Xatu: Richer Neural Network Based Prediction for Video Streaming

Yun Seong Nam^{1*}, Jianfei Gao¹, Chandan Bothra¹, Ehab Ghabashneh¹, Sanjay Rao¹, Bruno Ribeiro¹, Jibin Zhan², Hui Zhang²

¹Purdue University, ²Conviva, *Google

Internet video delivery ecosystem

- Internet video is delivered over:
 - Heterogeneous networks: WiFi, wired, 3G/4G LTE
 - Highly varying or challenging network conditions

Internet video streaming today

- Quality of experience(QoE) issues are common place.
- Many factors constitute QoE
 - Avoiding rebuffering
 - Ensuring as high a quality as possible

Low quality

Rebuffering

Background: Adaptive Bitrate Streaming

A video clip is encoded with multiple qualities (bitrates)

Background: Adaptive Bitrate Streaming

Video encoded at each bitrate is split into chunks

Background: Adaptive Bitrate Streaming

ABRs critically rely on predictions

4 sec of chunks in the player buffer

ABRs critically rely on predictions

Predicting chunk download time

Low quality!

Bitrate Decision

Rebuffering! 5.3 sec

4 sec of chunks in the player buffer

Contributions

- Expose limitations of existing approaches to predicting chunk download times.
 - Based on insights from video sessions of real users.
- Xatu, novel prediction approach based on a customised neural network.
- Evaluations showing Xatu's promise:
 - o 24% reduction in prediction error relative to state of the art. (CS2P, SIGCOMM 2016)
 - Integration with multiple ABRs with substantial performance improvement.

Existing prediction approaches

Existing prediction approaches

- Neglects TTFB (Time to First Byte).
- Assume chunk download times mainly depend on network throughput.
- Assume throughput independent of chunk size.

Existing prediction approaches

- State-of-the-art: CS2P [Sigcomm 2016]
 - Learns from prior video sessions.
 - Considers features such as ISP, CDN, access technology, and time of day.
 - Partitions video sessions based on these features, and uses a Hidden Markov Model for each combination of features.

What our data analysis reveals...

- 100K video sessions from real users
 - Collected over three months in 2017 from a content publisher in US.
 - Sessions spread over 89 ISPs, 1406 cities, and 2 CDNs.

What our data analysis reveals...

- 100K video sessions from real users
 - Collected over three months in 2017 from a content publisher in US.
 - Sessions spread over 89 ISPs, 1406 cities, and 2 CDNs.

TTFB contributes more than 40% of download times for 20% of the chunks.

What our data analysis reveals...

- 100K video sessions from real users
 - Collected over three months in 2017 from a content publisher in US.
 - Sessions spread over 89 ISPs, 1406 cities, and 2 CDNs.

Throughput tends to be higher for larger chunk size

Does clustering improve prediction accuracy?

- CS2P: Per-cluster HMM; Global-CS2P: HMM on sessions across all data.
- What our data shows:
 - In about 35% of clusters, CS2P shows similar or even worse prediction error than Global-CS2P.
 - Using features such as ISP, CDN etc. not always helpful and can even hurt.
- Why?
 - Apriori clustering reduces data-set to learn from.
 - Assumes sessions in the partition have similar network performance: not always true!

Xatu: Motivation

- Model sequences with multiple chunk-dependent features, not just throughput.
- Learn from similar sessions without pre-partitioning.

Xatu: Custom Architecture

LSTM layer

Xatu: Conventional vs Custom Architecture

Conventional approach

 Difficult to interpret which sessions are considered similar.

Xatu's custom approach

Gate mask helps in interpretability.

Xatu Architecture - Temporal feature block

- Temporal features of past 'k' chunks: d_{t-k}^(j) ... d_t^(j): size,
 TTFB, download time,
 throughput.
- Sequence modelled using LSTM to predict next value(s) in a time series.

Xatu Architecture - Static feature block

- Video session 'j' with 'n' static features.
- Static features: s_n(j)
- Output: gate mask, z^(j)

Xatu Architecture - Selective Gate

 Selective gate combines the static and temporal blocks.

Xatu is interpretable

- Gate mask output from static block: z^(j)
- Using PCA^[3], project gate masks into 2D space.
- Closer dots indicate Xatu identifies corresponding sessions have similar performance.

