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ABSTRACT
Exponential stability of switched linear systems under both
arbitrary and proper switching is studied through two suit-
ably defined families of functions called the strong and the
weak generating functions. Various properties of the gen-
erating functions are established. It is found that the radii
of convergence of the generating functions characterize the
exponential growth rate of the trajectories of the switched
linear systems. In particular, necessary and sufficient condi-
tions for the exponential stability of the systems are derived
based on these radii of convergence. Numerical algorithms
for computing estimates of the generating functions are pro-
posed and examples are presented for illustration purpose.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—stability (and in-
stability), numerical algorithms; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—
control theory,dynamic programming

General Terms
Theory, Algorithms

Keywords
Switched linear systems, exponential stability, generating
functions.

1. INTRODUCTION
Switched linear systems are a natural extension of linear

systems and an important family of hybrid systems. They
have been finding increasing applications in a diverse range
of engineering systems [11]. A fundamental problem in the
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study of switched linear systems is to determine their stabil-
ity, or more generally, to characterize the exponential rate at
which their trajectories grow or decay, under various switch-
ing rules. See [13, 15] for some recent reviews of the vast
amount of existing work on this subject. Specifically, these
work can be classified into two categories: stability under
arbitrary switching where the switching rules are uncon-
strained; and stability under restricted switching rules such
as switching rate constraints [6] and state-dependent switch-
ings [9]. A predominant approach to the study of stability
in both cases is through the construction of common or mul-
tiple Lyapunov functions [3, 8, 9]. Other approaches include
Lie algebraic conditions [12] and the LMI methods.

The goal of this paper is to determine not only the ex-
ponential stability of switched linear systems, but also the
exponential growth rate of their trajectories. In particular,
we try to characterize the maximum exponential growth rate
of the trajectories under arbitrary switching and the mini-
mum exponential growth rate under proper switching. In
the latter case, the switching is fully controllable; thus the
problem can be deemed as a switching stabilization prob-
lem. Previous contributions in the literature on these two
rates, especially the first one, include for example the work
on joint spectral radius [2, 16, 17] and (maximum) Lyapunov
exponent [1], to name a few. These work studied directly
the maximum growth rate of the norm of increasingly longer
products of subsystem matrices.

In comparison, the method proposed in this paper char-
acterizes the exponential growth rates indirectly through
two families of functions, the strong and the weak generat-
ing functions, that are power series with coefficients deter-
mined by the system trajectories. The advantages of such
a method are: (i) quantities derived from the generating
functions, such as their radii of convergence and quadratic
bounds, fully characterize the exponential growth of the sys-
tem trajectories, including but not limited to the exponen-
tial growth rates; (ii) these functions are automatically Lya-
punov functions if the systems are exponentially stable; (iii)
the generating functions possess many nice properties that
make their efficient computation possible; (iv) and finally,
such a method admits natural extensions to more general
classes of systems, such as conewise linear inclusions [14]
and switched linear systems with control input.

This paper is organized as follows. In Section 2, the sta-
bility notions of switched linear systems are briefly reviewed.
In Section 3, we define the strong generating functions; study
their various properties; and use them to characterize the ex-



ponential stability of the systems under arbitrary switching.
A numerical algorithm will also be presented to compute
the strong generating functions by taking advantage of their
convexity. The development of Section 4 mirrors that of
Section 3, where weak generating functions are studied for
the purpose of characterizing the exponential stability of the
systems under proper switching. Finally, some concluding
remarks are given in Section 5.

2. STABILITY OF SWITCHED LINEAR SYS-
TEMS

A discrete-time (autonomous) switched linear system (SLS)
is defined as follows: its state x(t) ∈ Rn evolves by switching
among a set of linear dynamics indexed by the finite index
set M := {1, . . . , m}:

x(t + 1) = Aσ(t)x(t), t = 0, 1, . . . . (1)

Here, σ(t) ∈ M for t = 0, 1 . . ., or simply σ, is called the
switching sequence; and Ai ∈ Rn×n, i ∈ M, are the sub-
system state dynamics matrices (assume Ai 6= 0). Starting
from the initial state x(0) = z, the trajectory of the SLS
under the switching sequence σ will be denoted by x(t; z, σ).

Definition 1. The switched linear system is called

• exponentially stable under arbitrary switching (with
the parameters κ and r) if there exist κ ≥ 1 and r ∈
[0, 1) such that starting from any initial state z and un-
der any switching sequence σ, the trajectory x(t; z, σ)
satisfies ‖x(t; z, σ)‖ ≤ κrt‖z‖, for all t = 0, 1, . . ..

• exponentially stable under proper switching (with the
parameters κ and r) if there exist κ ≥ 1 and r ∈ [0, 1)
such that starting from any initial state z, there exists a
switching sequence σ for which the trajectory x(t; z, σ)
satisfies ‖x(t; z, σ)‖ ≤ κrt‖z‖, for all t = 0, 1, . . ..

Similar to linear systems, we can define the notions of stabil-
ity (in the sense of Lyapunov) and asymptotic stability for
SLS under both arbitrary and proper switching. Due to the
homogeneity of SLS, the local and global versions of these
stability notions are equivalent. Moreover, it is easily shown
that the asymptotic stability and exponential stability of
SLS under arbitrary switching are equivalent [14].

3. STRONG GENERATING FUNCTIONS
Central to the stability analysis of SLS is the task of de-

termining the exponential rate at which ‖x(t; z, σ)‖ grows
as t → ∞ for trajectories x(t; z, σ) of the SLS. The follow-
ing lemma, adopted from [10, Corollary 1.1.10], hints at an
indirect way of characterizing this growth rate.

Lemma 1. For a given sequence of scalars {at}t=0,1,...,
suppose the power series

P∞
t=0 atλ

t has the radius of con-
vergence R. Then for any r > 1

R
, there exists a constant Cr

such that |at| ≤ Crr
t for all t = 0, 1, . . ..

As a result, for any trajectory x(t; z, σ) of the SLS, an (asymp-
totically) tight bound on the exponential growth rate of
‖x(t; z, σ)‖2 as t → ∞ is given by the reciprocal of the ra-
dius of convergence of the power series

P∞
t=0 λt‖x(t; z, σ)‖2.

This motivates the following definition in studying the ex-
ponential stability of SLS under arbitrary switching.

For each z ∈ Rn, define the strong generating function
G(·, z) : R+ → R+ ∪ {+∞} of the SLS as

G(λ, z) := sup
σ

∞X

t=0

λt‖x(t, z, σ)‖2, ∀λ ≥ 0, (2)

where the supremum is taken over all switching sequences
σ of the SLS. Obviously, G(λ, z) is monotonically increasing
in λ, with G(0, z) = ‖z‖2. As λ increases, however, it is
possible that Gλ(z) = +∞. Define the threshold

λ∗(z) := sup{λ |G(λ, z) < +∞}

as the radius of strong convergence of the SLS at z. Intu-
itively speaking, G(·, z) corresponds to the power series of
the “most divergent” trajectories starting from z generated
by all switching sequences; thus the radius of convergence
λ∗(z) is expected to contain information about the fastest
exponential growth rate for solutions starting from z.

