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Abstract

This paper presents a novel algorithm for object reconstruction without interior orientation. First we introduce the
Thompson and Longuet-Higgins equation as well as the fundamental matrix. After defining the affine model, we show that
some of its components can be linearly withdrawn from the fundamental matrix, which in turn is linearly determined up
to a scale factor by minimal eight image correspondences. The object reconstruction is then performed linearly via a 3D
affine transformation. Unlike the well-known DLT algorithm where minimum six known points are required on each image
of a stereopair, our algorithm requires that only four of them appear on the second image. In addition to an accuracy fully
compatible with the DLT algorithm, tests with an aerial stereopair also show the robustness of our algorithm, both to the

configuration of known points and to the image deformation.

1. Motivations

For quite a long time it seemed to be a rule for
photogrammetry that the interior orientation has to
be completed, or equivalently, the interior elements
of the camera must be known, before any other pho-
togrammetric computation is done. This was over-
thrown by the time the well-known DLT (Direct
Linear Transformation) algorithm was published by
Abdel-Aziz and Karara in 1971 (cf., Slama, 1980, pp.
801-803). It directly relates the object point to its
image coordinates which could be measured in any
oblique coordinate system without knowledge of in-
terior elements of the camera. This problem seems
to be fully solved if we neglect the drawbacks of the
DLT algorithm. In fact it recovers an object directly
from its images rather than from the photogramme-
tric model, therefore, the inherent information behind
the photogrammetric stereopair is not fully utilized.
Moreover, it requires at least six known points on each
of the images to reconstruct the object. Keeping those

issues in mind, the question arises: how could we
reconstruct an object without knowledge of interior
orientation by fully employing the photogrammetric
information behind a stereopair? Our motivation also
has its deep roots in computer vision and close-range
photogrammetry where uncalibrated camerais widely
adopted and the interior elements are either unknown
or different from image to image.

Besides those theoretical considerations, our mo-
tivation also has its practical background. Although
there seem to be no theoretical impossibilities to
search and localize the fiducial marks in the digi-

- tal image fully automatically, each of current digital

photogrammetric systems performs this interactively
or semi-automatically, probably due to the large
searching area in huge image data and the various
types of fiducial marks. Therefore, if the interior ori-

‘entation procedure becomes not inevitable anymore,

we could achieve progress towards the automation of
digital photogrammetry.
Linear solution is always very beneficial, es-
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pecially in computer vision and close-range pho-

togrammetry, where finding reasonable initial values

is crucial to the success of iterative algorithms.

Regarding these backgrounds, our purpose is to
find a linear solution for object reconstruction with-
out interior orientation, which can fully use the infor-
mation within a stereopair and has less requirements
on known points than the DLT algorithm.

2. Review of related work and our scope

As our topic falls in both photogrammetry and
computer vision, the related work in both areas
should be mentioned. Photogrammetrists seem to
rely much on the DLT algorithm and hence on
a sufficient number of known object points, when
the interior elements are unknown. So far, probably
no algorithm is widely acknowledged to take ad-
vantage of the photogrammetric model. In contrast,
besides being interested in camera calibration, scien-
tists in the computer vision area have fully studied
the problem “motion or relative displacement esti-
mation from uncalibrated camera”. Most recently,
quite a few papers have been focused on this is-
sue. They claimed that without interior elements the
object can be reconstructed up to either an affine
or a perspective transformation, if only eight image
correspondences are given (Faugeras, 1992; Hart-
ley et al, 1992; Hartley, 1992). Obviously this is
of fundamental importance for object reconstruction
without interior orientation (Faugeras, 1993; Hartley
and Mundy, 1993).

A linear solution for model reconstruction may
date back to the well-known contribution of Lon-
guet-Higgins (1981) in the realm of computer vision.
However, the basic idea behind this solution essen-
tially originated from the early work of Thompson
(1968), where he expressed the coplanarity equation
via an unknown 3 x 3 matrix which is acknowl-
edged today as essential matrix (cf., Longuet-Hig-
gins, 1981; Huang and Faugeras, 1989; Faugeras
and Maybank, 1990; Hartley, 1992; Hartley and
Mundy, 1993). It was not until recently that pho-
togrammetrists recalled Thompson’s idea. Brandstit-
ter (1992) employed this idea for image rectification.
The work of Wang (1995) threw a light on this idea
upon which a linear algorithm was designed to re-
construct the photogrammetric model with the aid of

the interior orientation. Most recently, the stability of
this algorithm was studied by Deriche et al. (1994),
Forstner (1995) and Luong and Faugeras (1994).

