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Abstract— Rigidity of formation is an importance concept in
multi-agent localization and control problems. There are well-
developed existing methods to test the rigidity of a given graph.
However, little work is done on quantitative measurement of
formation rigidity. In this paper, we propose the stiffness matrix
of a fomation representing both its rigidity and structural
information, from which we then derive the worst-case rigidity
index, as an applicable quantitative measure of formation
rigidity. Its validity is shown through the illustration of its
related properties, which conform to intuitive assumptions and
practical applications.

I. INTRODUCTION

Formation control of multi-agent systems consisting of
robots or unmanned vechicles with sensors and actuators
has been an ongoing topic in the research field. In many
applications, such as multi-agent antenna arrays, persisting a
stable formation is crucial to the functionality and efficiency
of the entire multi-agent network. Lots of research work
has been done from the perspective of control strategy
for the system as well as the persistence of the formation
itself. Rigidity theory then becomes growingly popular in
the research on the latter topic.

Much work has been done to determine whether a forma-
tion, or more generally speaking, a graph is (globally) rigid.
A formation underlaid by a rigid graph usually benefits from
its deterministic and unique realization. This characteristic
is often of considerable importance in multi-agent system,
as it often leads to localizability of agents and stability of
the entire formation. The rigidity test is mainly based on
two fundamental theorems, the rigidity matrix theorem [1],
[2] and Laman’s theorem [3]. These theorems have been
widely used in the field of multi-agent system [4], examples
of which include stabilization of multi-vehicle systems [5],
[6], and localization of wireless sensor networks [7], [8].

Although mature theory has been developed to test the
rigidity of graphs, little work is done on the comparison
among rigid formations. Such comparison, however, has
practical application in the analysis and design process of
formation. For instance, in a wireless sensor network local-
ization problem [8], one may choose from several formations
for sensors to minimize the uncertainty of their locations
after localization process under measurement error. Another
example is formation control of multi-vehicle system, where
it is best to implement a formation that is “easy” to persist,
in the sense that the controllers are more responsive to the
perturbation acting upon the system. These applications lead
to the need of a quantitative measure of formation rigidity,
which can provide instructive information in formation de-
sign and evaluation.

This paper contributes to the above problem by proposing
two new quantities for a graph, thestiffness matrixand
the worst-case rigidity index. We first derive the stiffness
matrix from a basic spring-mass system analogy, and then
show some of its properties and the underlying relation to
rigidity matrix in classic rigidity theory. Then, we introduce
the worst-case rigidity index, which is a scalar value derived
from the stiffness matrix. Several properties of this indexare
studied to show its validity and practical value as a measure
of formation rigidity. Finally, we give some examples to
illustrate how the worst-case rigidity index can be used to
evaluate formations comparatively.

In Section II, we define some notations that are used
throughout this paper. We introduce the concept of stiffness
matrix of a formation in Section III and its properties in
Section IV. Then, in Section V, we derive the worst-case
rigidity index, and demonstrate its validity as a quantitative
measure of formation rigidity. We give some examples to
illustrate the application of the worst-case rigidity index
in Section VI. We conclude in Section VII with some
perspective work related to the quatitative measurement of
formation rigidity.

II. NOTATION

In this section, the notation conventions used in this paper
is introduced.

R, Rn, Rn×m denotes the set of real numbers,n-
dimensional real column vectors, andn-by-m matrices,
respectively.R+ denotes the set of positive real numbers.
Italic lowercase letters, with or without subscripts, e.g.,
k, pij , represent scalar variables or constants. Italic uppercase
letters, such asR,K, Sij , are matrices. The tranpose ofA
is denoted asA⊤. Calligraphic letters, e.g.,I, C, denote
general sets. Column cectors are denoted by bold letters.
A vector is called amulti-quantity if it is a stacked vector
composed by several quantities which themselves are vectors.
A multi-quantity is denoted by a bold lowercase letter with
no subscript, and each of its components is denoted by the
same letter with a subscript. For example,p ∈ R

2N is a
multi-point, p = [p⊤

1 p⊤
2 · · · p⊤

N ]⊤; each component
pi ∈ R

2 represents the two-dimensional coordinate of a point
in a N -point system.

