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ABSTRACT 

Shan Jie, 1989. A fast recursive method for repeated computation of reliability matrix QvvP. 
Photogrammetria, 43: 337-346. 

In quality analysis, optimization design and blunder detection of many photogrammetric prob- 
lems, repeated computation of reliability matrix QvvP is often required. In this paper, a new 
recursive method for repeated computation of QvvP is developed. From a test on a bundle block 
adjustment, it is shown that this new method possesses much higher computational efficiency 
than the conventional methods. 

1. INTRODUCTION 

In order to discover and delete gross errors in a photogrammetric block ad- 
justment, the reliability matrix QvvP sometimes has to be calculated repeat- 
edly with the change of the weight matrix P of the observations each time (El 
Hakim, 1982; Li Deren, 1983). In other areas, like quality analysis, optimiza- 
tion design, and a posteriori variance-covariance components estimation, such 
kind of repeated computation of QvvP is needed too (FSrstner, 1979; Li Deren, 
1983). 

In the conventional methods of dealing with such kind of computations, very 
large mormal equations have to be inverted repeatedly, which is a very time- 
consuming procedure on computers (FSrstner, 1979; E1 Hakim, 1982; Li Deren, 
1983). In this paper a much more efficient algorithm is introduced for this 
purpose. The problem is to find an efficient algorithm to recompute the matrix 
QvvP from a proceeding one, after the weight matrix P has been altered. 

The derivation here starts from the conventional formulas expressing the 
general relations between matrices QvvP and P. But these conventional for- 
mulas have been changed in form through differentiation and then integration, 
so that they can better serve the present purpose. 
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2. T H E  G E N E R A L  RELATIONS 

Assume we have an adjustment  model: 

V = A X - L  (1) 

where 
L -- vector of observations, 
X = vector of unknowns,  
V -- vector of residuals, 
A --design matrix and 
P =weight  matrix of observations. 
By the method of least squares, we obtain (FSrstner, 1983): 

V= - ( E - A N  -1ATp)L  = - R L  (2) 

where 

N = A T p A  (3) 

R= ( E - A N - 1 A T p )  =QvvP 

Equation (3) represents the general relation between R = QvvP and P. Matrix 
R may be called a reliability matrix since its diagonal elements represent the 
redundancies of observations and hence reflect directly the effectiveness of 
gross error detection. 

When the weight matrix is diagonal (which is almost always the case in 
practice),  i.e.: 

P=diag(P11,  P22, • ..... Pnn) 

and the matrix A is blocked as: 

A T= (al, a 2 , .  . . . . .  an) 

we have: 

( R ) o = r o  =(~iy - a  T N - l a i P j j  (4) 

where 

{10 i=j 
~ij = i ¢ j  (5) 

N =  ~ (ahPhha T) 
k = l  

3. T H E  D I F F E R E N T I A L  R E L A T I O N S  

The differential relations include the following derivatives: 
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dr i i  dr i i  dr~2 drij  dri  i 

dP j j  ' dPi i  ' dP i i  ' dP j j  ' d P k k  

By the use of formulas: 

(i # j  # k, below the same ) 

d ( C × D ) _ d C D + c _  ~ 
dx dx 

dC - I _ _ C _ l d C C _  1 
dx dx 

we can derive the above five derivatives sequentially as follows. 
From eqs. (4) and (5), we have: 

r i i = l - - a i l ' ( ~  a k P k h a T ) - l a i P i i  

then: 

dr  ii _ - a  T d ( ~ a k P k k a  T)  -1  

d P  z dP~j 

noticing that: 

a T N  - l a i P  . = - -r i i  

we obtain: 

q i P i i  = alr N - 1 a j a r  N - l a i P i i  

drii r~i Pii  2 
- -  - -  2 r i j  

d P  ~ P . P jj 

Similarly, we have: 

d N  - 1 d P i i  
drii _ _ al  r a i P i  i _ a T  N _ la i _ _ r i i a T N  _ la  i 
dPii ~ dR. 

That  is: 

dr i i  
- -  - rii ( 1 - -  rii ) / P i i  
d P i i  

In the same way, we can derive the following equations: 

d r ij 

d P i i  

drij 

dP j i  

rij a T N - l a  i = - -  rij  ( 1 - -  rii) / P i i  

ri~a T N - la, = r z r i f f  Pj2 

(6 

(7 

(8) 

(9) 
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drij rik rjk 
d P k k -  P~k P:j (10) 

Equations (6 ) -  (10) are the corresponding differential relations. 
From eqs. (6) and (7), it is easy to see that  drii/dPij>~O, and drii/dPii<~O. 