Our research is highly inspired by the work of
Hartley et al., Faugeras et al. and Wang. In Section
3 we start from an affine transformation in image
space in terms of homogeneous coordinates, and
then generalize the Thompson and Longuet-Higgins
equation to the case of unknown interior elements.
Section 4 is focused on the affine model and the
recovery of its components. Unlike Faugeras’ work
(Faugeras, 1992), where traditional projective ge-
ometry is utilized, we fully take advantage of the
properties of the skew-symmetric matrix (cf., Ap-
pendix A) and make our development as parallel
as possible to photogrammetry both in concept and
in the form of formulae. After defining the affine
model parallel to the traditional one, we show that
some of its components can be withdrawn from the
so-called fundamental matrix. This leads to a com-
plete employment of a stereopair. In Section 5 we
use a 3D affine transformation to fully recover the
affine model as well as to orient it to the object
frame. Unlike the well-known DLT algorithm, where
a minimum of six known points are required on each
image of a stereopair, our algorithm allows that one
image may have only four of them. Moreover, this
solution is fully linear. Its algorithmic realization is
described in Section 6. Tests with an aerial stereopair
show that our algorithm is robust both to the configu-
ration of known points and to the image deformation.
Results fully compatible with the DLT algorithm are
obtained as well.

3. Thompson and Longuet-Higgins equation

In this section we derive the Thompson and Lon-
guet-Higgins equation, which plays a fundamental
role in our problem. A short comment is thereafter
made on the fundamental matrix.

Referring to Fig. 1 where object point P is imaged
on a stereopair, we have the well-known coplanarity
equation (Slama, 1980, pp. 54-56)

x1[b * (Rxz)] = 0. (1)
In Eq. (1)
b= (Bx By Bz)T (2)
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Fig. 1. Geometry of a stereopair.

is the base component vector, R is the orthogonal

rotation matrix of the second image relative to the

first one, which is assumed to be a reference, and

=00 y - x=(n 2 —f)"

3

are coordinates of conjugate image points p;, p, in
their image spaces, respectively. In Eq. (1) * denotes
the cross product of two vectors.

For any vector x we have (cf., Eq. (A.3))

bxx = Bx, 4

where B is a 3 x 3 skew-symmetric matrix, the entries
of which are composed of the elements of b, le.,

0 —Bz By

B=1| B, 0 -—Byx (5)
—~By By 0

Applying Eq. (4) to Eq. (1) yields

x| Ex; =0, (6)

where

E = BR (7

Eq. (6) is namely the Thompson and Longuet-
Higgins equation, which was initially derived by
Thompson (1968) and rediscovered by Longuet-Hig-
gins (1981). Matrix E, which is the product of the
base component matrix B and the orthogonal rotation
matrix R, is named as essential matrix by Longuet-
Higgins (1981) and thereafter widely accepted and
studied in the realm of computer vision (Huang and

Faugeras, 1989;-Faugeras and Maybank, 1990). Note
that Eq. (6) is only valid for the case when interior
orientation is performed, as (x,, y1) and (x,, y;) are
originated at their corresponding principal points.

It is quite direct to generalize Eq. (6) to the case
when the interior orientation is not done. Suppose
image points are measured in an arbitrary oblique
coordinate system (X, y) which is considered as a
linear or an affine transformation of (x, y), namely
we have
X1 =AX), x3= A, ()
where

(an an 013\

A= Q1 ax»n ap )
Lo 0 -5
(011 a 013\

Ay = @ ax»n axp; : 9)
0 0 -5),

=@ 5 DN BR=G 5 DT (0)
X, and x, are essentially the homogeneous coordi-
nates of image points. Substituting Eq. (8) back into

Eq. (6) we obtain

¥ E%; =0, (11)
where
E = AJEA, = ATBRA, (12)

is called fundamental matrix (Faugeras et al., 1992).
Egs. (11) and (12) are the generalization of Egs. (6)
and (7), and elementary for performing relative ori-
entation and recovering components of a stereopair
when interior elements are unknown. The follow-
ing analyses are essential for the implementation of
Eq. (11).