The inner product of two vectorsu,v ∈ R
n is defined as

〈u,v〉 = u⊤v ∈ R. In this paper, the norm of a vector
v particularly refers to its Euclidean norm, i.e.,‖v‖ =
√

〈v,v〉. For matrixA,B, we write A > 0 if A is positive
definite andA ≥ 0 is A is non-negative definite,A > B if
A − B > 0 andA ≥ B if A − B ≥ 0.



III. STIFFNESS MATRIX OF FORMATION

In this section, we propose the stiffness matrix of a
formation to establish the linear relationship between a
small perturbing force and resultant displacement on that
formation.

A. Analogy of Spring-Mass System

Consider a simplistic formation where two agents try
to maintain constant distanced along a one-dimensional
space. Each agent is implemented with a P-controller and an
actuator that outputs a force to move the agent. Letp1, p2

be the current positions of the two agents,p̂1, p̂2 be the
coordinates of natural positions, and∆p1,∆p2 denote the
small displacements,∆pi = pi − p̂i (i = 1, 2). Suppose
p̂2 − p̂1 = d, we have

{

p̈1 = k21(∆p2 − ∆p1)

p̈2 = k12(∆p1 − ∆p2)
(1)

with coefficientsk12, k21 > 0. If we supposek12 = k21,
the senario is analogous to a spring-mass system, where two
unit point masses are connected with a spring whose natural
length isd and spring constant equals tok12. Hencep̈i (i =
1, 2) represents the force acting upon thei-th agent with unit
mass. From (1) it is obvious that no force is acted upon the
agents if∆p1 = ∆p2, which describes a translation of the
formation.

We now consider a general two-dimensional static for-
mation of N agents. LetI = {1, 2, . . . , N} be the set
of indices of agents and a constant multi-pointp̂ =
[p̂⊤

1 p̂⊤
2 · · · p̂⊤

N ]⊤ ∈ R
2N be an initial configuration of

the formation, eacĥpi ∈ R
2 denoting the coordinate of the

i-th agent. We assign a non-negative scalarkij to each pair
of agents(i, j) ∈ I2, i 6= j, andkij = kji. This kij denotes
the connectivity coefficientbetween thei-th andj-th agents.
If kij > 0, then ‖p̂i − p̂j‖ = dij is a distance constraint
of the formation, whilekij = 0 implies that ‖p̂i − p̂j‖
is not constrained. Then we define theconnectivity matrix
K = [kij ] ∈ R

N×N . We call (I, p̂,K) a KP-formation.
We can analogize a KP-formation to a mass-spring system.

Each agent is represented by a mass point (for convenience
we will call this a point in later description, and pointi
represents thei-th agent in the formation). Ifkij > 0, i, j ∈
I, then we connect pointi and j by a spring with natural
length dij and spring constantkij . We may see that the
formation is maintained when all the springs are at their
natural length in the corresponding spring-mass system.

B. Perturbation Analysis of KP-Formation

The static formation is maintained when pointi stays at
their original locationp̂i for eachi ∈ I. The locations may
change if the system is subject to certain perturbation. We
now analyze the quantitative relation between displacement
and the causal perturbation.

Consider a KP-formation(I, p̂,K). We displace pointi
by a sufficiently small∆pi. The new coordinate of pointi

∆pj

Pij∆pj

∆pi

Pji∆pi

p̂j

p̂i

Fig. 1. Determining extended length of the spring using projection

is now pi, pi = p̂i + ∆pi. It can be shown that

|‖pi − pj‖ − ‖p̂i − p̂j‖| =‖Pji∆pi − Pij∆pj‖

+ o (‖∆pi − ∆pj‖) (2)

wherePij ∈ R
2×2 is the projection matrix,

Pij =
1

‖p̂j − p̂i‖2
(p̂j − p̂i)(p̂j − p̂i)

⊤. (3)

Let eij = (p̂j − p̂i)/‖p̂j − p̂i‖, thenPij can be expressed
asPij = eije

⊤
ij . It is obvious thatPij andPji are equal.

Fig. 1 illustrates an intuitive approach towards this result.
Notice that since both∆pi and∆pj are “small”, change in
the direction from pointi to point j is negligible, and hence
the projection matrices can be approximated using original
coordinates of pointi and j.

