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Abstract— Rigidity of formation is an importance concept in This paper contributes to the above problem by proposing
multi-agent Io_ca}lization and control prot_;le_ms. There_ are well-  two new guantities for a graph, thstiffness matrixand
developed existing methods to test the rigidity of a given graph. the worst-case rigidity indexWe first derive the stiffness

However, little work is done on quantitative measurement of trix f basi . ¢ | d th
formation rigidity. In this paper, we propose the stiffness matrix ~ atfx Ifom a basic spring-mass systeém anaiogy, and then

of a fomation representing both its rigidity and structural Show some of its properties and the underlying relation to
information, from which we then derive the worst-case rigidity ~ rigidity matrix in classic rigidity theory. Then, we intrade

index, as an applicable quantitative measure of formation the worst-case rigidity index, which is a scalar value dtiv
rigidity. Its validity is shown through the illustration of its  fom the stiffness matrix. Several properties of this indes
related properties, which conform to intuitive assumptions and studied to show its validity and practical value as a measure
practical applications. g o - :
of formation rigidity. Finally, we give some examples to
I. INTRODUCTION illustrate how the worst-case _rigidity index can be used to
evaluate formations comparatively.

Formation control of multi-agent systems consisting of |n Section Il, we define some notations that are used
robots or unmanned vechicles with sensors and actuat@foughout this paper. We introduce the concept of stifnes
has been an ongoing topic in the research field. In mamatrix of a formation in Section Ill and its properties in
applications, such as multi-agent antenna arrays, pesiat Section IV. Then, in Section V, we derive the worst-case
stable formation is crucial to the functionality and effi@y rigidity index, and demonstrate its validity as a quaniitat
of the entire multi-agent network. Lots of research workneasure of formation rigidity. We give some examples to
has been done from the perspective of control strateg¥ustrate the application of the worst-case rigidity irde
for the system as well as the persistence of the formatigR Section VI. We conclude in Section VII with some
itself. Rigidity theory then becomes growingly popular inperspective work related to the quatitative measurement of

the research on the latter topic. formation rigidity.
Much work has been done to determine whether a forma-
tion, or more generally speaking, a graph is (globally)digi II. NOTATION
A formation underlaid by a rigid graph usually benefits from
its deterministic and unique realization. This charastgri In this section, the notation conventions used in this paper

is often of considerable importance in multi-agent systenis introduced.

as it often leads to localizability of agents and stabilify o R,R™ R"*™ denotes the set of real numbers;-

the entire formation. The rigidity test is mainly based ordimensional real column vectors, andby-m matrices,

two fundamental theorems, the rigidity matrix theorem [1]respectively.R* denotes the set of positive real numbers.

[2] and Laman’s theorem [3]. These theorems have bedtalic lowercase letters, with or without subscripts, g.g.

widely used in the field of multi-agent system [4], exampleg:, p;;, represent scalar variables or constants. Italic uppercas

of which include stabilization of multi-vehicle systemd],[5 letters, such ast, K, S;;, are matrices. The tranpose df

[6], and localization of wireless sensor networks [7], [8]. is denoted asA'. Calligraphic letters, e.g.Z,C, denote
Although mature theory has been developed to test tlgeneral sets. Column cectors are denoted by bold letters.

rigidity of graphs, little work is done on the comparisonA vector is called amulti-quantityif it is a stacked vector

among rigid formations. Such comparison, however, hazomposed by several quantities which themselves are gector

practical application in the analysis and design process éf multi-quantity is denoted by a bold lowercase letter with

formation. For instance, in a wireless sensor network locaho subscript, and each of its components is denoted by the

ization problem [8], one may choose from several formationsame letter with a subscript. For exampte,c R is a

for sensors to minimize the uncertainty of their locationgnulti-point, p = [p{ p, --- pJ]'; each component

after localization process under measurement error. Aamothp; € R? represents the two-dimensional coordinate of a point

example is formation control of multi-vehicle system, wer in a N-point system.

it is best to implement a formation that is “easy” to persist, The inner product of two vectors, v € R" is defined as

in the sense that the controllers are more responsive to the,v) = u'v € R. In this paper, the norm of a vector

perturbation acting upon the system. These applicaticats lev particularly refers to its Euclidean norm, i.gly| =

to the need of a quantitative measure of formation rigidity,/(v, v). For matrix A, B, we write A > 0 if A is positive

which can provide instructive information in formation de-definite andA > 0 is A is non-negative definited > B if

sign and evaluation. A—B>0andA>Bif A—B>0.