It is often convenient to study G(λ, z) as a function of
z for a fixed λ. Thus, for each λ ≥ 0, define the function
Gλ : Rn → R+ ∪ {+∞} as

Gλ(z) := G(λ, z), ∀z ∈ R
n. (3)

From its definition, Gλ(z) is nonnegative, homogeneous of
degree two in z, with G0(z) = ‖z‖2. We will also refer to
Gλ(z) as the strong generating function of the SLS.

3.1 Properties of GeneralGλ(z)

Some properties of the function Gλ(z) are listed below.

Proposition 1. Gλ(z) has the following properties.

1. (Bellman Equation): For all λ ≥ 0 and all z ∈ Rn, we
have Gλ(z) = ‖z‖2 + λ · maxi∈M Gλ(Aiz).

2. (Sub-Additivity): Let λ ≥ 0 be arbitrary. Then

p
Gλ(z1 + z2) ≤

p
Gλ(z1) +

p
Gλ(z2)

for all z1, z2 ∈ Rn. Hence, for α1, α2 ∈ R, z1, z2 ∈ Rn,
we have Gλ(α1z1 + α2z2) ≤ 2α2

1Gλ(z1) + 2α2
2Gλ(z2).

3. (Convexity): For each λ ≥ 0, both Gλ(z) and
p

Gλ(z)
are convex functions of z ∈ Rn.

4. (Invariant Subspace): For each λ ≥ 0, the set Gλ :=
{z ∈ Rn |Gλ(z) < +∞} is a subspace of Rn invariant
under {Ai}i∈M, namely, AiGλ ⊂ Gλ for all i ∈ M.

5. For 0 ≤ λ < (maxi∈M ‖Ai‖2)−1, Gλ(z) < ∞ for all z.

6. If λ ≥ 0 is such that Gλ(z) < +∞, ∀z ∈ Rn, then there
exists a constant c ∈ [1,∞) such that ‖z‖2 ≤ Gλ(z) ≤
c‖z‖2, ∀z ∈ Rn.

Proof. 1. Property 1 is a direct consequence of the dy-
namic programming principle if we view Gλ(z) as the value
function of an infinite horizon optimal control problem.



2. Since x(t; z, σ) is linear in z, ∀λ ≥ 0, ∀z1, z2 ∈ Rn,

Gλ(z1 + z2) = sup
σ

∞X

t=0

λt‖x(t; z1, σ) + x(t; z2, σ)‖2

≤ sup
σ

∞X

t=0

λtˆ
‖x(t; z1, σ)‖2 + 2‖x(t; z1, σ)‖ · ‖x(t; z2, σ)‖

+ ‖x(t; z2, σ)‖2
˜

≤ Gλ(z1) + 2
p

Gλ(z1)
p

Gλ(z2) + Gλ(z2)

=
hp

Gλ(z1) +
p

Gλ(z2)
i2

,

which is the first desired conclusion. Using the Cauchy-
Schwartz inequality, we can derive the second desired con-
clusion from the first one.

3. For each fixed λ ≥ 0, the convexity of
p

Gλ(z) fol-
lows from its sub-additivity: for arbitrary z1, z2 ∈ Rn and
α1, α2 ≥ 0 with α1 + α2 = 1,

p
Gλ(α1z1 + α2z2) ≤

p
Gλ(α1z1) +

p
Gλ(α2z2)

= α1

p
Gλ(z1) + α2

p
Gλ(z2).

As a result, Gλ(z) = (
p

Gλ(z))2 is also convex.
4. The conclusions follow directly from sub-additivity and

the Bellman equation of Gλ(z).
5. For any trajectory x(t; z, σ) of the SLS, simply observe

that ‖x(t; z, σ)‖2 ≤ (maxi∈M ‖Ai‖2)t‖z‖2 for all t.
6. Assume λ is such that Gλ(z) is finite for all z. By

its definition, Gλ(z) ≥ ‖z‖2. To show that Gλ(z) ≤ c‖z‖2,
by homogeneity it suffices to show that Gλ(z) ≤ c for all
z on the unit sphere Sn−1. Each z ∈ Sn−1 can be written
as z =

Pn
i=1 αi ei, where {ei}n

i=1 is the standard basis of
Rn, and {αi}n

i=1 are the coordinates of z in this basis sat-
isfying

Pn
i=1 α2

i = 1. In light of sub-additivity, Gλ(z) ≤
n

Pn
i=1 α2

i Gλ(ei) ≤ c, where c = n · max1≤i≤n Gλ(ei) < ∞
by our assumption on λ. This completes the proof.

From Proposition 1, Gλ is a subspace of Rn that decreases
monotonically from G0 = Rn at λ = 0 to G∞ := ∩λ≥0Gλ

as λ → ∞. The set of all distinct Gλ for λ ≥ 0 forms a
cascade of subspaces of Rn: Rn = Gλ1

) · · · ) Gλd
for some

0 = λ1 < · · · < λd, where d ≤ n is an integer. Since each of
such Gλj

is invariant under {Ai}i∈M, any trajectory of the
SLS starting from an initial state in Gλj

will remain inside
Gλj

at all subsequent times. Thus, a sub-SLS can be de-
fined as the restriction of the original SLS on the subspace
Gλj

. Intuitively, the restricted sub-SLS on Gλd
is the “most

exponentially stable” sub-SLS as its trajectories have the
largest radius of convergence, hence the slowest exponen-
tial growth rate. As j decreases, the restricted sub-SLS on
Gλj

will become “less exponentially stable” as faster growing
trajectories are included.

The above geometric statements can also be stated equiv-
alently as follows: after a suitable change of coordinates,
all the matrices Ai, i ∈ M, can be simultaneously trans-
formed into the same row block upper echelon form, with
their last row blocks corresponding to the restricted sub-
SLS on Gλd

; their last two row blocks corresponding to the
restricted sub-SLS on Gλd−1

, ... etc. Finally, if the SLS
is irreducible, namely, has no nontrivial invariant subspaces
other than Rn and {0} (which occurs with probability one
for randomly generated SLS), the above discussions imply

that the function Gλ(z) is either finite everywhere or infinite
everywhere for any given λ ≥ 0.

Example 1. Consider the following SLS on R2:

A1 =

»
7
6

− 5
6

− 5
6

7
6

–
, A2 =

»
5
3

4
3

4
3

5
3

–
. (4)

Starting from any initial z = (z1, z2)
T , let x(t; z, σ1) and

x(t; z, σ2) be the state trajectories under the switching se-
quences σ1 = (1, 1, . . .) and σ2 = (2, 2, . . .), respectively.
Then it can be proved (though by no mean trivially) that

Gλ(z) = max

( ∞X

t=0

λt‖x(t; z, σ1)‖2,
∞X

t=0

λt‖x(t; z, σ2)‖2

)

=

8
>>>>><
>>>>>:

max
n

9(z1+z2)2

2(9−λ)
+ (z1−z2)2

2(1−4λ)
,

(z1+z2)2

2(1−9λ)
+ 9(z1−z2)2

2(9−λ)

o
, if 0 ≤ λ < 1

9

(z1−z2)2

2(1−4λ)
· 1z1+z2=0 + ∞ · 1z1+z2 6=0, if 1

9
≤ λ < 1

4

∞, if λ ≥ 1
4
.