Recall that we have developed a spring-mass analogy for
a KP-formation. If kij > 0, the displacement of pointi
and j may stretch the imaginary spring connecting them.
By Hooke’s Law, the elastic force acting upon pointi is
kij (Pij∆pj − Pji∆pi), and kji (Pji∆pi − Pij∆pj) upon
point j. Then each point is acted upon a net forcefi where

fi =
∑

j∈I\{i}

kij (Pij∆pj − Pji∆pi) , i ∈ I (4)

Let ∆p = [∆p⊤
1 ∆p⊤

2 · · · ∆p⊤
N ]⊤ and f =

[f⊤1 f⊤2 · · · f⊤N ]⊤ ∈ R
2N . We call∆p amulti-displacement

and f a multi-force. We can rewrite (4) as follows,

f = −S∆p (5)

S =











S11 S12 · · · S1N

S21 S22 · · · S2N

...
...

.. .
...

SN1 SN2 · · · SNN











∈ R
2N×2N (6)

where S has components satisfying
{

Sij = −kijPij (i 6= j)

Sii =
∑

m∈I\{i} kimPim

i, j ∈ I (7)

DefineS as thestiffness matrixof KP-formation(I, p̂,K).
We may regard (5) as a generalized form of Hooke’s Law due
to its similarity to the expressionF = −k∆x. The stiffness
matrixS also has a structure resembling the Laplacian matrix
of a graph.



If we assume that the system under perturbation remains
stationary, by (5) it is clear that the perturbing multi-force
f̃ causing the displacement must satisfy the equilibrium
condition

f̃ = −f = S∆p. (8)

The increment of the elastic energy∆J , defined as the sum
of elastic energy stored in each imaginary spring in the
perturbed system, can be approximated as follows

∆J
.
=

∫ 1

0

〈S(α · ∆p),dα · ∆p〉 =
1

2
∆p⊤S∆p. (9)

IV. PROPERTIES OF STIFFNESS MATRIX

In this section, some attractive properties of the stiffness
matrix defined by (6) and (7) are discussed.

A. Scale Invariance

For a given KP-formation(I, p̂,K), we may scale the
configuration by a scalarγ ∈ R

+ and form a new KP-
formation, which can be described as(I, γp̂,K). It is not
difficult to show that the stiffness matrixS is invariant under
scaling because for eachi, j ∈ I, i 6= j, Pij is normalized,
thus being constant with respect toγ.

B. Invariance under Global Rigid Motions

Given a 2 × 2 rotation matrixQ and a constant vector
c ∈ R2, a new configuration̂p′ is said to be transformed
from p̂ under global rigid motions if p̂′

i = Qp̂i + c for
every i ∈ I. From the isometric property of rotation and
translation, we see that the two configurationsp̂ and p̂′ are
congruent, i.e., ‖p̂′

i − p̂′
j‖ = ‖p̂i − p̂j‖ for every i, j ∈ I.

Now we look at the new stiffness matrixS′ under global
rigid motions. The connectivity matrixK does not change,
hencekij remains constant. The projection matricesP ′

ij in
S′ are invariant with respect to translationc, but the rotation
operation will cause them to rotate accordingly, since

P ′
ij = e′ije

′⊤
ij =

1

‖p̂j − p̂i‖2
Q(p̂j − p̂i)(p̂j − p̂i)

⊤Q⊤

= QPijQ
⊤.

Therefore, we can represent the relation betweenS′ and S
by a similarity transformation,

S′ = (Q ⊗ IN )S(Q ⊗ IN )⊤ (10)

where⊗ denotes the Kronecker product of two matrices,IN

is theN ×N identity matrix. Note thatQ⊗ IN is a rotation
matrix satisfying(Q⊗ IN )(Q⊗ IN )⊤ = I2N , which can be
applied to the rotation of anN -member multi-point.

C. Non-negative Definiteness

The stiffness matrixS of a KP-formation(I, p̂,K) rep-
resents the linear relation between a set of perturbing forces
and the resultant displacements on that formation. We may
intuitively assert thatS should have only non-negative eigen-
values, for perturbing forces̃f and resultant displacements
∆p are unlikely to go in opposite directions. The proof of
this intuition is given below.