[1l. STIFFNESS MATRIX OF FORMATION Py Ap;

In this section, we propose the stiffness matrix of a O s
formation to establish the linear relationship between a IR N
. . - Pi
small perturbing force and resultant displacement on that -
formation. Ap; pj -
A. Analogy of Spring-Mass System 77

Consider a simplistic formation where two agents try PijAp;

to maintain constant distancé along a one-dimensional
space. Each agent is implemented with a P-controller and an
actuator that outputs a force to move the agent. jepo
be the current positions of the two agenfs, p. be the
coordinates of natural positions, amkp,, Ap, denote the

Fig. 1. Determining extended length of the spring using tae

is now p;, p; = P; + Ap;. It can be shown that

small displacementsip; = p; — p; (i = 1,2). Suppose  [[|pi — p;l| — [[Bi — Bsll| =[P Api — Py Ap|
p2 —p1 = d, we have +o(l|Ap; — Apjl]) ()
P1 = k21(Apa — Apy) 0 where P;; € R?*? s the projection matrix,
P2 = k12(Ap1 — Apz) 1 o e anT
. N P = ﬁ(l)j —Pi)(Bj — P1) - 3
with coefficientskio, ko1 > 0. If we supposekis = ko, b5 — Bill

the senario is analogous to a spring-mass system, where tyg e;; = (pj — Di)/|P; — Pill, then P,; can be expressed
unit point masses are connected with a spring whose natugg p,; — e;je.;. It is obvious thatP;; and P;; are equal.
length isd and spring constant equals 9. Hencep; (i = Fig. 1 illustrates an intuitive approach towards this resul
1,2) represents the force acting upon thif agent with unit  Notice that since boti\p; and Ap, are “small”, change in
mass. From (1) it is obvious that no force is acted upon th@e direction from point to point j is negligible, and hence
agents ifAp; = Ap,, which describes a translation of thethe projection matrices can be approximated using original
formation. coordinates of point and ;.

We now consider a general two-dimensional static for- Recall that we have developed a spring-mass analogy for
mation of N agents. Let? = {1,2,...,N} be the set a Kp-formation. Ifk;; > 0, the displacement of poini
of indices of agents and a constant multi-poift = and j may stretch the imaginary spring connecting them.
b{ P2 --- Pyl" € R*N be an initial configuration of By Hooke's Law, the elastic force acting upon poinis
the formation, eaclp; € R? denoting the coordinate of the ki; (P;Ap; — PjApy), and kj; (Pj;Ap; — Pi;Ap;) upon
i-th agent. We assign a non-negative scalgrto each pair point j. Then each point is acted upon a net fofgavhere
of agents(i, j) € Z2,i # j, andk;; = k;;. This k;; denotes

the connectivity coefficierbetween the-th andj-th agents. fi = Z kij (PijAp; — PjiAp;), i€l (4)
If ki; > 0, then||p; — p;|| = di; is a distance constraint JET\(i}

of the formation, whilek;; = 0 implies that ||p; — B,/ Let Ap = [Ap] Ap] .- AplT and f —
is not constrained. Then we define thennectivity matrix €7 £ - £1]7 € R2V. We call Ap amulti-displacement
K = [ki;] € RV*N . We call (Z,p, K) a KP-formation L2 N ) p P

. . . andf a multi-force We can rewrite (4) as follows,
We can analogize a KP-formation to a mass-spring system.