(a) Eq. (11) is lnear with respect to the entries
of matrix E. It can only be determined up to a scale
factor. This fact follows if we notice that Eq. (11)
is homogeneous and thérefore multiplication with a
scale factor does not change its value. Hence there
are only eight linearly independent parameters in
matrix E. Therefore we need a minimum of eight
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image correspondences to linearly determine the E
matrix. :

(b) There are only seven degrees of freedom
among the eight linearly independent parameters as
they meet |E| = O (since |B] = 0, cf., Eq. (A.2)).
This is coherent with Sturm’s algorithm of comput-
ing epipoles (cf., Faugeras-et al., 1992; Maybank
and Faugeras, 1992), which is known as Chasles’
homograph problem in mathematics (cf., Buchanan,
1993). However, due to its non-linearity, the solution
is not unique.

(c) There are three degrees of rank deficiency
in the reconstruction of the affine model with pure
image correspondences. A simple numeric counting
may show this fact. From the 2 x 11 degrees of
perspective transformation in a stereopair, 7 could
be recovered in the relative orientation step and
12 in the absolute orientation step. There remain
2 x 11 — (7 + 12) = 3 degrees of deficiency to be
removed by choosing a basis on the image plane,
or by leaving them to the exterior orientation step,
which will yield 12 + 3 = 15 exterior parameters.

4. Affine model and recovery of its components

In the following derivation we assume that the
fundamental matrix E has been determined up to a
scale factor by at least eight image correspondences
using Eq. (11).

4.1. Affine model and its components

Referring to Fig. 1 and applying the collinear
condition for the first and second image, respectively,
we obtain

p=Ax;, p=~»rRx + b, (13)
where
p=xX v 27 (14)

gives the coordinates of point P in the first image
space coordinate system, A; and X, are scale factors
of vectors x, and x, relative to vectors p and p — b.
Substituting Eq. (8) into Eq. (13) yields

The next step is essential for solving our problem.
We write Eq. (15) in a way similar to Eq. (13):
p=XRE+b, . (16)

P =MAX,

P =X,

where

p=ATp=Xx ¥ 2)T, (17)
b=A'"b=(By By By, (18)
R = AT'RA,. (19)

A1 and X, are proportional to A and A, respectively,
as they may take into account the multiplication
factor inherent in the E matrix.

We define p = (X Y Z)' as the affine co-
ordinates of point P, as it is a linear, i.e., affine
transformation of its Cartesian coordinates. The col-
lection of all affine points forms an affine model of
the object. Similarly, b is known as the affine base
component vector, and R is specified as the affine
rotation matrix.

Now we are due to rewrite the fundamental matrix
E in Eq. (12) as

E = (ATBA))(AT'RAy) = TR, (20)

where T = ATBA, is a skew-symmetric matrix (cf.
Eq. (A.6). As Th = 0, we are led immediately to
(cf., Eq. (A.9))

Tx _ Ty _ TZ _
Bx By By
ie., T is proportional to B. As any multiplication
factor in matrix T can be taken into account within
the fundamental matrix, we may simple let ¢ = 1.
Thus, Eq. (20) becomes

b

E = BR, (21
where
0 —B; By
B=| B, 0 —By (22)
-By By 0

is defined as the affine base component matrix, anal-
ogous to B in Eq. (5).

Being parallel to the essential matrix E of Eq. (7),
Eq. (21) reveals the following basic and important
fact: :
The fundamental matrix E can be decomposed as
a product of B and R, where B is a skew-symmetric
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matrix composed of the affine base components, rep-
resenting the displacement of the second perspective
centre in the first affine image space, and R is an
affine rotation matrix representing the orientation of
the second camera with respect to the first.