Proof: Given anyv = [v⊤
1 v⊤

2 · · · v⊤
N ]⊤ ∈ R

2N ,
whereN is the number of agents, expandv⊤Sv using (6)
and (7) and we have

v⊤Sv =
∑

i,j∈I

v⊤
i Sijvj

=
∑

i∈I

∑

j∈I\{j}

kijv
⊤
i Pijvi −

∑

i,j∈I
i6=j

kijv
⊤
i Pijvj (11)

Recall that a projection matrixPij has the formPij = eije
⊤
ij .

Therefore, (11) can be rewritten as follows,

v⊤Sv =
∑

i,j∈I
i6=j

kij

(

v⊤
i eij − v⊤

j eij

) (

e⊤ijvi − e⊤ijvj

)

=
∑

i,j∈I
i6=j

kij

∣

∣(vi − vj)
⊤eij

∣

∣

2
(12)

Hence, the stiffness matrixS is non-negative definite.

D. Relation to Rigidity Matrix

In rigidity theory, the concept ofrigidity matrix is often
useful to find out if a graph is rigid. [1] We hereby show
the relation between stiffness matrix and rigidity matrix,and
then adapt several conclusions from the properties of rigidity
matrices due to their similarity.

The rigidity matrix is defined through an infinitesimal
motion of the agents. Consider a KP-formation(I, p̂,K),
if kij > 0 for some i, j ∈ I, it implies that a distance
constraint is active between pointi and j, and therefore

‖pi − pj‖
2 ≡ d2

ij

wherepi denotes the location of pointi in a valid configura-
tion. Now we take the derivative at the initial configuration
p̂,

(ṗi − ṗj)
⊤(p̂i − p̂j) = 0 (13)

Let w = [ṗ⊤
1 ṗ⊤

2 · · · ṗ⊤
N ]⊤ ∈ R

2N . We can represent
(13) in a matrix form,

Rw = 0 (14)

where R ∈ R
M×2N is called aridigity matrix, and M is

the number of active distance constraints. In rigidity theory,
a configuration is calledinfinitesimally rigid if and only if
rank(R) = 2N − 3. [1], [2]

Now we consider the null space ofS. Alternatively, the
null space ofS can be determined bynull(S) = {v ∈ R

2N :
v⊤Sv = 0}. From (12) it is clearly seen thatv ∈ null(s) if
and only if the following holds,

(vi − vj)
⊤eij = 0, ∀ i, j ∈ I s.t. i 6= j andkij 6= 0 (15)

Recall thateij = (p̂j− p̂i)/‖p̂j− p̂i‖. We may find that the
solutions to (15) coincides with those to (14), which reveals
the fact that rigidity matrixR and stiffness matrixS share
the same null space.

This property is of considerable significance because we
can now claim that the KP-formation is rigid if the stiffness
matrix S has rank2N − 3. This conclusion will be useful



when we discuss the quantitative measurement of rigidity in
the next section.

Also, from this relation one can claim that any global rigid
motions (translation and rotation) fall into the null spaceof
S, for it is known that they are withinnull(R). [9] We
denote the set of two-dimensional global rigid motionsv

corresponding to a KP-formation(I, p̂,K) by isoN (p̂). It
is not difficult to show thatisoN (p̂) is a linear subspace of
R

2N and the dimension of the subspace is3.

V. QUANTITATIVE MEASURE OF RIGIDITY

In this section, a quantitative measure of KP-formation
(I, p̂,K) is derived from the stiffness matrixS. We also
show some interesting properties of this measure to demon-
strate its value in practical applications.

A. Decomposition of Perturbation

For every formation, there exist global rigid motions that
translate or rotate the formation as a whole without defor-
mation. Configurations infinitesimally perturbed in the same
directions of these global rigid motions are thus congruent
to the original configuration. We may see that these kinds
of perturbation will not change the inner energy related to
the deformation but only the global kinetic energy, if the
formation is regarded as a single rigid body. Therefore, it is
necessary to exclude such perturbation when we analyze the
rigidity of a formation.