Here, 1z1+z2=0 is the indicator function for the set {(z1, z2) ∈
R2 | z1 + z2 = 0}, etc. Thus, Gλ is R2 for 0 ≤ λ < 1

9
;

span{(1,−1)T } for 1
9
≤ λ < 1

4
; and {0} for λ ≥ 1

4
. Each

of these, e.g., span{(1,−1)T }, is an invariant subspace of
R2 for {A1, A2}. Indeed, one can verify that the two sys-
tem matrices A1 and A2 can be simultaneously diagonalized

by the transformation matrix Q =
h

cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

i
as

QT A1Q =diag( 1
3
, 2) and QT A2Q =diag(3, 1

3
), respectively.

3.2 Radius of Strong Convergence
The quantity defined below will be important in charac-

terizing the stability of the SLS under arbitrary switching.

Definition 2. The radius of strong convergence of the
SLS (1) is the quantity λ∗ ∈ (0,∞] defined by

λ∗ := sup
˘
λ | there exists a finite constant c

such that Gλ(z) < c‖z‖2, ∀z ∈ R
n

¯
.

By Property 6 of Proposition 1, λ∗ can also be defined by
λ∗ = sup{λ |Gλ(z) < ∞, ∀z ∈ Rn}. By Property 5, λ∗ ≥
(maxi∈M ‖Ai‖2)−1 > 0. It is possible that λ∗ = +∞. This
is the case, for example, if all solutions x(t; z, σ) of the SLS
converge to the origin within a finite time independent of
the starting state z. For the SLS in Example 1, its radius of
strong convergence is 1

9
.

The following theorem shows that the knowledge of the
radius of strong convergence is sufficient for determining the
stability of the SLS under arbitrary switching.

Theorem 1. The following statements are equivalent:

1. The SLS is exponentially stable under arbitrary switch-
ing.

2. Its radius of strong convergence λ∗ > 1.

3. The generating function G1(z) is finite for all z ∈ Rn.

Proof. 1 ⇒ 2: Suppose there exist constants κ ≥ 1 and
r ∈ [0, 1) such that ‖x(t; z, σ)‖ ≤ κrt‖z‖, t = 0, 1, . . ., for all
trajectory x(t; z, σ) of the SLS. Then for any λ < r−2,

Gλ(z) = sup
σ

∞X

t=0

λt‖x(t; z, σ)‖2 ≤ κ2

1 − λr2
‖z‖2,



is finite for all z. It follows that λ∗ ≥ r−2 > 1.
2 ⇒ 3: This follows directly from the definition of λ∗.
3 ⇒ 1: Suppose G1(z) is finite for all z. By Prop-

erty 6 of Proposition 1, G1(z) ≤ c‖z‖2 for some constant
c < +∞. Thus, for any trajectory x(t; z, σ) of the SLS,P∞

t=0 ‖x(t; z, σ)‖2 ≤ c‖z‖2. This implies that ‖x(t; z, σ)‖ ≤√
c‖z‖ for all t = 0, 1, . . ., namely, the SLS is stable under

arbitrary switchings; and that x(t; z, σ) → 0 as t → ∞. Con-
sequently, the SLS is asymptotically, hence exponentially,
stable under arbitrary switching.

This implies the following stronger conclusions.

Corollary 1. Given a SLS with a radius of strong con-
vergence λ∗, for any r > (λ∗)−1/2, there exists a constant
κr such that ‖x(t; z, σ)‖ ≤ κrr

t‖z‖, t = 0, 1, . . ., for all tra-
jectories x(t; z, σ) of the SLS.

Proof. Let r > (λ∗)−1/2 be arbitrary. The scaled SLS
with subsystem dynamics matrices {Ai/r}i∈M is easily seen
to have its strong generating function to be G(λ/r2, z); hence
its has a radius of strong convergence r2λ∗ > 1. By The-
orem 1, the scaled SLS is exponentially stable under arbi-
trary switching; in particular, all its trajectories x̃(t; z, σ)
satisfy ‖x̃(t; z, σ)‖ ≤ κr‖z‖, t = 0, 1, . . ., for some κr > 0.
Note that trajectories x̃(t; z, σ) of the scaled SLS are exactly
r−tx(t; z, σ) where x(t; z, σ) are the trajectories of the orig-
inal SLS. Thus, ‖x(t; z, σ)‖ = rt‖x̃(t; z, σ)‖ ≤ κrr

t‖z‖, t =
0, 1, . . ., for all trajectories x(t; z, σ) of the original SLS.

Thus, the fastest exponential growth rate r for all tra-
jectories of the SLS can be chosen to be arbitrarily close to
(λ∗)−1/2. Later on in Theorem 2 in Section 3.5, the constant
κr will be derived from the strong generating functions.

3.3 Smoothness of FiniteGλ(z)

When λ ∈ [0, λ∗), the function Gλ(z) is finite everywhere.
From this point on, we shall focus on such finite Gλ(z).
First, some smoothness properties are established.

We first introduce a few notions. A function f : Rn → R
is called directionally differentiable at z0 ∈ Rn if its (one-
sided) directional derivative at z0 along v ∈ Rn defined

as f ′(z0; v) := limτ↓0
f(z0+τv)−f(z0)

τ
exists for any direction

v. If f is both directionally differentiable at z0 and locally
Lipschitz continuous in a neighborhood of z0, it is called
B(ougligand)-differentiable at z0. Finally, the function f is
semismooth at z0 if it is B-differentiable in a neighborhood
of z0 and the following limit holds:

lim
z→z0

z 6=z0

| f ′(z; z − z0) − f ′(z0; z − z0)|
‖z − z0‖

= 0.

Proposition 2. Let λ ∈ [0, λ∗) be arbitrary.

1. Both Gλ(z) and
p

Gλ(z) are convex, locally Lipschitz

continuous functions on Rn. Moreover,
p

Gλ(z) is
globally Lipschitz continuous.

2. Both Gλ(z) and
p

Gλ(z) are semismooth on Rn.

Proof. 1. The convexity has been proved in Proposi-
tion 1. To show the global Lipschitz continuity of

p
Gλ(z),

we invoke its sub-additivity to obtain, for any z, ∆z ∈ Rn,

−
p

Gλ(−∆z) ≤
p

Gλ(z + ∆z) −
p

Gλ(z) ≤
p

Gλ(∆z).

Hence,
˛̨p

Gλ(z + ∆z)−
p

Gλ(z)
˛̨
≤

p
Gλ(±∆z) ≤ √

c‖∆z‖
for some constant c as λ < λ∗. This shows that

p
Gλ(z) is

globally Lipschitz continuous on Rn with the Lipschitz con-
stant

√
c. As a result,

p
Gλ(z), hence Gλ(z), is (locally

Lipschitz) continuous on Rn.

2. The semismoothness of Gλ(z) and
p

Gλ(z) follows di-
rectly from their convexity and local Lipschitz continuity.
Indeed, any convex and locally Lipschitz continuous func-
tion f on Rn must be directionally differentiable, hence B-
differentiable, on Rn. To see this, note that, for any fixed

z0, v ∈ Rn, the function g(τ ) := f(z0+τv)−f(z0)
τ

is non-
decreasing in τ > 0 by the convexity of f ; and bounded
from below as τ ↓ 0 by the local Lipschitz continuity of f .
Thus, f ′(z0, v) = limτ↓0 g(τ ) exists. We claim further that
such an f must also be semismooth on Rn. A proof of this
claim using the equivalent formulation of semismoothness in
term of Clarke’s generalized gradient [4] can be found in [5,
Proposition 7.4.5]. This completes the proof of the semis-

moothness of Gλ(z) and
p

Gλ(z) on Rn.