This means that  with the increase of one specific Pii, the local redundancy of 
that  observation rii will decrease while the local redundancies of all the other 
observations will increase. Similarly, if s (1 < s < n) weights get greater, the 
other n -  s local redundancies will become greater, with decrease of the sum of 
the s local redundancies. This shows that  the redundancy of a specific adjust- 
ment system will be redistributed among all the observations when the weight 
matrix P is altered. 

4. THE FUNCTIONAL RELATIONS 

We now integrate both sides of eqs. (6 ) -  (10) to obtain the relations between 
r and P as already expressed in eq. (4) but  in a different form this time. 

From eq. (7): 

drii 1 
d P i i  

rii ( 1 - r.) - Pi i  

after integration we have: 

1 
Fii --  1 + Cii ( P i i ) P i i  ( 11 ) 

where C. ( f t . )  > 0 is a constant  which is independent  of the weight P .  and is 
determined by the other n -  1 weights and the geometry of the network. 

As for eq. (8), after the replacement ofeq.  (11) and integration, we get: 

C i j ( P i i )  C i j (P i i )F i i  (12) 
5: - 1 + Cii ( P i i ) P i i  --  

Similarly, from eq. (9) we have: 

PjjCij( tsJJ)  - g i j c i : ( P j j ) r i i  (13) Fij--  

As to eq. (6), substi tuting eq. (13) in it at first, we have: 

drii Pii  
2 2 - 2 - -  2 d P j j  PjjCij(Pi~)r:j P:) 

and then carrying eq. (11) in the above equation, we obtain: 

1 
dr, =P.C~(Pj j )  ( l  +Cj~(fi~:)pj~)2 dPij 
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Integrating both  sides we obtain: 

P,,C~(;z) 
r , = C , ( P  z) ~ rjj (14) 

Substi tut ing eqs. (13) and (11) in eq. (10), and then integrating, we have: 

- P j j  
ri i = Ci~ (t~kk) -- Cik (Pkk) Cjk (Phk) Ck-k ~k)-rkk ( 15 

In the above equations, ( 11 ) -  ( 15 ) each are formulas of one specific function 
expressed differently under different arguments. We may summarize abow~ 
formulas as follows, r~i is a linear fractional function of P~i. Each rij and rz~ can 
be expressed in the form of a linear function of rkh, like a + b × rhk. ri i is propor- 
tional to rii. In these equations, the coefficients which decide each formula are 
independent  of its related weight. Exception is the relation between rzi and rjj, 
where r~j is proportional to Pj~ × ry~ instead of rii. 

In the derivation of the above relations, we see that  we have differentiated 
the functions at first and then integrated them. Since these two operations are 
reversed, we can certainly obtain the above results in a more direct way. Thus, 
from the formula: 

(C-I  + BD -1A )-1BD -X=CB(D+ACB) -1 

we may get 

r i i = l - - a T ( ~ l a k P k k a T ) - l a i ( P ~ + a T ( ~ i a k P h k a T ) - l a i ) - I  

let: 

Ni = ~ a~Pkka T 
k:~ i 

then 

1 
rii = l - a T  l~ z la ipE 1 +aT l~ 71ai 

that  is 

r i i= l /  ( l + a T N  [- laiPii)  (16) 

Comparing with eq. (11), we have: 

Cii(I~ii) =aT l~ 71ai (17) 

The other constants  may be obtained similarly. However, the strategy of 
differentiation and then integration is more convenient  and clearer to estab- 
lish the independency of the constants on certain weight. The recursive method 
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for repeated computat ion of QvvP in this paper takes the advantage of these 
independencies of the related constants.  As a matter  of fact, it can also be 
developed from the sequential least squares (see Appendix A). 

5. THE RECURSIVE METHOD 

The repeated computat ion of QvvP can be described as follows. Assume that  
the design matrix A is unchanged. Given the weight matrix Po~a and its corre- 
sponding reliability matrix Ro~d, if we have an increment matrix AP, i.e. 
Pnew : Pold + AP, then, calculate the corresponding Rne w. 

It has to be pointed out that  the functional relations given in Section 4 are 
true only when one weight is changed. If two or more weights are altered, the 
constants  are not independent  of one specific weight. So those equations can 
not be used directly to solve the above problem. 