In last section it is shown that the global rigid motions
for a two-dimensionalN -agent formation form a three-
dimensional subspaceisoN (p̂) of R

2N . Therefore, for any
v ∈ R

2N , there existu ∈ isoN (p̂) and w ∈ isoN (p̂)
⊥

such thatv = u + w. We callu trivial perturbation andw

equilibrium perturbation.
However, for trivial perturbation∆p ∈ isoN (p̂), we

cannot assume that configurationp is congruent top + ∆p

because an element inisoN (p̂) represents only the direction
of a rigid motion, not the result, i.e., the displacement of
the motion. We may see that for∆p representing pure
translations,p andp+∆p are congruent; but if∆p involves
rotation, the configuration is deformed. This, however, does
not cause much trouble because by assumption the perturbing
displacement is “very small”, in which case we can let
‖∆p‖ → 0, which resolves the conflict in concepts.

Based on the above facts, we only consider perturbation
∆p ∈ isoN (p̂)

⊥ in the following analysis. It can be verified
that the rigidity indices are constants with respect to‖∆p‖,
hence it is valid to omit the analysis in limit case when
‖∆p‖ → 0.

B. Worst-Case Rigidity Index (W.R.I)

Recall that in (9) we gave the expression of the approxi-
mated energy increment∆J under a small perturbation∆p.
Now we fix the magnitude of the perturbation, i.e.‖∆p‖ ≡
c, and change the direction of perturbing displacements.
Consequently,∆J varies with∆p. The magnitude of∆J
implies the sensitivity of the formation to the perturbation.
With larger ∆J , the agents are pushed back to the initial

configuration harder, while∆J = 0 means the deformation
does not raise any correction forces. The latter situation
implies that the formation is not rigid under an infititesimal
motion. Therefore, the worst case can be determined when
∆J has the least magnitude. We define theworst-case
rigidity index rw to be twice the minimum ratio of∆J and
‖∆p‖2,

rw , min
∆p 6∈isoN (p̂)

2∆J

‖∆p‖2
= min

∆p 6∈isoN (p̂)

∆p⊤S∆p

∆p⊤∆p
(16)

The coefficient2 here is inspired byk = 2E/(∆x)2 for a
single-spring system.

SinceS is real symetric non-negative definite matrix,S
has2N non-negative eigenvaluesλn, n = 1, 2, · · · , 2N . We
sort them such that0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λ2N . As it is al-
ready shown thatisoN (p̂) ⊂ null(S) anddim (isoN (p̂)) =
3, the minimization over the spaceR2N\isoN (p̂) gives us
the fourth smallest eigenvalue, hence

rw = λ4 (17)

C. Properties of Worst-Case Rigidity Index

We hereby show some properties of worst-case rigidity
index. These properties conform to our intuitive assumptions
of a rigidity measure.

Property 1. A non-rigid graph has zero as the value of
its worst-case rigidity index. This is a corollary from (17),
since a non-rigid graph has a rigidity matrixR such that
rank(R) ≤ 2N − 4, thereforedim(null(R)) ≥ 4. Recalling
the fact thatnull(R) = null(S) where S is the stiffness
matrix, we conclude thatλ4 = 0.

Property 2. The worst-case rigidity index is an invariant
under rigid body motions and scaling of the formation.
This is a direct result from the properties of the stiffness
matrix shown in Section IV. Recall that stiffness matrixS
is invariant under scaling and translation, and rigid body
rotations only result a similarity transformation which does
not change the eigenvalues of a matrix. Therefore,rw is
invariant under these operations.

Property 3. rw is a monotone increasing function of
kij ,∀i, j ∈ I. Its interpretation is that, increasing the con-
nectivity between any pair of nodes will always contribute
positively to the global rigidity. This property well fits our
intuitive assumption of a rigidity measure.

Proof: Suppose we increment the connectivity matrix
K to K ′ = [k′

ij ], in the sense thatk′
ij = kij +∆kij ,∆kij =

∆kji > 0,∀ i, j ∈ I, i 6= j. Let S be the stiffness matrix
of (I, p̂,K) and S′ be the stiffness matrix of(I, p̂,K ′).
The worst-case rigidity indices arerw and r′w accordingly.
By linearity, we may find thatS′ − S actually satisfies the
definition of the stiffness matrix of(I, p̂,K ′−K). Therefore,
S′−S ≥ 0 by property of stiffness matrix. This is equivalent
to S′ ≥ S. Note thatS andS′ share the same rigid motion
spaceisoN (p̂), by definition of worst-case rigidity index in
(16), we can readily reach the conclusion thatr′w ≥ rw.

