SIGCOMM 2015]
 - Look-ahead window in which the bitrate over the next few chunks is selected.
 - Uses a combination of future throughput prediction and buffer occupancy to select chunk bitrates, and optimizes decisions based on predicted QoE.
- MPC emulation tests show very high rebuffering with UAS flight traces.
 - Median rebuffering ratio over 15% with a practical predictor at roughly 4 miles.
 - Even with a perfect Oracle predictor, rebuffering is still an issue.
 - ▶ Over 5% at roughly 4 miles, and over 10% for the most challenging flight trace.
 - Rebuffering due to the greedy nature of ABR algorithms.
 - Not accounting for long dropout periods, UAS flight network variability

Proteus – a new algorithm for UAS video streaming

- Proteus overcomes of the challenges of MPC by:
 - Explicitly considering UAS networking dropouts.
 - Incorporating flight path knowledge and its interplay with throughput.
- Handling dropouts:
 - We create a new optimization metric for each look-ahead window.
 - Proteus compensates for the greedy nature of MPC by explicitly incentivizing video left in the buffer when selecting bit rates.
- Integrated into the Proteus algorithm via a "terminal cost."

06/24/2021

Terminal cost with Proteus

- Proteus implements a new reward equation, with terminal cost.
 - Quality of Experience (QoE) is a widely used scoring system, based on video bitrate, video quality smoothness, and rebuffering/delay time.
 - Proteus adds a **terminal cost** term, $\gamma \cdot \epsilon(b)$, that carefully considers the amount of video in the buffer at the end of the window.

$$QoE_b = QoE(i, i + W - 1) + \gamma \cdot \epsilon(b)$$

Our new QoE equation to optimize for UAS flight:

- 1. i is the current video chunk.
- 2. W is the size of the look-ahead.
- 3. $\gamma \cdot \epsilon(b)$ is the newly added terminal cost.
- 4. b is the buffer size at the end of the look-ahead.
 - 5. γ scales the weight of the terminal cost.

Terminal cost design considerations

- Optimizing terminal cost: $\gamma \cdot \epsilon(b)$.
 - A larger term indicates more insurance, but sacrifices quality.
 - Need to fill up the buffer to a "sweet spot."
 - We design an $\epsilon(b)$ that is quadratic in the buffer occupancy b:
 - $ightharpoonup \epsilon(b)$ reaches a maximum of 1 when $b=\overline{b}$ but is 0 when b=0, or $b\geq 2\overline{b}$.

$$\epsilon(b) = \frac{\overline{b}^2 - (\min(b, 2\overline{b}) - \overline{b})^2}{\overline{b}^2}$$

Connecting UAS flight path to terminal cost

- The key question is how to set the parameters \bar{b} (target buffer size) and γ (terminal cost weight).
 - Tuned to UAS flight network characteristics (e.g. dropout duration).
- We devise two schemes to select terminal cost parameters:
 - Proteus (buffer insurance parameters are chosen based on distance).
 - \blacktriangleright Same \bar{b} and γ for entire circle.
 - Proteus-Orient (parameters based on both distance orientation).
 - \blacktriangleright We allow for a different \bar{b} and γ (based on circle orientation).

A test bed for emulated UAS flight network testing

- Emulation test-bed with real-world flight traces
 - Video streaming server (UAS) and separate client (GCS), using Dash.js.
 - Integrated flight path throughput, location, and orientation.
 - Used Mahimahi to ensure our network throughput and latency mimicked real-world flight traces.

QoE metric:

- Positive reward for higher bitrate chunks.
- Negative reward for changes in bitrate (smoothness) and rebuffering/delays.

Benefits of Proteus

- Proteus significantly out-performs MPC by reducing rebuffering.
 - Only slightly lower bitrate.
- Due to its greedy nature, MPC leaves the buffer nearly empty, resulting in rebuffering.

Benefits of Proteus across all traces

- Proteus significantly improves performance for circ(2-4).
 - Proteus greatly reduces rebuffering, while only slightly reducing bitrate.

Summary of other results

- Proteus-Orient: Considering orientation helps.
 - Increased video bitrate by 14.38% while reducing rebuffering by 2.34% (circ(3))
- Learning across traces:
 - Proteus can learn parameters in one trace and using them in a separate test, with further benefits (over 15% increase in QoE).
- ▶ **Predictor Sensitivity**: Proteus sees benefits with other predictors.
 - Proteus performed better with a Hidden Markov Model (HMM) predictor, (circ(2) QoE improved from 13.05 to 47.84, with other traces showing similar increases).
 - Still even with a perfect Oracle, Proteus saw benefits.

Conclusion

- Motivated by real-world UAS flight test data, we designed Proteus, the first system for long-range UAS video streaming.
 - Based on a control-theoretic ABR algorithm approach.
 - Carefully constructed terminal cost integrated into the recedinghorizon optimization at each point in time.
 - Terminal cost parameters carefully chosen based on UAS flight path (both distance and orientation).
- Proteus out-performs state-of-the-art ABR.
 - Reduce rebuffering ratio by 18.15% with most challenging trace.
 - ▶ Net QoE improvement increase from -198.84 to 3.83.
 - Benefits hold across traces and distances, and even with a perfect oracle predictor.

Thank you!

06/24/2021