It is worth pointing out that if λ ≥ λ∗ is outside the range
of [0, λ∗), then Gλ(z) can not be continuous on Rn. Indeed,
it is not even continuous at z = 0.

3.4 Quadratic Bound of Finite Gλ(z)

For each λ ∈ [0, λ∗), Gλ(z) is finite everywhere, hence
quadratically bounded by Proposition 1. Define the constant

gλ := sup
‖z‖=1

Gλ(z), λ ∈ [0, λ∗). (5)

Then gλ is finite and strictly increasing on [0, λ∗). By ho-
mogeneity, gλ can be equivalently defined as the smallest
constant c such that Gλ(z) ≤ c‖z‖2 for all z ∈ Rn. By con-
tinuity of Gλ(z) proved in Proposition 2, for each λ ∈ [0, λ∗),
Gλ(z) = gλ‖z‖2 for some z ∈ Rn.

The following estimate of gλ can be easily obtained.

Lemma 2. 1
gλ

≥ 1 − λ · maxi∈M ‖Ai‖2, for λ ∈ [0, λ∗).

Proof. Let λ ∈ [0, λ∗). For any trajectory x(t; z, σ) of
the SLS, we have ‖x(t; z, σ)‖2 ≤ maxi∈M ‖Ai‖2 · ‖x(t −
1; z, σ)‖2 ≤ · · · ≤ (maxi∈M ‖Ai‖2)t‖z‖2. Thus,

∞X

t=0

λt‖x(t; z, σ)‖2 ≤ 1

1 − λ · maxi∈M ‖Ai‖2
‖z‖2,

for 0 ≤ λ < (maxi∈M ‖Ai‖2)−1. By the definition of gλ,

this implies that gλ ≤ 1

1 − λ · maxi∈M ‖Ai‖2
, which is the

desired conclusion for 0 ≤ λ < (maxi∈M ‖Ai‖2)−1. The case
when (maxi∈M ‖Ai‖2)−1 ≤ λ < λ∗ is trivial.

The following lemma on power series is proved in [7].

Lemma 3. Let {wt}t=0,1,... be a sequence of nonnegative
scalars satisfying

P∞
t=0 wt+sλ

t
0 ≤ βws, s = 0, 1, . . ., for

some constants λ0 > 0 and β ≥ 1. Then the power se-
ries

P∞
t=0 wtλ

t has its radius of convergence at least λ1 :=
λ0/(1 − 1/β), and

∞X

t=0

wtλ
t ≤ βw0

1 − (β − 1)(λ/λ0 − 1)
< ∞, ∀ λ ∈ [λ0, λ1).

Lemma 3 can be used to prove the following estimate [7].



1

λ∗ λ

1/gλ

1 − λ · maxi∈M ‖Ai‖
2

0

1 − λ/λ∗

(λ, 1/gλ)

λ/(1 − 1/gλ)

Figure 1: Plot of the function 1/gλ.

Proposition 3. λ/(1 − 1/gλ) is non-decreasing for λ ∈
(0, λ∗), and bounded by λ

1−1/gλ
≤ λ∗, λ ∈ (0, λ∗).

As a consequence, we have the following two results.

Corollary 2. The function 1/gλ defined on [0, λ∗) is
strictly decreasing and Lipschitz continuous with Lipschitz
constant maxi∈M ‖Ai‖2. Moreover, 1/gλ → 0 as λ ↑ λ∗.

Proof. The monotonicity of 1/gλ follows directly from
that of the function gλ, as the latter is strictly increasing
on [0, λ∗). Pick any λ0, λ ∈ (0, λ∗) with λ0 < λ. Then
Proposition 3 implies λ/(1 − 1/gλ) ≥ λ0/(1 − 1/gλ0

); thus

1

gλ
− 1

gλ0

≥ −(λ − λ0)
1 − 1/gλ0

λ0
≥ −(λ − λ0) · max

i∈M
‖Ai‖2,

where the last inequality follows from Lemma 2. Similarly
at λ0 = 0, by Lemma 2, we have 0 ≥ 1/gλ − 1/gλ0

≥
−(λ − λ0)maxi∈M ‖Ai‖2 for λ ∈ [0, λ∗). This shows that
1/gλ is Lipschitz continuous on [0, λ∗) with Lipschitz con-
stant maxi∈M ‖Ai‖2. Finally, since by Proposition 3, 0 ≤
1/gλ ≤ 1 − λ/λ∗ for λ ∈ (0, λ∗), letting λ ↑ λ∗, we have
0 ≤ limλ↑λ∗ 1/gλ ≤ 0, i.e., limλ↑λ∗ 1/gλ = 0.

Shown in Figure 1 is the plot (in solid line) of a general
1/gλ as a function of λ. By the above results, the graph of
1/gλ is sandwiched between those of two linear functions:
1 − λ maxi∈M ‖Ai‖2 from the left and 1 − λ/λ∗ from the
right. In addition, given any λ ∈ (0, λ∗), the ray (middle
dashed line in Figure 1) emitting from the point (0, 1) and
passing through (λ, 1/gλ) intersects the λ-axis at the point
( λ
1−1/gλ

, 0) that moves monotonically to the right towards

(λ∗, 0) as λ increases by Proposition 3. i.e., the ray rotates
around its starting point (1, 0) counterclockwise monotoni-
cally. In particular, if gλ0

is known for some λ0 ∈ [0, λ∗),
then a lower bound of λ∗ is given by λ∗ ≥ λ0/(1 − 1/gλ0

).

Corollary 3. The function gλ for λ ∈ [0, λ∗) is contin-
uous, strictly increasing, with gλ → +∞ as λ ↑ λ∗. Thus,
Gλ∗(z) has infinite value at some z ∈ Rn.

Corollary 3 implies that, as λ increases, λ∗ is indeed the first
value at which Gλ(·) starts to have infinite values.

3.5 Norms Induced by FiniteGλ(z)

As an immediate result of Proposition 1, for λ ∈ [0, λ∗),p
Gλ(z) is finite, sub-additive, and homogeneous of degree

one; thus it defines a norm on the vector space Rn:

‖z‖Gλ
:=

p
Gλ(z), ∀z ∈ Rn.
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Figure 2: Unit balls of ‖ · ‖Gλ
for the SLS (4).

This family of norms ‖·‖Gλ
is increasing in λ, or equivalently,

the corresponding unit balls shrink as λ increases. See Fig. 2
for the plots of such unit balls for the SLS (4) in Example 1.

The norm ‖ · ‖Gλ
induces a matrix norm as: ‖A‖Gλ

:=
supz 6=0 ‖Az‖Gλ

/‖z‖Gλ
, ∀A ∈ Rn×n.

Proposition 4. Let ‖ · ‖Gλ
be the norm defined above

with respect to the SLS (1) for λ ∈ [0, λ∗). Then,

max
i∈M

‖Ai‖Gλ
=

r
dλ

1 + λdλ
, (6)

where dλ := sup‖z‖=1, i∈M Gλ(Aiz), 0 ≤ λ < λ∗.