The above properties ensure the validity of the worst-case
rigidity index as a quantitative measure of formation rigidity.
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Fig. 2. Examples of simple formations

From the definition we may see a largerrw indicates greater
inflexibility of a formation. This then can be used in the
applications where comparisons between different formations
are demanded.

VI. EXAMPLES

In Section V, two measures of formation rigidity are
proposed: worst-case rigidity index (W.R.I) and mean rigidity
index (M.R.I). In this section, some examples are given to
illustrate quantitative analysis of a formation using these
rigidity indices.

A. Rigid and Non-Rigid Formations

We first look at some simple formations illustrated in
Fig. 2, where a circle represents an agent, and an egde
between a pair of agents represents a distance constraint with
connectivity coefficient fixed to1. Table I gives the rigidity
indices of these formations.

TABLE I

RIGIDITY INDICES OF FORMATIONS IN FIG. 2

Formation No. of agents Is rigid? W.R.I
a 2 Yes 2
b 3 Yes 1.5
c 4 Yes 0.586
d 3 No 0
e 3 No 0
f 4 No 0

In compliance to the results in Section V-C, the values of
worst-case rigidity index for non-rigid formations are zero.

B. Rigid Formations with Same Number of Agents

Next, we try to utilize the worst-case rigidity index to
compare among several formations that have the same num-
ber of agents. We still assume that every distance constraint
has an equal connectivity weight, in which case we may
let kij = 1 distance constraint is applied between agenti
andj without loss of generality. The sample formations are
illustrated in Fig. 3. Each formation contains five agents.
Formation g1,g2,g3 share the same configuration but differ
in the number of distance constraints. Table II lists the results
of the quantitative rigidity tests.

(t)(q)

(g1) (g2) (g3)

Fig. 3. Examples of rigid formations with5 agents

TABLE II

RIGIDITY INDICES OF FORMATIONS IN FIG. 3

Formation No. of agents Is rigid? W.R.I
g1 5 Yes 0.4912
g2 5 Yes 0.4939
g3 5 Yes 2.5
q 5 Yes 1
t 5 Yes 0.5829

Comparing Formation (g1),(g2),(g3), we may clearly see
that with the incrementing number of distance constraints,
the worst-case rigidity index rises accordingly, which satisfy
the argument in Section V-C. Notice that from (g1) to
(g2), the increase of the value is small, while (g3) has a
much larger value of the rigidity index. This implies that
symmetry of a formation may have great positive impact on
formation rigidity, for it usually has the least vulnerability in
all directions of perturbation.

We can also compare Formation (g2) with (q) since their
number of distance constraints are also equal. Result shows
that Formation (q), which has a symmetric structure, owns
a much higher value of worst-case rigidity index than (g2).
From comparison between Formation (g1) and (t), we may
assert that Formation (t) is likely to outperform (g1) in
most applications regarding multi-agent formation control.
An brief explanation can be the fact that equilateral triangles
are more stable than non-equilateral ones.

VII. CONCLUSION

In this paper, we have come up with two new concepts
of a formation, the stiffness matrix and the worst-case
rigidity index, where the latter value is a scalar derived
from the stiffness matrix. Further calculation reveals that the
worst-case rigidity index coincides with the fourth smallest
eigenvalue of stiffness matrix. We also showed that this
rigidity index has properties that meet the demands in real
applications, hence being a practical quatitative measureof
formation rigidity.

By using the worst-case rigidity index, we have noticed
an interesting result in Section VI that symmetric formations
are usually far more rigid than asymmetric formations, in the
sense that the former usually has a worst-case rigidity index
much higher than the latter, given the same number of agents



and distance constraints in both formations. This information
may become helpful when one designs a formation for multi-
agent control system.

There are several perspective topics related to the quan-
titative measurement of formation rigidity. First, we would
like to know if the conclusions can be generalized to three
or higher dimensional formations, and what additional prop-
erties of either stiffness matrix or worst-case rigidity index
can be found in such higher dimensional spaces. Second,
we want to search for a measurement that can compare two
non-rigid structure, since the worst-case rigidity index will
be zero for every formation that is not infinitesimally rigid.
Finally, the worst-case rigidity index only characterize the
rigidity of a static formation. We want to know if moving
formations will have extra dynamic information which can
be extracted to determine the quantitative rigidity.
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