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Abstract 

Projective invariants are helpful for image understanding and object recognition. It is shown that the cross-ratio of 
volumes is the general projective invariant. Consequently, it is proposed as a projective independent description of the 
object. In order to obtain this description from image observables, a stereopair of the scene is utilized to constitute a 3-D 
projective model, and a computational algorithm is developed based on a proper decomposition of the fundamental matrix. 
Numerical computation with real images is given to validate and evaluate the development and algorithm. 
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1. Introduction 

An object and its photographic images are tra- 
ditionally described by Cartesian coordinates with 
respect to a chosen frame. Although this description 
is very suitable for positioning and its related cal- 
culation, generally it does not explicitly show any 
characteristics of an object after it is imaged. Obvi- 
ously, this is not beneficial for image understanding 
and object recognition. The purpose of this article 
is to construct a projective independent description 
for an object, which can be fully calculated with its 
image coordinates. 

In photogrammetry and computer vision, there are 
basically three kinds of genetic elements, i.e., image 
coordinates, object points and orientation parame- 
ters, which may include intrinsic camera unknowns, 
relative and exterior parameters. A relationship be- 
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tween only two types of those elements will consti- 
tute an invariant, in which the third class of element 
disappears. For the purpose of object recognition, the 
most useful invariant is the 10-type (Image-Object) 
invariant where orientation parameters are eliminated 
(Barrett et al., 1995). 

The well-known cross-ratio of signed distances 
among four points in a straight line is a 1-D to 
1-D 10-type projective invariant (cf. Duda and Hart, 
1973). For a 2-D to 2-D projective transformation, 
namely the object is planar or part of it in question 
is planar, the projective invariant is the cross-ratio 
of signed triangular areas among five points. Al- 
though this fact might not be well-known, it can be 
inferred from the discussion of Barakat et al. (1994). 
However, for the 3-D to 2-D projective transforma- 
tion, which describes the real imaging procedure in 
photogrammetry and computer vision, no general 
10-type invariant exists (Weiss, 1993). Therefore, it 
is of interest to find the so-called model-based in- 
variants, which can only be derived based on some 
prerequisites or a-priori knowledge of the object to 
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be described and recognized (Weiss, 1993; Wein- 
shall, 1993). 

As a theoretical generalization, Brill and Barrett 
(1983) extended the projective transformation to the 
n-D to n-D case, where it was shown that the cross- 
ratio of signed volumes is invariant. Analogous to 
the 10-type invariants in 1-D to 1-D and-2-D to 
2-D projective transformations, here we define the 
invariant in 3-D to 3-D projective transformation as 
the MO-type (Model-Object) invariant, since the 3-D 
projective transformation could be considered as a 
projective model of the object. Unfortunately, we can 
not physically obtain a 3-D projective model through 
the photographic procedure; therefore, an algorithm 
needs to be developed to make this invariant compu- 
tationally available. 

Many recent literatures discuss the computation 
of projective invariants. The proceedings edited by 
Mundy et al. (see the source of Barrett et al., 1994) 
is a comprehensive collection of this topic. Among 
other things, Barrett et al. (1994) extended their 
earlier work by using simplified notations and alge- 
braically eliminating orientation parameters from the 
imaging equations. Preliminary examples for build- 
ing reconstruction based on projective invariants are 
given by Barrett et al. (1995). They also extended 
this method to the image transfer between SAR 
(Synthetic Aperture Radar) images and photographc 
images (Barrett and Payton, 1993; cf. also Barakat et 
al., 1994). 

This article characterises the discussion by in- 
troducing and, more importantly, decomposing the 
fundamental matrix of a stereopair. In this way a 
scalar factor - the length ratio of two conjugate 
projective rays - is obtained. After the projective 
invariance of the 3-D cross-ratio is shown, a proper 
definition of the 3-D projective model then makes 
available its reconstruction and the calculation of the 
3-D cross-ratio from image observables. 