Each agent is represented by a mass point (for convenience f=—SAp (5)
we will call this a point in later description, and point

represents théth agent in the formation). I§;; > 0, i,j € Su - Sizooe Siv

7, then we connect point and j by a spring with natural g So1 Saz o0 San c R2V2N  (p)
length d;; and spring constank;;. We may see that the : : ' :

formation is maintained when all the springs are at their Sxvi Sna - Snn

natural length in the corresponding spring-mass system. o
where S has components satisfying

B. Perturbation Analysis of KP-Formation .
. o o _ Sij = —kijPij (i #J)
The static formation is maintained when poinstays at

. .. . . . Sii = ZmEI\{i} kimPim
their original locationp; for eachi € Z. The locations may
change if the system is subject to certain perturbation. Weefine S as thestiffness matridof KP-formation (Z, p, K).
now analyze the quantitative relation between displacémewe may regard (5) as a generalized form of Hooke’s Law due
and the causal perturbation. to its similarity to the expressioR' = —kAx. The stiffness
Consider a KP-formatioiZ, p, K). We displace point  matrix S also has a structure resembling the Laplacian matrix
by a sufficiently smallAp;. The new coordinate of point of a graph.

1,j €T @)



If we assume that the system under perturbation remains Proof: Given anyv = [v{ v, -+ v}]|T € R?Y,
stationary, by (5) it is clear that the perturbing multider where N is the number of agents, expand Sv using (6)
f causing the displacement must satisfy the equilibriurand (7) and we have

condition
f=—f=SAp. (8) viSv= Z v Sijv;
i,JEL
The increment of the elastic energdy/, defined as the sum _ Z Z kijv;rpijvi _ Z kijV;rPijVj (11)
of elastic energy stored in each imaginary spring in the €T e} et
perturbed system, can be approximated as follows 7]

ot 1. Recall that a projection matrik;; has the formP;; = eijeiTj.
AJ :/O (S(a-Ap),da-Ap) = 74P SAp. (9 Therefore, (11) can be rewritten as follows,

IV. PROPERTIES OF STIFFNESS MATRIX vISv =" ki (vie; — v e;) (efvi—elv;)
In this section, some attractive properties of the stiffnes lgsz
matrix defined by (6) and (7) are discussed. 2
= > kij|(vi—v;) e (12)
A. Scale Invariance ”751
17

For a given KP-formationZ, p, K), we may scale the
configuration by a scalay € R* and form a new KP-
formation, which can be described &6, vp, K). It is not D. Relation to Rigidity Matrix
difficult to show that the stiffness matri& is invariant under
scaling because for eadghj € 7,7 # j, P;; is normalized,
thus being constant with respect4o

Hence, the stiffness matri¥ is non-negative definite. m

In rigidity theory, the concept ofigidity matrix is often
useful to find out if a graph is rigid. [1] We hereby show
the relation between stiffness matrix and rigidity materd
B. Invariance under Global R|g|d Motions then adapt several conclusions from the properties Oflt}gld
matrices due to their similarity.

The rigidity matrix is defined through an infinitesimal
motion of the agents. Consider a KP-formati¢h, p, K),
if k;; > 0 for somei,j € Z, it implies that a distance
constraint is active between poinhtand j, and therefore

Given a2 x 2 rotation matrixQ and a constant vector
c € R?, a new configuratiorp’ is said to be transformed
from p under global rigid motionsif p, = Qp; + ¢ for
everyi: € Z. From the isometric property of rotation and
translation, we see that the two configuratighand p’ are
congruenti.e., ||p; — Pl = |p:; — b, | for everyi,j € T. Ipi — pjlI* = di;

Now we look at the new stiffness matriX under global
rigid motions. The connectivity matri¥X” does not change,
hencek;; remains constant. The projection matricg§ in
S’ are invariant with respect to translatienbut the rotation P

wherep; denotes the location of poitin a valid configura-
tion. Now we take the derivative at the initial configuration

. . T /A ~ o

operation will cause them to rotate accordingly, since (bi —b;) (Pi —bj) =0 (13)
1 Letw = [p; Ps --- Dxnl' € R*N. We can represent

T N A \(a A NT AT
Pj; = ey = e QD; —pi)(B; —Pi) Q (13) in a matrix form,

=QP;Q". Rw =0 (14)