Proof. For any i ∈ M, by the Bellman equation,

‖Ai‖2
Gλ

= sup
z 6=0

‖Aiz‖2
Gλ

‖z‖2
Gλ

= sup
z 6=0

Gλ(Aiz)

Gλ(z)

= sup
z 6=0

Gλ(Aiz)

‖z‖2 + λ · maxj∈M Gλ(Ajz)
.

As a result,

max
i∈M

‖Ai‖2
Gλ

= max
i∈M

sup
z 6=0

Gλ(Aiz)

‖z‖2 + λ · maxj∈M Gλ(Ajz)

= sup
z 6=0

maxi∈M Gλ(Aiz)

‖z‖2 + λ · maxj∈M Gλ(Ajz)

= sup
z 6=0

maxi∈M Gλ(Aiz/‖z‖)
1 + λ · maxi∈M Gλ(Aiz/‖z‖)

= sup
‖z‖=1

maxi∈M Gλ(Aiz)

1 + λ · maxi∈M Gλ(Aiz)

=
sup‖z‖=1, i∈M Gλ(Aiz)

1 + λ · sup‖z‖=1, i∈M Gλ(Aiz)
.

In the last step, we have used the fact that x/(1 + λx) is
continuous and increasing in x for any λ ≥ 0.

Lemma 4. As λ ↑ λ∗, dλ increases to +∞.

Proof. Obviously dλ is non-decreasing in λ. By Corol-
lary 3, gλ increases to ∞ as λ ↑ λ∗. Thus given any M > 0,
there is a δ > 0 such that gλ > M for all λ ∈ (λ∗−δ, λ∗), i.e.,
Gλ(z) > M for some z ∈ Sn−1. By the Bellman equation,
Gλ(z) = 1 + λ · maxi∈M Gλ(Aiz) ≥ M , thus,

max
i∈M

Gλ(Aiz) ≥ (M − 1)/λ ⇒ dλ ≥ M − 1

λ
≥ M − 1

λ∗ .



As λ ↑ λ∗, M → +∞; thus dλ → +∞ as desired.

By (6) and Lemma 4, limλ↑λ∗ maxi∈M ‖Ai‖Gλ
= (λ∗)−1/2.

Hence, for any small ε > 0, we can find a λ < λ∗ such that
maxi∈M ‖Ai‖Gλ

≤ (λ∗)−1/2 + ε, i.e.,

‖Ai‖Gλ
≤ (λ∗)−1/2 + ε, i ∈ M. (7)

Note that this particular norm ‖ · ‖Gλ
is equivalent to the

Euclidean norm ‖ · ‖ on Rn: ‖z‖ ≤ ‖z‖Gλ
≤ √

gλ‖z‖, ∀z.
For any trajectory x(t; z, σ) of the SLS, we then have

‖x(t,z, σ)‖ ≤ ‖x(t; z, σ)‖Gλ
= ‖Aσ(t−1)x(t − 1; z, σ)‖Gλ

≤ ‖Aσ(t−1)‖Gλ
· ‖x(t − 1; z, σ)‖Gλ

≤
h
(λ∗)−1/2 + ε

i
· ‖x(t − 1; z, σ)‖Gλ

≤
h
(λ∗)−1/2 + ε

it

‖z‖Gλ
≤ √

gλ

h
(λ∗)−1/2 + ε

it

‖z‖,

for t = 0, 1, . . .. This yields an upperbound on the expo-
nential growth rate of ‖x(t; z, σ)‖ uniformly over the initial
state z and the switching sequence σ.

Theorem 2. Let λ∗ be the radius of strong convergence
of the SLS. For any ε > 0, we can find λ < λ∗ satisfying (7).
Then for any trajectory x(t; z, σ) of the SLS,

‖x(t; z, σ)‖ ≤ √
gλ

h
(λ∗)−1/2 + ε

it

‖z‖.

Remark 1. It can be shown that λ∗ = 1/(ρ∗)2, where ρ∗

is the joint spectral radius of {Ai}i∈M defined as: ρ∗ :=

limk→∞ sup
n
‖Ai1 · · ·Aik

‖1/k, i1, . . . , ik ∈ M
o
. Thus The-

orem 2 can be viewed as a counterpart of [16, Prop. 4.17]
derived using the generating functions. As λ ↑ λ∗, the norm
‖ · ‖Gλ

approaches extreme norms of {Ai}i∈M ([1, 17]).

3.6 Algorithms for Computing Gλ(z)

We next present some algorithms for computing the finite
strong generating functions and for testing whether a given
SLS is exponentially stable under arbitrary switching.

First note that Gλ(z) as the value function of an infinite
horizon optimal control problem is the limit of the value
functions of a sequence of finite horizon problems with in-
creasing time horizon. Specifically, define for k = 0, 1, . . .

Gk
λ(z) := max

σ

kX

t=0

λt‖x(t; z, σ)‖2, z ∈ R
n. (8)

Here, maximum is used instead of supremum as only the
first k steps of σ affect the summation.

The above defined functions Gk
λ(z) can be computed re-

cursively by: G0
λ(z) = ‖z‖2; and for k = 1, 2, . . .,

Gk
λ(z) = ‖z‖2 + λ · max

i∈M
Gk−1

λ (Aiz), ∀z ∈ R
n. (9)

Proposition 5. The sequence of functions Gk
λ(z) has the

following properties. Let λ ≥ 0 be arbitrary.

1. (Monotonicity): G0
λ(z) ≤ G1

λ(z) ≤ G2
λ(z) ≤ · · · .

2. (Convergence): limk→∞ Gk
λ(z) = Gλ(z) for each z.

3. (Convexity and Sub-Additivity): For k = 0, 1, . . ., both

Gk
λ(z) and

p
Gk

λ(z) are convex and locally Lipschitz
continuous functions on Rn. Moreover, ∀z1, z2 ∈ Rn,

q
Gk

λ(z1+2) ≤
q

Gk
λ(z1) +

q
Gk

λ(z2).

Proof. For each z ∈ Rn, let σk be a switching sequence
achieving the maximum in (8). Then,

Gk
λ(z) =

kX

t=0

λt‖x(t; z, σk)‖2 ≤
k+1X

t=0

λt‖x(t; z, σk)‖2

≤ max
σ

k+1X

t=0

λt‖x(t; z, σ)‖2 = Gk+1
λ (z).

Similarly, we can show Gk
λ(z) ≤ Gλ(z). Therefore, we have

limk→∞ Gk
λ(z) ≤ Gλ(z). The other direction of the in-

equality can be proved by taking a trajectory x(t; z, σ) that
achieves the supremum in the definition (2) of Gλ(z) and
truncating it over a sufficiently large time horizon [0, k]. The
proof of Property 3 is entirely similar to that of Proposi-
tion 1, hence is omitted. In particular, unlike the Gλ(z)
case, there is no constraint on λ for the continuity of Gk

λ(z)
due to the finite summation in (8).