4.2. Recovery of the affine model components

We start with computing the affine base compo-
nent vector b. Noticing that BT = 0 (cf,, Eq. (A.5)),
we obtain

E'h = 0. (23)

This 1s a set of homogeneous equations with b as
unknown and ET as known coefficients. As |ET| =
|E| = 0, which means that Eq. (23) has non-zero
solutions, by setting By equal to an arbitrary positive
constant, we then could obtain the other two affine
base components By and Bz.

Once B is obtained via Eq. (23), we may move on
to computing the matrix R. However, as is pointed
out in Section 3, there are three degrees of rank
deficiency. This can also be seen from Eq. (21),
which is now written column-wise as

Bri=¢& (i=1,23), (24)
where F; and é; are the column component vectors of
R and E, respectively. Since rank(B) = 2, for each
column of R we can only determine two parame-
ters, namely three independent parameters (degrees
of rank deficiency) remain altogether, which could
not be uniquely determined within a stereopair. By
choosing 7|, 7y, 7i3 as independent parameters, a
way the solution will always be ensured, we have

Pai = (Byry +&31)/Bx 73 = (BgFy, — e21)/Bx
P = (ByFia+é3)/Bxy 7y = (Bziip — €2)/Bx
riy = (ByFi3 + é33)/Bxy P33 = (Bgys — €13)/ By
(25)
_ Moreover, we can also obtain the length ratio, i.e.,
A2/Ay, of the two conjugate projective rays. Equal-

1zing the two equations in Eq. (16) and multiplying
with B on both sides yields its least-squares solution:

2 _ (Ex)T(Bi))
I (EX)T(ER,)

>

k =

(26)

>

In summary, with pure image correspondences or
the fundamental matrix, we could recover the two
ratios of the three affine base components, as well
as six relationships among the nine components of
the affine rotation matrix. That amounts to altogether
eight parameters corresponding to the linearly inde-
pendent entries in the fundamental matrix. Moreover,
for each image correspondence, we could determine
its length ratio of the two conjugate projective rays.
Since there are three degrees of rank deficiency, the
affine model can not be fully reconstructed without
extra object information.

Once B and R are determined (cf. next section),
we are due to compute the coordinates of the affine
model points. From Eq. (16) we have the least-
squares solution of A,:

(%, — kRx,)Th

1= *1 —
' T & — KRBT — kREy)

27)

Finally, the model point is taken average of the
two projective equations

There is no doubt that in the above recovery pro-
cedure the key issue is to determine the R matrix,
or equivalently, to determine its three independent
parameters. To remove the rank deficiency, some
authors have suggested to choose a basis of three
points on the image plane (Faugeras, 1992), or to
accomplish singular value decomposition of the fun-
damental matrix (Hartley, 1992; Hartley et al., 1992).
However, these solutions are not unique. Our tests
show that results from different bases may vary up to
meters in object space. In this sense we cannot prefer
this strategy. Instead, the complete recovery of R is
included in the exterior orientation step, i.e., based
on known object points.

5. Linear object reconstruction

In this section we first present the transformation
between the object space and the affine model. Then
a linear algorithm is designed to perform the exterior
orientation of the partially recovered affine model.

It is trivial to show that the transformation be-
tween the object space and the affine model takes the
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form (affine transformation)

U
a, a; asz d4a
_ - 4
D= Au=|b, b, b3 by > (29)
W
Cy C €3 Ca ! )

where T = (U V W 1) gives the homoge-
neous coordinates of a point in object space, A is the
transformation matrix, specified by twelve indepen-
dent parameters.

Inserting Eq. (16) into Eq. (29) yields

Au=3iF, Au=XR%+b, (30)

which has 12 (from A) + 3 (from R) = 15 indepen-
dent orientation parameters.

To design a linear solution, we eliminate X in Eq.

(30) and get two DLT-type equations
aU+aV+asW+ay
cqU+cV+eaWte'
byU+byV+bsW+ by
C1U+C2V+C3W+C4.
The twelve parameters could be linearly determined
up to a scale factor with six given object points
appearing in the first image, namely the ratios a; =
a;/cq, b = bifca, ¢; = CifCa (cj = 1) are obtained.