Therefore, we can represent the relation betwgeand S where R € RM*2N s called aridigity matrix, and M is
by a similarity transformation, the number of active distance constraints. In rigidity tiyeo

;- - a configuration is callednhfinitesimally rigid if and only if

§'=@eIN5@®In) 10 rank(R) = 2N — 3. (1], [2]
where® denotes the Kronecker product of two matricks, Now we consider the null space of. Alternatively, the

is the V x IV identity matrix. Note that) © I is a rotation  null space ofS can be determined hyull(5) = {v € R
matrix satisfying(Q ® Iy)(Q @ Iy)T = Iy, which can be v'Sv = 0}. From (12) it is clearly seen that € null(s) if
applied to the rotation of atv-member multi-point. and only if the following holds,

C. Non-negative Definiteness (vi—v;) e =0,VijeTstizjandky#0 (15)

The stiffness matrixS of a KP-formation(Z, p, K) rep- Recall thate;; = (p; — Pi)/||P; — Pil|. We may find that the
resents the linear relation between a set of perturbingeforcsolutions to (15) coincides with those to (14), which reseal
and the resultant displacements on that formation. We malye fact that rigidity matrixR and stiffness matrixS share
intuitively assert that' should have only non-negative eigen-the same null space.
values, for perturbing force$ and resultant displacements This property is of considerable significance because we
Ap are unlikely to go in opposite directions. The proof ofcan now claim that the KP-formation is rigid if the stiffness
this intuition is given below. matrix S has rank2N — 3. This conclusion will be useful



when we discuss the quantitative measurement of rigidity iconfiguration harder, whiléd\J = 0 means the deformation
the next section. does not raise any correction forces. The latter situation
Also, from this relation one can claim that any global rigidimplies that the formation is not rigid under an infititesima
motions (translation and rotation) fall into the null spaxfe motion. Therefore, the worst case can be determined when
S, for it is known that they are withimull(R). [9] We AJ has the least magnitude. We define therst-case
denote the set of two-dimensional global rigid motions rigidity index r, to be twice the minimum ratio oA.J and
corresponding to a KP-formatiofZ, p, K) by isoy (p). It ||Ap]?,
is not difficult to show thatsoy (p) is a linear subspace of oA . ApTSAp

R2Y and the dimension of the subspacesis re £  min =

o min 16
Apgison (p) [|AP|[?  apgison(p) ApTApP (16)

V. QUANTITATIVE MEASURE OF RIGIDITY - o
9 . o ~ The coefficient2 here is inspired byt = 2E/(Az)? for a
In this section, a quantitative measure of KP-formatiorjngle-spring system.
(Z,p, K) is derived from the stiffness matri¥. We also  since 5 is real symetric non-negative definite matrig,
show some interesting properties of this measure to demoRsson non-negative eigenvalues,,n = 1,2,--- ,2N. We
strate its value in practical applications. sort them such thal < \; < Ay < --- < Aon. As it is al-
ready shown thaisox (p) C null(S) anddim (isoyx (D)) =

) i o ) 3, the minimization over the spad&*V\isox (p) gives us
For every formation, there exist global rigid motions thatne fourth smallest eigenvalue, hence

translate or rotate the formation as a whole without defor-

mation. Configurations infinitesimally perturbed in the sam Tw = A\ a7)

directions of these global rigid motions are thus congruent ) o

to the original configuration. We may see that these kinds: Properties of Worst-Case Rigidity Index

of perturbation will not change the inner energy related to We hereby show some properties of worst-case rigidity

the deformation but only the global kinetic energy, if thendex. These properties conform to our intuitive assunmgtio

formation is regarded as a single rigid body. Therefores it iof a rigidity measure.

necessary to exclude such perturbation when we analyze theProperty 1. A non-rigid graph has zero as the value of

rigidity of a formation. its worst-case rigidity index. This is a corollary from (17)
In last section it is shown that the global rigid motionssince a non-rigid graph has a rigidity matri such that

for a two-dimensionalN-agent formation form a three- rank(R) < 2N — 4, thereforedim(null(R)) > 4. Recalling

dimensional subspadeoy (p) of R2Y. Therefore, for any the fact thatnull(R) = null(S) where S is the stiffness

v € RN, there existu € isoy (p) andw € isoy (p)"  mMatrix, we conclude thaky = 0.