By the above proposition, approximations of the finite
strong generating function Gλ(z) are provided by Gk

λ(z)
for k large enough, obtained through the iteration proce-
dure (9). However, for numerical implementation, several
issues need to be resolved. First, numerical representations
of Gk

λ(z) have to be found. For instance, one can represent
Gk

λ(z) by its values on sufficiently fine grid points of the unit
sphere Sn−1, with each grid point corresponding to a ray by
the homogeneity of Gk

λ(z). Second, one needs to estimate
the values of Gk

λ(Aiz) at those Aiz not aligned with the grid
points in order to carry out the recursion (9). By writing
such Aiz as a linear combination of nearby grid points and
using the convexity of the function

p
Gk

λ(z), an upper esti-

mate of Gk
λ(Aiz) can be obtained.

Algorithm 1 Computing Gλ(z) on Grid Points of Sn−1

Let S = {zj}N
j=1 be a set of grid points of Sn−1;

Initialize k := 0, and bG0
λ(zj) := 1 for all zj ∈ S ;

repeat
k := k + 1;
for each zj ∈ S do

for each i ∈ M do
Find a minimal subset Sij of S whose elements
span a convex cone containing Aizj ;
Write Aizj =

P
zℓ∈Sij

αij
ℓ zℓ with αij

ℓ > 0;

Compute gij :=
P

zℓ∈Sij
αij

ℓ

q
bGk−1

λ (zℓ);

end for
Set bGk

λ(zj) := 1 + λ · maxi∈M g2
ij ;

end for
until k is large enough

return bGk
λ(·)

The above idea is summarized in Algorithm 1, which is
ideally suited for those SLSs with a large number of subsys-
tems and a low dimensional state space, as its computational
complexity increases linearly with the number m of subsys-
tems but exponentially with state space dimension n. A
similar ray gridding method was used in [18] for computing
polyhedral Lyapunov functions of switched linear systems.

After the completion of Algorithm 1, a sequence of map-

pings bGk
λ : S → R+, k = 0, 1, . . ., will be generated. Using
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Figure 3: Top: Unit balls of ‖ · ‖λ computed by Al-
gorithm 1 for λ = 0.1, 0.2, 0.3, 0.37, 0.38 (inward). Bot-
tom: plot of 1/gλ for the above values of λ.

the convexity of
p

Gk
λ(z), we can easily show (see [7]) that

they provide upperbounds for Gk
λ(z) on S .

Proposition 6. Gk
λ(zj) ≤ bGk

λ(zj), ∀zj ∈ S, ∀k = 0, 1, . . .

By Theorem 1, we have the following stability test.

Corollary 4. A sufficient condition for the SLS to be
exponentially stable under arbitrary switching is that the se-

quence of mappings bGk
1 : S → R+ obtained by Algorithm 1

is uniformly bounded for all k at each grid point in S.

Finally, we remark that by repeatedly applying Algorithm 1
to a sequence of λ whose values increase according to the up-
date rule λnext = λ/(1−1/gλ) (see Figure 1), we can obtain
underestimates of λ∗ with any precision as permitted by the
numerical computation errors.

Example 2. The following example is taken from [2]:

A1 =

»
1 1
0 1

–
, A2 =

»
1 0
1 1

–
.

Algorithm 1 is used to compute the functions Gλ(z) of this
SLS for different values of λ: λ =0.1, 0.2, 0.3, 0.37, and
0.38. The results are shown in Fig. 3, where the unit balls
of the norm ‖ · ‖λ for various λ are plotted in the top figure.
The estimated 1/gλ for different λ is plotted in the bottom
figure which, interestingly, has no discernible difference from
a linear function. This phenomenon may partly explain why
the joint spectral radius in this case can be obtained analyt-

ically as ρ∗ = 1+
√

5
2

[16]; thus λ∗ = 1/(ρ∗)2 ≃ 0.3820.

Example 3. Consider the following SLS in R3:

A1 =

2
4
0.5 0 −0.7
0 0.3 0
0 −0.4 −0.6

3
5 , A2 =

2
4
0.5 0 0
0.4 0.2 0.3
0 0 0.3

3
5

A3 =

2
4

0 −1 0
0.9 0.2 0.3
−0.2 0.3 −0.5

3
5 .
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Figure 4: Top: Unit ball of ‖ · ‖1 for the SLS in
Example 3. Bottom: 1/gλ as a function of λ.

Using Algorithm 1 on 752 grid points of the unit sphere S2,
over-estimates of the function Gλ(z) are computed. The unit

ball corresponding to the estimated norm
p

G1(z) is shown
in the top of Fig. 4; and the bottom plots the computed 1/gλ

for λ = 0.2, 0.4, 0.6, 0.8, 1.1. Since gλ at λ = 1.1 is finite,
we must have λ∗ > 1.1, hence the given SLS is exponentially
stable under arbitrary switching. Indeed, an extrapolation
of the function 1/gλ assumes zero value at around 1.1064,
providing an estimate of the λ∗.

4. WEAK GENERATING FUNCTIONS

4.1 Definition and Properties
For each z ∈ Rn, the weak generating function H(·, z) :

R+ → R+ ∪ {+∞} is defined as

H(λ, z) := inf
σ

∞X

t=0

λt‖x(t; z, σ)‖2, ∀λ ≥ 0, (10)

where the infimum is over all switching sequences σ of the
SLS. Then H(λ, z) is monotonically increasing in λ, with
H(0, z) = ‖z‖2 when λ = 0. The threshold

λ∗(z) := sup{λ |H(λ, z) < +∞}
is called the radius of weak convergence of the SLS at z.

For each λ ≥ 0, define the function Hλ : Rn → R+ as

Hλ(z) := H(λ, z), ∀z ∈ R
n. (11)

which is homogeneous of degree two, and H0(z) = ‖z‖2.
Some properties of the function Hλ(z) are listed below.

It is noted that many properties of the strong generating
function Gλ(z) do not have their counterparts for Hλ(z).



Proposition 7. Hλ(z) has the following properties.

1. (Bellman Equation): For all λ ≥ 0 and all z ∈ Rn, we
have Hλ(z) = ‖z‖2 + λ · mini∈M Hλ(Aiz),

2. (Invariant Subset): For each λ ≥ 0, the set Hλ :=
{z ∈ Rn |Hλ(z) = ∞} is a subset of Rn invariant
under {Ai}i∈M, i.e., AiHλ ⊂ Hλ for all i ∈ M.

3. For 0 ≤ λ < 1
mini∈M ‖Ai‖2 , ‖z‖2 ≤ Hλ(z) ≤ c‖z‖2 for

some finite constant c.

Proof. Property 1 can be obtained by applying the dy-
namic programming principle to the optimal control prob-
lem for minimizing the cost function

P∞
t=0 λt‖x(t; z, σ)‖2.

Property 2 is an immediate result of Property 1. For Prop-
erty 3, one simply note that, by choosing σ to be the se-
quence σ0 consisting of a single mode i0 (thus with no switch-
ing) where i0 = argmini∈M‖Ai‖, we have ‖x(t; z, σ0)‖2 ≤
(mini∈M ‖Ai‖2)t‖z‖2 for all t = 0, 1, . . ..

Note that Hλ, unlike Gλ, is not a subspace of Rn as it does
not contain the origin. In general, Hλ is the union of a
(possibly infinite) number of rays with the origin excluded.

4.2 Radius of Weak Convergence

Definition 3. The radius of weak convergence for the
SLS (1), denoted by λ∗ ∈ (0,∞], is defined as

λ∗ := sup{λ | there exists a finite constant c

such that Hλ(z) ≤ c‖z‖2, ∀ z ∈ R
n}.