Immediately after that, the remaining four param-
eters are determined linearly with the second set
of Eq. (30) by minimal four conjugate given object
points, i.e.,

X| =

y = (31)

o - l - .
A'u = k)| Rx; + —b, (32)
Cq
where matrix A’ is composed of a;, bj, ¢; similar to
matrix A,
M=cU+cV+cW+l, (33)

and k is computed from Eq. (26).
The object reconstruction is then finally per-
formed by reversing Eq. (29)

-1

U a ay @ }-(' — a4
Vi= bl bz b3 ? - b4 . (34)
w ¢ ¢ C3 Z-— Ca

Compared to the DLT algorithm, which relates ev-
ery image independently to the object space, our
algorithm fully employs the information within a
stereopair. Therefore, only 15 instead of 2 x 11 pa-
rameters are dependent on known object points. To
ensure a linear solution of this algorithm, one im-
age of a stereopair should have a minimum of six
known object points, and minimally four of them
appear on the other one. It is apparent that in this
minimum configuration of known points, the DLT
algorithm fails, while a linear solution is available in
our algorithm.

6. Algorithmic implementation and tests

In this section we first describe the implementa-
tion of our algorithm and then report and analyze the
test results with an aerial stereopair.

6.1. Algorithmic implementation

The realization of our algorithm is composed of
following steps.

Step 1: determining the fundamental matrix E.
We rewrite Eq. (11) in an operational way

(x! @x]) - vec E =0, (35)

where ® means the Kronecker product and vec refers
to the columnwise vectorization of a matrix.

As only the ratios among the entries of E could
be determined, we may simply let one of its compo-
nents be equal to one. It is proper to set e3; = 1 as
it is approximately equal to By, which may never
be zero. This setting also leads the right item in Eq.
(35) to —y,, which is analogous to the y-parallax
in the traditional sense. We include all image corre-
spondences to determine E.

Moreover, since there are only seven degrees of
freedom in the fundamental matrix, the condition

|E| =0 (36)

may also be included in the solution procedure with
a properly chosen weight. However, unlike the ex-
perience of Barakat et al. (1994), our tests show
that this condition can only stabilize the solution to
a limited extent. Probably due to the large amount
of image correspondences, the determination of the
fundamental matrix is well-conditioned.
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Table |
Photographic parameters
Flight height: ca. 2250 m
focal length: 88.94 mm
frame size: 230 mm x 230 mm
camera: RC-10 .
overlap: ca. 65%
1 2 3
4 5 6

Fig. 2. GCPs distribution in the stereopair.

Step 2: determining the affine base component
vector b or the affine base component matrix B with
Eq. (23). In this step we set By equal to the image
base length.

Step 3: computing the projective length ratio for
each image correspondence with Eq. (26).

Step 4: determining the entries of matrix A’ with
six known points using Eq. (31).

Step 5: determining the three independent param-
eters in matrix R and the scale factor c4 with Eq. (32).

- Step 6: fully reconstructing the affine model with
Egs. (26), (27) and (28). ,

Step 7: reconstructing the object with Eq. (34) for

each affine model point.

6.2. Tests and analyses

We use an aerial image stereopair to evaluate our
algorithm. Its primary parameters and the distribu-
tion of the six ground control points (GCPs) are
shown in Table 1 and Fig. 2, respectively.

Altogether 36 image points as well as their 3D
ground coordinates are measured with an analyti-
cal plotter. The latter are treated as “best values”
to check the validity of our algorithm. Moreover,
the DLT algorithm and the traditional collinear al-
gorithm are also implemented. In order to check the

Table 2
Results under different GCPs (in meters)

GCPs config. on
the second image

RMSE to best values

ox gy oz
a: 1-2-34-5-6 1.936 1.595 1.722
b: 2-3-4-6 1.892 1.455 1.722
¢ 1-24-5 1.944 1.648 1.723
d: 2-3-5-6 1.887 1.444 1.722
e: 2-4-5-6 1.915 1.539 1.722
f: 1-2-3-5 1.954 1.633 1.722
DLT algorithm 1.954 1.580 1.736
Colli. algorithm 1.376 1.365 1.745

Table 3
Results under image deformations (in meters)

Amount of image RMSE to best values

deform. parameters

ox gy oz
1. no deformation 1.892 1.455 1.722
2.s=11,a=10°d =10 mm 1.926 1.460 1.715
3.5=09, a0 =20°d=20mm 1.907 1.466 1.719
4.5=13, 0 =30°d=30mm 1.923 1.465 1.748
5.5=0.7, a =40° d = 40 mm 1911 1.488 ].743
DLT algorithm 1.954 1.580 1.736

efficiency of our algorithm, results under different
control configurations and various image deforma-
tions are presented respectively in Tables 2 and 3,
in which all numerics are compared with the “best
values”.