such thatv = u + w. We call u trivial perturbation and w Property 2. The worst-case rigidity index is an invariant

equilibrium perturbation under rigid body motions and scaling of the formation.
However, for trivial perturbationAp € isoy (p), we This is a direct result from the properties of the stiffness

cannot assume that configuratipnis congruent top + Ap ~ matrix shown in Section IV. Recall that stiffness matiix

because an element isb (p) represents only the direction is invariant under scaling and translation, and rigid body

of a rigid motion, not the result, i.e., the displacement ofotations only result a similarity transformation whicheso

the motion. We may see that fop representing pure not change the eigenvalues of a maitrix. Therefotg,is

translationsp andp+Ap are congruent; but i\p involves  invariant under these operations.

rotation, the configuration is deformed. This, however,sdoe Property 3. r, is a monotone increasing function of

not cause much trouble because by assumption the perturbing, Vi, 7 € Z. Its interpretation is that, increasing the con-

displacement is “very small”, in which case we can lenectivity between any pair of nodes will always contribute

[|[Ap|| — 0, which resolves the conflict in concepts. positively to the global rigidity. This property well fits ou
Based on the above facts, we only consider perturbationtuitive assumption of a rigidity measure.

Ap € isoy (13)L in the following analysis. It can be verified Proof: Suppose we increment the connectivity matrix

that the rigidity indices are constants with respecfifop||, K to K' = [k;,], in the sense that;; = k;; + Ak;j, Ak;; =

hence it is valid to omit the analysis in limit case whenAkj;; > 0,V 7,5 € Z,i¢ # j. Let S be the stiffness matrix

|Ap| — 0. of (Z,p,K) and S" be the stiffness matrix ofZ,p, K').

o The worst-case rigidity indices arg, andr,, accordingly.

B. Worst-Case Rigidity Index (W.R.]) By linearity, we may find thas’ — S actually satisfies the
Recall that in (9) we gave the expression of the approxdefinition of the stiffness matrix dfZ, p, K'— K). Therefore,
mated energy incremert.J under a small perturbatioAp. S'—S > 0 by property of stiffness matrix. This is equivalent

Now we fix the magnitude of the perturbation, i|\p|| = to S’ > S. Note thatS and S’ share the same rigid motion

¢, and change the direction of perturbing displacementspaceisoy (p), by definition of worst-case rigidity index in
ConsequentlyAJ varies with Ap. The magnitude ofAJ  (16), we can readily reach the conclusion thgt> r,,.
implies the sensitivity of the formation to the perturbatio = The above properties ensure the validity of the worst-case
With larger AJ, the agents are pushed back to the initiafigidity index as a quantitative measure of formation rigyid

A. Decomposition of Perturbation
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Fig. 2. Examples of simple formations

Fig. 3. Examples of rigid formations with agents

TABLE 1|
From the definition we may see a larger indicates greater RIGIDITY INDICES OF FORMATIONS INFIG. 3
inflexibility of a formation. This then can be used in the
applications where comparisons between different forwnati

Formation No. of agents  Is rigid?  W.R.I

g1 5 Yes 0.4912

are demanded. % 5 Yes 0.4939
[eF} 5 Yes 2.5
VI. EXAMPLES q 5 Yes 1

t 5 Yes 0.5829

In Section V, two measures of formation rigidity are
proposed: worst-case rigidity index (W.R.l) and mean itgid
index (M.R.I). In this section, some examples are given t0 Comparing Formation (g,(g:),(gs), we may clearly see
illustrate quantitative analysis of a formation using ®esthat with the incrementing number of distance constraints,
rigidity indices. the worst-case rigidity index rises accordingly, whichisfgt

o o ) the argument in Section V-C. Notice that fromi)gto
A. Rigid and Non-Rigid Formations (g2), the increase of the value is small, while;\chas a