The remaining part of t h s  article is organised as 
follows. Section 2 starts the discussion by introduc- 
ing the fundamental matrix of a stereopair. Through 
the decomposition of t h s  matrix, the necessary quan- 
tity for computing the MO-type invariant can be ob- 
tained. After introducing the 3-D to 3-D projective 
transformation, Section 3 proves that the cross-ratio 
of volumes is a general projective invariant. Thus, 
three independent MO-type invariants are defined as 

projective coordinates to describe the object. The 
reconstruction of a projective model for the object 
in Section 4 makes the computation of the MO-type 
invariants available from the image observables of 
a stereopair. This development and algorithm are 
validated and evaluated in Section 5, with numerical 
examples of an aerial stereopair. Concluding remarks 
are given in Section 6. 

2. Fundamental matrix 

This section will present a brief introduction to 
the fundamental matrix and thereafter decompose it 
to obtain the necessary quantities for computing the 
MO-type invariant. 

As a generalization of the essential matrix 
(Thompson, 1968; Longuet-Higgins, 1981), the fun- 
damental matrix corresponds to the coplanarity con- 
dition when the interior orientation is unknown 
(Faugeras, 1992; Hartley, 1992; Barrett et al., 1995; 
Shan, 1996): 

where 

are homogeneous coordinates of the left and right 
image in a stereopair, respectively. (XL YL) and 
(STR 7,) are left and right image observables in an 
oblique image coordinate system. In Eq. 1 the 3 x 3  
matrix E is called the fundamental matrix (Faugeras, 
1992). It could be linearly determined up to a scalar 
factor with at least eight image correspondences 
(Faugeras, 1992; Hartley, 1992; Barakat et al., 1994). 

Decomposing the fundamental matrix will produce 
the quantities needed for computing the projective 
invariants defined in next section. As is shown in Shan 
(1996), the ratios among affine base components Ex, 
By, Bz can be determined by the E matrix: 

where F i j  are components of the matrix E. The 
length ratio TR/TL of two conjugate projective rays 
meets the relation (Shan, 1996): 
- 
AR - - 
r E5iR = B5iL 
AL 

(4) 
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where Barrett, 1983): 

Thus, we can obtain the least squares solution of 
the length ratio k from: 

In summary, through decomposing the fundamen- 
tal matrix, the two ratios of the three affine base 
components in Eq. 3, and the length ratio of the two 
conjugate projective rays in Eq. 6 can be obtained. 

3. 3-D cross-ratios and projective coordinates 

After the 3-D to 3-D projective transformation is 
introduced, this section generalizes the well-known 
cross-ratio from 1-D to 3-D. The projective coordi- 
nates are then introduced and defined as a measure 
of the MO-type projective invariant for object de- 
scription. 

A 3-D to 3-D projective transformation from ob- 
ject to its model can be expressed as (cf. Brill and 

In terms of homogeneous coordinates, Eq. 7 is 
equivalently expressed as: 

tii' = Aii  (8) 

where 

are homogeneous coordinates of a point in object and 
model systems, respectively. A = { a i j }  is the 4 x4 
transformation matrix, t # 0 is a scalar factor rele- 
vant to this object point. Comparing Eq. 7 with Eq. 8 
reveals the fact that a projective transformation of 
non-homogeneous coordinates can be expressed as a 
linear transformation in terms of the corresponding 
homogeneous coordinates. 