We now decompose the increment matrix AP as: 

AP = AP1 + AP2 +... APm = ~ APk , (1 <~ m <~ n) 
k 

where 

APk = diag (0, O, ... APlomb, O, ... O) 

If we use the symbol: 

p(k)+Apk+l=p(k+l) , k=O, 1 ,2 , . . . ,m-1 

we have the following corresponding equations: 

Pold = P  (o) Rol d - - R  (0) 

p(1) =p(o)+Ap1 R(1) 

p (~) =p  (1) +AP2 R (2) 

: 

PnewP('~)=p('~-l)+Apm R(m)=Rnew 

Thus now each weight matrix p(k+l) ,  has only one changed weight with 
respect to P (~) and therefore the functional relations listed in Section 4 can be 
used recursively. Obviously, at most  by m calculations of R (h+ 1) with respect 
to P (k+ 1), we can obtain the required reliability matrix Rne w. This is the prin- 
ciple of the recursive method. The concrete computat ional  formulas and pro- 
cedure follow. 

With  equations in Section 4, we have: 
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Cii ( tsi i)  = ( 1 - rii ) / rii Pii 

Cij(I~ii) =riJri i  

Cji ( t5ii) = vji /  Pi ir i i  

Ci~(15ii) . 2 - - = r z + Pjj Cji (Pii) rii/Cii (Pii) 

C~k ( f i ,  ) = r~k + Cj~ (_P.) " Ck~ ( Pa) " Pkh r~/ C.  ( fi~i) 

(a) 

(b)  

(c)  

(d )  

(e)  

In the above equations, (d) is the special case of (e) when k = j .  Therefore only 
equations (a), (b), (c), (e) are needed in the repeated computation. 

Imagining that  all the constants C(Pa)  make up a matrix C, from the above 
equations we know that  only the i-th column of the matrix C will be used re- 
peatedly, while its other elements may be calculated temporarily and therefore 
do not take up extra storage cells. 

Let us assume that  the reliability matrix R (s-l) has already been obtained 
after ( s - 1 )  recursive computational steps. The new reliability matrix R (~) 
generated by the weight increment  APii c a n  be obtained as follows. 

(1) Calculate the constant: 

C[i~-l)(~:~ii ) : ( 1 - r [ ~ - l ) )  / (r ! f -1)  P[~ -1) ) 

and the element of R (s) 

r!; ) = 1 / ( 1 +  C!2-1) (fiii)P!S)) 

(2) Calculate the constants: 

C(s-1) (P i i )  =r}j~-l) /r}  s - l )  ) 

C)/-1) (P i i )=rJ [ -a ) / (P[S-1) r [S-1) )  ( j ¢ i )  

As elements r}f -1) and r)[ -a) are only used once, the constants C!f -1) (15.) 
and C~2 -~) (fiii) can be temporarily stored in cells R( i , j )  and R(j , i ) ,  which are 
used to store elements r~j and rj~ of matrix R. 

(3) Calculate the constant: 

Cj;-1>(p.) . < ~ - i > + C ) 2 - 1 >  - <~-i) - (~-.r(s-,>/c(.,-1>(p.) : ' i k  ( P i i ) C k i  ( P i i ) P k k  -i i  . - - i i  

and the element: 

r)i: > =C)~-l)(ISi i ) -C)[-1)(ISi i )C(k~ -l>trSkxiiJxkkhD(s-1)~(s)/l~(s-1)[li~.ii / '~ i i  [~ i i !  ~ 

( j # i , k # i )  

and then store it in cell R (j,k). 

(4) Calculate the elements: 
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F}; ) ~.C}? -1) (tsii)r}i ~) 

r)2 ) =CJZ-1)(15ii)P}S)r}[ ) ( j ¢ i )  

and store them in cells R (i , j )  and R (j,i). 
We have now obtained all the elements of R (s). In practice, the procedure 

can be simplified. Because of the symmetry with weight, i.e. 

r~k/Pkk = r k J P z  

the computation may be manipulated only for the upper or lower triangular 
part of the matrix R. 

It should be noted that in almost all adjustment problems only the diagonal 
elements of R are needed. In these cases the computer processing time can be 
reduced still further. 