We first look at some simple formations illustrated inmuch larger value of the rigidity index. This implies that
Fig. 2, where a circle represents an agent, and an egsggnmetry of a formation may have great positive impact on
between a pair of agents represents a distance constrdint wiormation rigidity, for it usually has the least vulneratyilin
connectivity coefficient fixed td. Table | gives the rigidity all directions of perturbation.
indices of these formations. We can also compare FormationJgvith (q) since their
number of distance constraints are also equal. Result shows
that Formation (q), which has a symmetric structure, owns
a much higher value of worst-case rigidity index than)(g

TABLE |
RIGIDITY INDICES OF FORMATIONS INFIG. 2

Formation  No. of agents _ Is rigid? _ W.R.I From comparison between Formation Y@nd (t), we may
a 2 Yes 2 assert that Formation (t) is likely to outperformi)gin
2 i $Z§ 015'26 most applications regarding multi-agent formation coalntro
d 3 No 0 An brief explanation can be the fact that equilateral trlaag
? 2 '{1\10 O0 are more stable than non-equilateral ones.
[0}

VII. CONCLUSION

In Compliance to the results in Section V-C, the values of In this paper, we have come up with two new concepts
worst-case rigidity index for non-rigid formations are@er of a formation, the stiffness matrix and the worst-case
rigidity index, where the latter value is a scalar derived
from the stiffness matrix. Further calculation reveald the

Next, we try to utilize the worst-case rigidity index toworst-case rigidity index coincides with the fourth smsile
compare among several formations that have the same nueigenvalue of stiffness matrix. We also showed that this
ber of agents. We still assume that every distance constranigidity index has properties that meet the demands in real
has an equal connectivity weight, in which case we magpplications, hence being a practical quatitative meastire
let k;; = 1 distance constraint is applied between agent formation rigidity.
and; without loss of generality. The sample formations are By using the worst-case rigidity index, we have noticed
illustrated in Fig. 3. Each formation contains five agentsan interesting result in Section VI that symmetric formasio
Formation g,0.,03 share the same configuration but differare usually far more rigid than asymmetric formations, im th
in the number of distance constraints. Table Il lists theliss sense that the former usually has a worst-case rigidityxinde
of the quantitative rigidity tests. much higher than the latter, given the same number of agents

B. Rigid Formations with Same Number of Agents



and distance constraints in both formations. This inforomat
may become helpful when one designs a formation for multi[-z]
agent control system.

There are several perspective topics related to the quan-
titative measurement of formation rigidity. First, we waul [3!
like to know if the conclusions can be generalized to threg;
or higher dimensional formations, and what additional prop
erties of either stiffness matrix or worst-case rigidityléx

. . X . 5
can be found in such higher dimensional spaces. SecorH,

on Matroid Theory, July 2-6, 1995, University of WashingtSeattle
vol. 197. American Mathematical Society, 1996, p. 171.

B. Jackson and T. Jordan, “Connected rigidity matroidsl amique
realizations of graphs,Journal of Combinatorial Theory, Series, B
vol. 94, no. 1, pp. 1-29, 2005.

G. Laman, “On graphs and rigidity of plane skeletal stames,” Journal
of Engineering mathematicsol. 4, no. 4, pp. 331-340, 1970.

B. Anderson, C. Yu, B. Fidan, and J. Hendrickx, “Rigid ghacontrol
architectures for autonomous formation€bntrol Systems Magazine,
|IEEE, vol. 28, no. 6, pp. 48-63, Dec. 2008.

R. Olfati-Saber and R. Murray, “Graph rigidity and dibtrted forma-
tion stabilization of multi-vehicle systemdJecision and Control, 2002,

we want to search for a measurement that can compare two Proceedings of the 41st IEEE Conference wal. 3, pp. 2965-2971,

non-rigid structure, since the worst-case rigidity indei w
be zero for every formation that is not infinitesimally rigid
Finally, the worst-case rigidity index only characterizes t
rigidity of a static formation. We want to know if moving ("]
formations will have extra dynamic information which can

be extracted to determine the quantitative rigidity. [8]

(6]
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