Xatu is interpretable:

Sessions with same CDN tend to have similar performance

Xatu is interpretable:

Sessions with same CDN tend to have similar performance

Time of day also plays a noticeable role

Evaluation Methodology

- How effective is Xatu in achieving better prediction accuracies than CS2P?
- How do better predictions translate into better performance for video streaming algorithms?
 - Integrate Xatu with well known ABR algorithms.

Prediction accuracy - Xatu vs. CS2P

y_t: Actual throughput,
ŷ_t: Predicted throughput,
C^(j): # of chunks in video session, j.

Mean Normalised Absolute Error (NAE) per session: $\frac{1}{C^{(j)}} \sum_{t=1}^{C^{(j)}} |\frac{y_t^{(j)} - y_t^{(j)}}{y_t^{(j)}}|$

Prediction accuracy - Xatu vs. CS2P

y_t: Actual throughput,
ŷ_t: Predicted throughput,
C^(j): # of chunks in video session, j.

Mean Normalised Absolute Error (NAE) per session: $\frac{1}{C^{(j)}} \sum_{t=1}^{C^{(j)}} |\frac{y_t^{(j)} - y_t^{(j)}}{y_t^{(j)}}|$

Reduce median and 90%ile of mean NAE by 23.8% and 41.8%

Does Xatu benefit ABR algorithms?

- Integrate Xatu with 2 representative ABR algorithms: MPC and FuguABR
 - MPC: Well studied algorithm based on Model Predictive Control.
 - FuguABR: Recent algorithm that uses a stochastic controller.

Does Xatu benefit ABR algorithms?

- Integrate Xatu with 2 representative ABR algorithms: MPC and FuguABR
 - MPC: Well studied algorithm based on Model Predictive Control.
 - FuguABR: Recent algorithm that uses a stochastic controller.

*Fully connected neural network. *Predicts probabilistic distribution of download times *Only temporal features and does not model TTFB. *ABR algorithm with stochastically optimal controller.

Does Xatu benefit ABR algorithms?

- Integrate Xatu with 2 representative ABR algorithms: MPC and FuguABR
 - MPC: Well studied algorithm based on Model Predictive Control.
 - FuguABR: Recent algorithm that uses a stochastic controller.

FuguABR + XatuDist v/s FuguABR + FuguNN

- QoE-SSIM (Linear combination of three metrics)
 - Average SSIM
 - Rebuffering Ratio
 - SSIM change magnitude

XatuDist observes higher QoE.

FuguABR + XatuDist v/s FuguABR + FuguNN

XatuDist achieves lower rebuffering ratio, median ~ 0 while FuguNN has median rebuffering of 2%.

Summary of other results:

- Relative to Pensieve (reinforcement learning approach), Xatu+MPC improves the median and 90%tile QoE by 29.2% and 5.8% respectively.
- Compared with CS2P+MPC, Xatu+MPC reduces the rebuffering events by 26% and improves the median average bitrate change magnitude by 17.4%.

Extensibility of Xatu to new information

- Generalize Xatu to other datasets and extend with new features.
- Collect a smaller data-set through controlled experiments which includes information about which CDN layer [Edge or Remote] each chunk is served from.

Extensibility of Xatu to new information

- Generalize Xatu to other datasets and extend with new features.
- Collect a smaller data-set through controlled experiments which includes information about which CDN layer [Edge or Remote] each chunk is served from.

Throughput depends on where a video chunk is served from

Extensibility of Xatu to new information

- Generalize Xatu to other datasets and extend with new features.
- Collect a smaller data-set through controlled experiments which includes information about which CDN layer [Edge or Remote] each chunk is served from.

New feature (CDN layer) improves the median and 90%ile prediction error by 13.1% and 31.5%.

Throughput depends on where a video chunk is served from

Conclusion

- Xatu achieves 24% reduction in prediction error relative to state of the art,
 CS2P, Sigcomm 2016.
- Xatu's custom architecture helps in interpretability and reduces prediction error by 9.4%.
- Xatu integrates with multiple ABRs and achieves significantly better performance.
- Xatu is extensible and adding new features reduces prediction error by 13%.
- Dataset available at: https://github.com/Purdue-ISL/XatuDataset

Thanks!

Q & A