Analogous to the 1-D case, where the cross-ratio 
is referred to the signed distances among 1 + 3 = 4 
points (cf. Fig. I), the volume cross-ratio in 3-D is 

Fig l a. I -D case I 2 

Fig1 b.  2-D case 

Figlc. 3-D case 

Fig. 1. Perspective transformation and cross-ratios. There are 3, 4, 5 basis points in I-D, 2-D and 3-D perspective transformations. 
respectively. d, 6,  A are distance, area and volume elements, respectively. C is the cross-ratio for each case. 
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defined among 3 + 3 = 6 points as (cf. Brill and the transformation parameters in matrix A of Eq. 8, 
Barrett, 1983): 

) where A 1234 is the volume of the tetrahedron formed 
by points 1, 2, 3 and 4, i.e., 

For other quantities in Eq. 10, similar expressions 
can be written. In this definition, the indices 1 to 5 
stand for the chosen basis points. The meaning of 
volume here is generalized, as it might be propor- 
tional to the true volume by a common factor. In this 
sense, the cross-ratio of volumes is equivalent to the 
term cross-ratio of determinants appearing in Barrett 
et al. (1994, 1995). For a conceptual comparison, 
Fig. 1 gives an illustration of the perspective trans- 
formations and cross-ratios in  1-Dl 2-D and 3-D. 

Next, it can be shown (Brill and Barrett, 1983) 
that the cross-ratio defined in Eq. 10 is invariant 
under a projective transformation, i.e., 

This can be seen by substituting the relation 

and the like back to Eq. 10. Since the factor ti 
appears the same number of times in the numerator 
and in the denominator of Eq. 10, this will lead to 
cancelling all factors ti, thus Eq. 12 holds true. 

A permutation of the indices in Eq. 10 may 
produce other volume cross-ratios. However, only 
three of them are independent. This could be 
shown by a numerical counting. To specify six 
3-D points constituting a volume cross-ratio, we 
need 6 x 3 = 18 independent parameters. However, 
(3 + 1) x (3 + 1) - 1 = 15 of them are taken up by 

where -1 takes into account one parameter elirni- 
nated in the numerator and denominator of Eq. 7. 
The remaining 3 = 18 - 15 degrees of freedom refer 
to the number of independent volume cross-ratios. 
In this sense, suggested initially by Duda and Hart 
(1973) for 1-D and generalized by Brill and Barrett 
(1983) to n-D, the three independent invariants are 
defined as projective coordinates of point i relative 
to the chosen five basis points. More particularly we 
specify the following three cross-ratios: 

as the projective coordinates of point i relative to the 
five chosen basis points 1, 2, 3, 4 and 5. 

As is shown in Eq. 12, the projective coordi- 
nates in Eq. 13 are MO-type invariants, i.e., they 
can be equivalently calculated from either object or 
model coordinates. As a generalization of the sim- 
ilarity model in conventional photogrammetry, the 
collection of all the model coordinates (U' V' W' 1) 
in Eq. 8 will constitute a projective model of the 
object. However, since they are not observables, the 
projective coordinates in Eq. 13 can not be directly 
applied to computation. 

4. Computation of projective coordinates 

Following the discussion in the last section, we 
will define the projective model of the object in such 
a way that the projective coordinates are computa- 
tionally available. 

The 3-D to 2-D projective transformation 
(collinear equation) for the left and right images 
are written as: 

where AL and & are 3 x 4 transformation matrices 
for the left and right image, respectively. There are 
six equations in Eq. 14 altogether. Any four of them 
will constitute a projective model of the object, as 
long as the corresponding 4 x 4 transformation matrix 
is not singular. To keep the formulae symmetric, the 
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first two equations of each set are chosen, namely: 

where { a i j )  = A is the transformation matrix. 
A comparison between Eq. 15 and Eq. 8 shows 

that the homogeneous coordinates 

are essentially a projective transformation of the 
object. The whole set of pi constitutes a projective 
model of the object. Therefore, following from the 
discussion in Section 3 and letting ii = in Eq. 8, 
the projective coordinates of point i can be calculated 
with following formulae: 

where Pi ( j  = 1,2,3,4,5) refers to the P vec- 
tor of basis points in Eq. 16. As described by the 
algorithm in Section 2, the length ratio of two conju- 
gate projective rays is available if the fundamental 
matrix is obtained and properly decomposed. Thus, 
Eqs. 16, 17 can be used to compute the projective 
coordinates. 