Moreover, since weights are relative in nature, we can always keep the weights 
of one sort of observations unchanged. In our case now, we would certainly 
choose the weights of that sort of observations unchanged, which has the most 
number of observations. In this way, the number of recursive steps needed can 
be made much less than the total number of observations. In gross error detec- 
tion, we often adjust the weights so as to reduce or delete their effects. Since 
the number of gross errors are very small, the recursive steps are also quite 
few. Moreover, with more gross errors detected, the needed number of recursive 
steps gets less and less. 

6. TESTS AND CONCLUSION 

The computational efficiency of the recursive method was tested with ficti- 
tious data of a bundle block adjustment of 3 × 7 photos. Each photo has 25 
image points. We have altogether 465 image points and 169 object points, among 
which 12 points are chosen as control points. There are altogether 966 obser- 
vations and 633 unknowns. The redundancy is 333. The computation was per- 
formed by a Siemens 7.570-C computer. 

In the computation of matrix R by the conventional method, the banded 
characteristics of N and the sparse feature of A are adequately considered for 
both the computation of N - 1 and A N  - 1A wp. 

Table 1 shows the CPU-time used to calculate the elements of matrix R by 
the new recursive method and the conventional method. We see that even when 
the number of changed weights amounts to 50 (approx. 5.2 percent of total 
number observations), the CPU-time used by the recursive method is half of 
that used by the conventional method. If only the diagonal elements of R need 
to be calculated, the CPU-time of the recursive method takes only about 2.3% 
of that of the conventional method. 

Table 1 shows also that the tr (R) obtained by the two methods are practi- 
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Comparison of the two methods 
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R Fast recursive method 

m=l  m=5 m=lO m=20 m--30 m=50 

Conventional 
method 

CPU-time (in seconds): 
All elements 11 35 65 126 186 305 604 
Diagonal elements 5 5 5 6 8 13 560 

Trace ofmatrix R (trR): 
333.0000 332.9999 332.9997 332.9995 332.9992 332.9987 333.000 

cally the  same ( the  figures are ident ica l  for  all e l ements  of  R and  jus t  the  di- 
agonal  e l emen t s ) .  T h e  d iscrepancies  are due to the  round-o f f  error .  As the  
ca lcula t ion  is recursive,  t he  round -o f f  e r ror  gets grea ter  wi th  the  increase  of 
the  n u m b e r  of  the  recurs ive steps. However ,  th is  small  a m o u n t  of  round-of f  
e r ror  is not  effect ive at  all in pract ice .  

In conclusion,  the  newly deve loped  recurs ive m e t h o d  for r epea ted  compu-  
t a t ion  of  re l iabi l i ty  ma t r ix  R is correct ,  and  is m u c h  more  eff ic ient  t h a n  con- 
ven t iona l  methods ,  especial ly when  only  the  diagonal  e l ements  need  to be re- 
computed ,  which is a lmos t  always the  case in pract ice .  
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APPENDIX A 

As a change  in the  weight  of  observa t ions  can be cons idered  as adding or 
sub t rac t ing  an  observa t ion  wi th  sui table  weight  in or f rom the  original  no rmal  
equat ions ,  by  the  use of  the  sequent ia l  least  squares,  s imilar  equa t ions  can be 
der ived also. Let:  

N = ~ a i P i i a  T 
I 

Y  P.C + I 
l 
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Than we have: 

- I = N  - 1 - N  -lak(AP~l + a ~ N  - la~)- laTN --1 

That  is: 

N -1 = N  -1 -APkkN - lakaTN - 1 / ( I + a T N  -la~APh~) (A-1) 

From eq. (4) we have: 

rii =dij --aT1V -lajP2j ( j ¢k )  

Substi tut ing eq. (A- l )  we get: 

Zii=r~i+AgkkaTN-lakaTN-lajP~ff( l+a~N-lakAgkk) ( j¢k )  

After noticing eq. (4), the above equation can be writ ten as: 

l~ij=rij+APkk(~ik--rik)((Jkj--rhj)/(Pkk + (1--rkk)APkk) ( j#k )  (A-2) 

When  j = k, we have: 

Fik : (~ik ~ aT 1V - l a k ( P k k  - I - A P k k )  

Similarly, we can obtain: 

Pkk rik + APkk (rik - rkk (~ik) 
~k = (A-3 

Pkh + ( 1 -- rkk)APkk 

It can be proven that  eqs. (A-2) and (A-3) are the same as eqs. (11) - (15  
in nature. On the basis of formulas (A-2) and (A-3), the recursive algorithm 
can also be developed. It is equivalent to the one presented in this paper. 


