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Internet video delivery ecosystem
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Internet video streaming today

e Quality of experience(QoE) issues are common place.

e Many factors constitute QoE

o Avoiding rebuffering
o Ensuring as high a quality as possible

Low quality Rebuffering

Low QoE adversely impacts user engagement and revenue




Background: Adaptive Bitrate Streaming
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ABRs critically rely on predictions
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Predicting chunk
download time

Low quality!
2.1 sec

ABRs critically rely on predictions

Bitrate
Decision

4 sec of chunks
in the player buffer

Rebuffering!




Contributions

e Expose limitations of existing approaches to predicting chunk download

times.
o Based on insights from video sessions of real users.

Xatu, novel prediction approach based on a customised neural network.
Evaluations showing Xatu’'s promise:

o 24% reduction in prediction error relative to state of the art. (CS2P, SIGCOMM 2016)
o Integration with multiple ABRs with substantial performance improvement.



Existing prediction approaches
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Existing prediction approaches
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network throughput.
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independent of chunk
size.
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Existing prediction approaches

e State-of-the-art: CS2P [Sigcomm 2016]
o Learns from prior video sessions.
o Considers features such as ISP, CDN, access technology, and time of day.
o Partitions video sessions based on these features, and uses a Hidden
Markov Model for each combination of features.
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What our data analysis reveals..

e 100K video sessions from real users
o Collected over three months in 2017 from a content publisher in US.
o Sessions spread over 89 ISPs, 1406 cities, and 2 CDNSs.
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Does clustering improve prediction accuracy?

e (CS2P: Per-cluster HMM; Global-CS2P: HMM on sessions across all data.

e \What our data shows:

@)

@)

In about 35% of clusters, CS2P shows similar or even worse prediction error than Global-

CS2P.

Using features such as ISP, CDN etc. not always helpful and can even hurt.

e Why?

@)

@)

Apriori clustering reduces data-set to learn from.

Assumes sessions in the partition have similar network performance: not always true!
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Xatu: Motivation
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o Model sequences with multiple chunk-dependent
features, not just throughput.

o Learn from similar sessions without pre-partitioning.
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Xatu: Custom Architecture

LSTM layer




Xatu: Conventional vs Custom Architecture
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Xatu Architecture - Temporal feature block
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Xatu Architecture - Static feature block
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Xatu Architecture - Selective Gate
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Xatu is interpretable
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Xatu is interpretable:
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Xatu is interpretable:
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Evaluation Methodology

e How effective is Xatu in achieving better prediction accuracies

than CS2P?
e How do better predictions translate into better performance for

video streaming algorithms?
o Integrate Xatu with well known ABR algorithms.
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Prediction accuracy - Xatu vs. CS2P
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Prediction accuracy - Xatu vs. CS2P

100

2]

o

9

- 80 Y. Actual throughput,

= 60 ¥,. Predicted throughput,

S C0): # of chunks in video session, j.

© 40 -

2 Mean Normalised Absolute 1 © y? -y
X t t

o 20 Error (NAE) per session: D Z' 0 '

8 Cszp ............ r=1 t

05— 20 40 60 80
Mean norm. abs. error (%)

Reduce median and 90%ile of mean NAE by 23.8% and 41.8%

28



Does Xatu benefit ABR algorithms?

e Integrate Xatu with 2 representative ABR algorithms: MPC and FuguABR
o MPC: Well studied algorithm based on Model Predictive Control.
o FuguABR: Recent algorithm that uses a stochastic controller.
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Does Xatu benefit ABR algorithms?

e Integrate Xatu with 2 representative ABR algorithms: MPC and FuguABR
o MPC: Well studied algorithm based on Model Predictive Control.
o FuguABR: Recent algorithm that uses a stochastic controller.

FuguNN

*Fully connected neural network.
*Predicts probabilistic distribution of
download times

*Only temporal features and does
not model TTFB.

FuguABR

\

*ABR algorithm with
stochastically optimal
controller.
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Does Xatu benefit ABR algorithms?

e Integrate Xatu with 2 representative ABR algorithms: MPC and FuguABR
o MPC: Well studied algorithm based on Model Predictive Control.
o FuguABR: Recent algorithm that uses a stochastic controller.

*Fully connected neural network.
*Predicts probabilistic distribution of
download times FuguABR

FuguNN
*Only temporal features and does

not model TTFB. *ABR algorithm with

stochastically optimal
controller.

*Adding uncertainty quantification

to Xatu to get Gaussian distribution
of download times.

*For fairness, disable static features
and TTFB.

XatuDist




FuguABR + XatuDist v/s FuguABR + FuguNN
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FuguABR + XatuDist v/s FuguABR + FuguNN
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Summary of other results:

e Relative to Pensieve (reinforcement learning approach), Xatu+MPC improves the median
and 90%tile QoE by 29.2% and 5.8% respectively.

e Compared with CS2P+MPC, Xatu+MPC reduces the rebuffering events by 26% and
improves the median average bitrate change magnitude by 17.4%.
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Extensibility of Xatu to new information

Generalize Xatu to other datasets and extend with
new features.

Collect a smaller data-set through controlled
experiments which includes information about
which CDN layer [Edge or Remote] each chunk is

served from.
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Extensibility of Xatu to new information
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Extensibility of Xatu to new information
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13.1% and 31.5%.

37



Conclusion

e Xatu achieves 24% reduction in prediction error relative to state of the art,
CS2P, Sigcomm 2016.

e Xatu's custom architecture helps in interpretability and reduces prediction
error by 9.4%.

e Xatu integrates with multiple ABRs and achieves significantly better

performance.

e Xatu is extensible and adding new features reduces prediction error by 13%.

e Dataset available at: https://github.com/Purdue-ISL/XatuDataset
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https://github.com/Purdue-ISL/XatuDataset

Thanks!
Q&A
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