As pointed out in Section 3, C1, C2 and C3 are of 
an object description independent of the projective 
transformation. That means their values remain un- 
changed under projective transformation. Obviously 
this is beneficial for object recognition and image 
understanding. Since there are no transformation pa- 
rameters involved, the projective coordinates can be 

calculated solely with the image observables of a 
Tab 

stereopair. Therefore, by choosing five basis points, 
either globally or locally, the object or part of the ob- - 
ject can be described with its projective coordmates No. - 
Cl, C2 and C3. o 

1 

5. Tests and analyses 2 
3 
4 

To validate and evaluate the development and - 
algorithm for object description, tests were imple- 
mented with an aerial stereopair. Its primary param- 
eters are shown in Table 1. Five known object points 

Ta 
an were chosen as the basis points. Four of them form 

the maximum volume and any four of them are not PO 
in( 

coplanar, i.e, A # 0. 
tic 

The image coordinates, as well as their 3-D ob- 
in  

ject coordinates were measured using an analytical 
plotter. Thus, for each object point, its projective thl 

coordinates can either be computed with its object 
coordinates via Eq. 13, or with its image coordinates 
via Eq. 17. These two results were then compared 
statistically in terms of root mean square errors (RM- 
SE), given in Table 3. To further verify the invariance 
of the projective coordinates for object description, 
various affine image transformations were added to 
the original image observables. The tests are num- 
bered as 0-5 in the left column of Table 2, where 
test No. 0 was carried out by original image observ- 
able~. ~ r n o n ~  the transformation parameters listed in 

th. 
stc 
re 
ar 
th 
of 
v2 
th 
fc 
in 
j e 
a1 

Table 1 cc 
Photographic parameters tv 
Flight height: ca. 2250 m 01 

Principal length: 88.94 mm 
Frame size: 230 mmx230 mm 

P. 

Camera: RC-10 
fi 

Overlap: ca. 65% a1 
ir 
P 

Table 2 0 
Image transformation parameters il 
No. x Y P 
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Table 3 
RMSE of projective coordinates obtained from object and images 

No. C1 c2 C3 

Table 2, s,, s,, are scale factors, a,., cl, are rotation 
angles, xo, yo are translation components of principal 
point. The notations x and y on the top row of Table 2 
indicate respectively the parameters in x and y direc- 
tions on the image plane. The parameters for the left 
image take the opposite signs of the parameters for 
the right image. 

A row-by-row analysis of Table 3 first reveals 
that the projective coordinates calculated from the 
stereopair are practically consistent to the ones di- 
rectly obtained from the object itself. A comparison 
among the rows of Table 3 shows the invariance of 
the projective coordinates, i.e, they are independent 
of the linear transformation of the image. These facts 
validate the development and algorithm described in 
the previous sections. Therefore, they can be utilized 
for obtaining the projective-independent description 
in the invariant-based image understanding and ob- 
ject recognition.It should be noted that there exists 
an instability in the computation of the projective 
coordinates. Table 3 is based on the statistics of 
twenty-two object points from a total of thirty. The 
other eight object points are nearly located in one 
plane with the three-pointwise combinations of the 
five basis points. Obviously, in this case the volumes 
are vanishing and the projective coordinates become 
infinite. Actually, in this case it is a 2-D to 2-D 
projective transformation. The cross-ratio of areas 
or the projective coordinates degenerating from 3-D 
into 2-D can be directly adopted as a projective-inde- 
pendent measure to describe the object in a similar 
way. 

6. Concluding remarks 

3-D cross-ratio or projective coordinate is the 
general invariant of the projective transformation. It 
can be computed from the 3-D projective model of 

the object if the fundamental matrix of the stereopair 
is determined and decomposed in a proper way. Five 
points, either globally or locally, should be chosen as 
a basis for obtaining the projective-independent de- 
scription. Numerical tests validated the development 
and the suggested algorithm. Future work will be ap- 
plying the projective invariants to photogrammetric 
object recognition. 
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