By Proposition 7, we must have λ∗ ≥ 1
mini∈M ‖Ai‖2 . The

value of λ∗ could reach +∞ if, for instance, starting from
any z, there exists at least a switching sequence σ such that
the resulting solution x(t; z, σ) will reach the origin in at
most a finite time T independent of z.

The radius of weak convergence λ∗ plays the same role in
the stability analysis of the SLS under proper switching as
λ∗ plays in the stability under arbitrary switching.

Theorem 3. The SLS is exponentially stable under proper
switching if and only if its radius of weak convergence λ∗ > 1.

Proof. Suppose the SLS is exponentially stable under
proper switching, i.e., there exist constants κ ≥ 1, r ∈ [0, 1)
such that for any z ∈ Rn, there exists a switching sequence
σz such that ‖x(t; z, σz)‖ ≤ κrt‖z‖, t = 0, 1, . . .. Then,

Hλ(z) ≤
∞X

t=0

λt‖x(t; z, σz)‖2 ≤ κ2

1 − λr2
‖z‖2, ∀z ∈ R

n,

for all λ < r−2. In other words, λ∗ ≥ r−2 > 1.
Conversely, assume λ∗ > 1. Then H1(z) satisfies ‖z‖2 ≤

H1(z) ≤ c‖z‖2 for some finite constant c. Starting from any
z ∈ Rn, let σz be the (possibly multi-valued) state feedback
switching policy determined by

σz := argmini∈MH1(Aiz).

Denote by x(t; z, σz) a solution of the SLS under this state
feedback switching policy. We claim that H1(z) is a Lya-
punov function for x(t; z, σz). Indeed, at time t = 0, z′ :=
x(1, z, σ(z)) satisfies, by the Bellman equation,

H1(z) = ‖z‖2 + min
i∈M

H1(Aiz) = ‖z‖2 + H1(z
′).

1

λ∗
λ

1/hλ

1 − λ · sup‖z‖=1 mini∈M ‖Aiz‖
2

0

1 − λ/λ∗

(λ, 1/hλ)

λ/(1 − 1/hλ)

Figure 5: Plot of the function 1/hλ.

In other words, H1(z) − H1(z
′) = ‖z‖2. Similarly,

H1(x(t; z, σz)) − H1(x(t + 1; z, σz)) = ‖x(t; z, σz)‖2,

for all t = 0, 1, . . .. This, together with the fact that ‖z‖2 ≤
H1(z) ≤ c‖z‖2, implies that H1(z) is a Lyapunov function
for the closed-loop solutions under the switching policy σz.
Thus, the SLS is exponentially stable under σz.

Similar to Corollary 1, we can prove the following result.

Corollary 5. Given a SLS with its radius of weak con-
vergence λ∗, for any r > (λ∗)

−1/2, there is a constant κr

such that starting from each z ∈ Rn, ‖x(t; z, σz)‖ ≤ κrr
t‖z‖,

t = 0, 1, . . ., for at least some switching sequence σz.

4.3 Quadratic Bounds of FiniteHλ(z)

For each λ ∈ [0, λ∗), define the constant

hλ := sup
‖z‖=1

Hλ(z). (12)

Then hλ is the smallest constant c such that Hλ(z) ≤ c‖z‖2

for all z. Obviously, hλ is nondecreasing in λ, and assumes
the value of 1 at λ = 0.

Similar to Proposition 3 for gλ, using Lemma 3, the fol-
lowing estimate of hλ is proved in [7].

Proposition 8. The function λ/(1−1/hλ) is nondecreas-
ing for λ ∈ (0, λ∗), and bounded by

λ

1 − 1/hλ
≤ λ∗, ∀λ ∈ (0, λ∗). (13)

The following result follows directly from Proposition 8.

Corollary 6. For each λ ∈ [0, λ∗), 1/hλ ≤ 1 − λ/λ∗.
As a result, 1/hλ → 0 and hλ → ∞ as λ ↑ λ∗,

A counterpart to Lemma 2 for gλ is proved in [7]:

Corollary 7. For any λ ∈ [0, λ∗), we have 1/hλ ≥ 1 −
λ · sup‖z‖=1 mini∈M ‖Aiz‖2.

Similar to the proof of Corollary 2, Proposition 8 and
Corollary 7 lead to the following result.

Corollary 8. 1/hλ defined on [0, λ∗) is strictly decreas-
ing and Lipschitz continuous with a Lipschitz constant given
by sup‖z‖=1 mini∈M ‖Aiz‖2. As a result, the function hλ is
strictly increasing and locally Lipschitz continuous on [0, λ∗).



A general plot of the function 1/hλ for λ ∈ [0, λ∗) is
shown in Figure 5. The function decreases strictly from
1 at λ = 0 to 0 as λ ↑ λ∗. Its graph is sandwiched by
those of two linear functions: 1 − λ/λ∗ from the right, and
1 − λ · sup‖z‖=1 mini∈M ‖Aiz‖2 from the left. Moreover, as
λ increases from 0 towards λ∗, the ray emitting from the
point (1, 0) and passing through the point (λ, 1/hλ) rotates
counterclockwise monotonically; and intersects the λ-axis at
a point whose λ-coordinate, λ/(1 − 1/hλ), provides asymp-
totically tight lower bound of λ∗.

4.4 Approximating Finite Hλ(z)

For each λ ∈ [0, λ∗), the function Hλ(z) is finite every-
where on Rn. We next show that it is the limit of a sequence
of functions Hk

λ(z), k = 0, 1, . . ., defined by

Hk
λ(z) := min

σ

kX

t=0

λt‖x(t; z, σ)‖2, ∀z ∈ R
n. (14)

As the value functions of an optimal control problem with
finite horizon, Hk

λ(z) can be computed recursively as follows:
H0

λ(z) = ‖z‖2, ∀z ∈ Rn; and for k = 1, 2, . . .,

Hk
λ(z) = ‖z‖2 + λ · min

i∈M
Hk−1

λ (Aiz), ∀z ∈ R
n.

Equivalently, we can write

Hk
λ(z) = min{zT Pz : P ∈ Pk}, ∀z ∈ Rn, (15)

where Pk, k = 0, 1, . . ., is a sequence of sets of positive
definite matrices defined by: P0 = {I}; and for k = 1, 2, . . .,

Pk = {I + λAT
i PAi |P ∈ Pk−1, i ∈ M}. (16)

Proposition 9. Hk
λ(z) has the following properties.

1. (Monotonicity): H0
λ ≤ H1

λ ≤ H2
λ ≤ · · · ≤ Hλ.

2. (Convergence): For λ ∈ [0, λ∗), Hk
λ(z) converges ex-

ponentially fast to Hλ(z) as k → ∞: for k = 0, 1, . . .,

|Hk
λ(z) − Hλ(z)| ≤ h2

λ(1 − 1/hλ)k+1‖z‖2, ∀z ∈ R
n.

Proof. Fix k ≥ 1. For each z ∈ Rn, let σk be a switching
sequence achieving the minimum in (14). Then,

Hk
λ(z) =

kX

t=0

λt‖x(t; z, σk)‖2 ≥
k−1X

t=0

λt‖x(t; z, σk)‖2

≥ min
σ

k−1X

t=0

λt‖x(t; z, σ)‖2 = Hk−1
λ (z).