In Table 2, the DLT algorithm and collinear algo-
rithm are implemented with all six conjugate GCPs,
while our algorithm is evaluated with different GCPs
configuration on the second image and six common
GCPs on the first image.

It is no wonder that the collinear algorithm holds
the best results. The items a and DLT in Table 2
show that our algorithm obtains essentially the same
rigorous results as the DLT algorithm when they
have the same GCPs configuration. Through items b
to f of Table 2, where the DLT algorithm is not ac-
cessible, our algorithm behaves completely robust to
various GCPs configurations. The small differences,
rarely up to maximally decimeters, are within the
precision tolerance of GCPs themselves. Moreover,
the most encouraging is that in each minimum GCPs
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configuration we could still reach the same accuracy
as for the full GCPs configuration, a benefit due to
the complete employment of the information within
a stereopair.

Table 3 shows the results of our algorithm under
different affine image deformations, where s, o and
d refer to the scale factor, rotation angle and the dis-
parity of the principal point, respectively. In order to
testify the validity of our algorithm, simulated affine
deformations based on these parameters are added on
the original image observations, where the first and
second image take different signs of the parameters,
respectively. The GCPs configuration of this table is
item b in Table 2. Since the DLT algorithm presents
the same result under different image deformations,
it is appended only in one row in Table 3. It is clearly
seen that our algorithm is practically robust to differ-
ent amounts of affine image deformations, since only
trivial changes (maximum up to centimeters) might
occur among them.

7. Conclusions

Object reconstruction without interior orientation
can be linearly accomplished with the aid of the
affine model. By making full use of the information
in a stereopair we can determine 2 ratios of the affine
base components and 6 relationships among the 9
entries of the affine rotation matrix. The partially
reconstructed affine model is oriented to an object
frame via determining 15 independent parameters.
Unlike the DLT algorithm, where minimum 6 known
points are required on each image of a stereopair, our
algorithm allows one image to have only 4 of them.
In addition to its completely compatible accuracy
with the DLT algorithm, it is robust to control con-
figurations and image deformations. This algorithm
will find wide uses in object reconstruction in com-
puter vision and photogrammetry with uncalibrated
cameras or without interior orientation.
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Appendix A. Propertiesof a3 x 3
skew-symmetric matrix

1. A 3 x 3 skew-symmetric matrix S is defined as

0 -Sz Sy
=-ST=|s 0 -Sx|- (A1)
—Sy Sx 0

It has only three independent non-zero entries and is singular, i.e.

(S| =0. (A2)
2.Fora3xlvectorx=(x¥ Y 2Z)T, wehave

s*xx = Sx, (A3)

where * denotes the cross product of two vectors, and

s=(x Sy S (A4)

is specified by the entries of matrix S. This can be easily showed,
as

i J k
S$kX = Sx Sy SZ =
X Y Z
Sy S Sz S S S
Y _Z i Z Xj+ X Y k=Sx,
Y 2z z X X Y

where i, j, k are unit vectors in the directions of coordinate axes.
3. If s is composed of the entries of S, then

Ss=-8Ts=0. (A.5)

4. For any 3 x 3 matrix A, § = ATSA is also a skew-
symmetric matrix, as

ST = (ATSA)T = —ATSsA = -8§. (A.6)
5. It is easy to show
Sx = Xs, (A7)

where X is the skew-symmetric matrix specified by the compo-
nents of x according to Eq. (A.l).
6. The solution of the homogeneous equation system

Sx=0 (A.8)
is

X _ Y z 0
S5 (A.9)
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