Similarly, we have Hk
λ(z) ≤ Hλ(z), proving the monotonic-

ity. Next assume λ ∈ [0, λ∗). Then ‖z‖2 ≤ Hk
λ(z) ≤

Hλ(z) ≤ hλ‖z‖2, ∀z ∈ Rn, k = 0, 1, . . .. For any z ∈ Rn

and k = 0, 1, . . . ,, let σk be a switching sequence so that
x̂(t) := x(t; z, σk) achieves the minimum in (14). For each
s = 0, 1, . . . , k − 1, since x̂(t) is also optimal over the time
horizon s ≤ t ≤ k, we have

Hk−s
λ (x̂(s)) =

k−sX

t=0

λt‖x̂(t + s)‖2

= ‖x̂(s)‖2 + λ

k−s−1X

t=0

λt‖x̂(t + s + 1)‖2

= ‖x̂(s)‖2 + λHk−s−1
λ (x̂(s + 1)).

Note that ‖x̂(s)‖2 ≥ Hk−s
λ (x̂(s))/hλ. Therefore, the above

equality implies, for s = 0, . . . , k − 1,

Hk−s−1
λ (x̂(s + 1)) ≤ λ−1(1 − 1/hλ)Hk−s

λ (x̂(s)).

Applying this inequality for s = k − 1, k − 2, . . . , 0, we have

‖x̂(k)‖2 = H0
λ(x̂(k)) ≤ λ−1(1 − 1/hλ)H1

λ(x̂(k − 1)) ≤ · · ·
≤ λ−k(1 − 1/hλ)kHk

λ(z) ≤ λ−khλ(1 − 1/hλ)k‖z‖2.

Using this and considering the switching sequence that first
follows σk for k steps and thereafter follows an infinite-
horizon optimal σ∗ starting from the state x̂(k), we obtain

Hλ(z) ≤
kX

t=0

λt‖x̂(t)‖2 +
∞X

t=k+1

λt‖x(t − k; x̂(k), σ∗)‖2

= Hk
λ(z) + λk ˆ

Hλ(x̂(k)) − ‖x̂(k)‖2˜

≤ Hk
λ(z) + (hλ − 1)λk‖x̂(k)‖2

≤ Hk
λ(z) + h2

λ(1 − 1/hλ)k+1‖z‖2.

As Hk
λ(z) ≤ Hλ(z), this proves the convergence property.

Thus, {Hk
λ(z)}k=0,1,... is a sequence of functions continu-

ous in (λ, z) that converges uniformly on [0, λ0] × Sn−1 to
Hλ(z) for any λ0 ∈ [0, λ∗). Then, Hλ(z) is also continuous
on [0, λ0] × Sn−1, hence on [0, λ∗) × Rn, by its homogeneity
and the arbitrariness of λ0.

Corollary 9. The function Hλ(z) = H(λ, z) is contin-
uous in (λ, z) on [0, λ∗) × Rn. As a result, the function hλ

defined in (12) is continuous on [0, λ∗).

4.5 Relaxation Algorithm for Computing Hλ(z)

By Proposition 9, Hk
λ(z) for large k provide increasingly

accurate estimates of Hλ(z). By (15), to characterize Hk
λ(z),

it suffices to compute the set Pk. To deal with the rapidly
increasing size of Pk as k increases, we introduce the follow-
ing complexity reduction technique. A subset Pε

k ⊂ Pk is
called ε-equivalent to Pk for some ε > 0 if

Hk,ε
λ (z) := min

P∈Pε
k

zT Pz ≤ ε‖z‖2 + min
P∈Pk

zT Pz, ∀z ∈ R
n.

A sufficient condition for this to hold is that, ∀P ∈ Pk,
P + εIn ≻ P

Q∈Pε
k

αQ · Q for some constants αQ ≥ 0,

∀Q ∈ Pε
k, adding up to 1. This leads to a procedure of

removing matrices from Pk iteratively until a minimal ε-
equivalent subset Pε

k is achieved. By applying this pro-
cedure at each step of the iteration (16), we obtain Algo-
rithm 2, which yields over approximations of Hk

λ(z) for all
k = 0, 1, . . . with uniformly bounded approximation errors
according to Proposition 10 below.

Algorithm 2 Computing Over Approximations of Hk
λ(z).

Initialize k := 0, P̃ε
0 := {In}, and Pε

0 := P̃ε
0 ;

repeat
k := k + 1;
P̃ε

k := {I + λAT
i PAi | i ∈ M, P ∈ Pε

k−1};
Find an ε-equivalent subset Pε

k ⊂ P̃ε
k ;

until k is large enough
return Hk,ε

λ (z) := min{zT Pz |P ∈ Pε
k}.
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Figure 6: Plots of 1/hλ for SLS in Example 2 (top)
and Example 3 (bottom).

Proposition 10. For any λ ∈ [0, λ∗) and k = 0, 1, . . .,

Hk
λ(z) ≤ Hk,ε

λ (z) ≤ (1 + ε)Hk
λ(z). (17)

Proof. Let λ ∈ [0, λ∗). We prove (17) by induction. It
is true at k = 0. Assume it holds for k − 1 ≥ 0. Define

H̃k,ε
λ (z) := min

P∈P̃ε
k

zT Pz = ‖z‖2 + λ min
i∈M

Hk−1,ε
λ (Aiz).

Then, for any i ∈ M, by the induction hypothesis,

H̃k,ε
λ (z) ≤ ‖z‖2 + λHk−1,ε

λ (Aiz)

≤ ‖z‖2 + λ(1 + ε)Hk−1
λ (Aiz).

Since Pε
k is an ε-equivalent subset of P̃ε

k, we then have

Hk,ε
λ (z) ≤ ε‖z‖2 + H̃k,ε

λ (z) ≤ (1 + ε)
h
‖z‖2 + λHk−1

λ (Aiz)
i
.

By the Bellman equation, Hk
λ(z) = ‖z‖2 + λHk−1

λ (Aiz) for
some i ∈ M. Choosing this i in the above inequality implies

Hk,ε
λ (z) ≤ (1 + ε)Hk

λ(z), ∀z ∈ R
n.

That Hk,ε
λ (z) ≥ Hk

λ(z) can also be trivially proved.

Using Algorithm 2, over approximations Hk,ε
λ (z) of Hk

λ(z)
are obtained with arbitrary precisions for large k and small ε.
The estimated 1/hλ as a function of λ is plotted in Figure 6
for the SLS in Example 2 (top) and Example 3 (bottom), re-
spectively. It can be seen that in both cases, 1/hλ decreases
from 1 at λ = 0 to 0 at λ = λ∗ (in the second case, high
computational complexity prevents us from getting accurate
estimates for λ close to λ∗). Another interesting observation
is that in each case 1/hλ is roughly a convex function and
“more curved” than the plots of 1/gλ.

5. CONCLUSION
It is found that the strong generating functions character-

ize the maximum exponential growth rate of the trajectories
of switched linear systems, and as a result yield an effective
stability test of the systems. Similar results are obtained for
the system stability under proper switching using the weak
generating functions. The two types of generating functions
have many desirable properties that make their efficient nu-
merical computations possible.
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