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Abstract. The perspective 4 point (P4P) problem - also
called the three-dimensional resection problem - is solved
by means of a new algorithm: At first the unknown
Cartesian coordinates of the perspective center are
computed by means of Mobius barycentric coordinates.
Secondly these coordinates are represented in terms of
observables, namely space angles in the five-dimensional
simplex generated by the unknown point and the four
known points. Substitution of Mobius barycentric
coordinates leads to the unknown Cartesian coordinates
(2.8)—(2.10) of Box 2.2. The unknown distances within
the five-dimensional simplex are determined by solving
the Grunert equations, namely by forward reduction to
one algebraic equation (3.8) of order four and backward
linear substitution. Tables 1.-4. contain a numerical
example. Finally we give a reference to the solution of
the 3 point (P3P) problem, the two-dimensional resection
problem, namely to the Ansermet barycentric coordinates
initiated by C.F. Gauf3 (1842), A.Schreiber (1908) and
A. Ansermet (1910).

0. Introduction

The perspective 4 point (P4P) problem - also called the
three-dimensional resection problem - is the problem of
finding the position and orientation of a sensor (camera,
theodolite) with respect to a scene object from 4
correspondence points, a fundamental problem in
geodetic positioning, photogrammetry, machine and
computer vision. Closed form solutions of the three-
dimensional resection problem have been presented by
E. Grafarend et al (the GLS algorithm, 1989), further
developed by P. Lohse (1990) and by E. Grafarend and
A. Mader (1991), E.L. Merritt (the M algorithm 1949),
M. A. Fischler and R.C. Bolles (the FB algorithm, 1981),
S. Linnainmaa et al (the LHD algorithm, 1988), Z.Q.

Correspondence to: E.W. Grafarend

Zeng and X.B. Wang (1992), in particular, based upon
early works by J. 4. Grunert (the G algorithm, 1841), S.
Finsterwalder and W. Scheufele (the FS algorithm, 1903)
and F.J. Miiller (1925). R M. Haralick et al (1994)
evaluated six algorithms of type (i)G, (ii)FS, (iii)M,
(iv)FB, (v)LHD and (vi) GLS for computer vision
applications. Here we develop a new algorithm for P4P,
the three-dimensional resection problem from four given
points, motivated by the implementation of Mobius
barycentric coordinates. A comparison should be made
with the P4P solution presented by R. Horaud et al (1989)
where the term PnP is introduced. The first paragraph
accordingly is devoted to the formulation of P4P in terms
of Mobius barycentric coordinates paying attention to the
introduction of a local affine basis and homogeneous
coordinates, the notion of a Grassmann manifold has been
found particularly useful. The P4P solution in terms of
Mbbius barycentric coordinates is transformed into a form
with respect to observables, in paragraph two. In contrast,
paragraph three generates the P4P solution in terms of
distances and observables of type space angles, namely
with respect to the G algorithm as an example. A
numerical example of the new algorithm is presented in
paragraph four. In Appendix A we pay our tribute to the
solution of the two-dimensional resection problem of type
P3P presented by 4. Ansermet (1910), namely in terms of
Ansermet barycentric coordinates based upon funda-
mental works by C.F. Gauf (1842) and A. Schreiber
(1908). Indeed the newly devolped algorithm for solving
P4P, the three-dimensional resection problem, had been
motivated by the A algorithm of A. Ansermet (1910) of the
two-dimensional resection problem, visualized by
W. Pachelski (1994). Appendix B is an algorithmic
solution for the orientation parameters which computes
P4P in order to extend in a second phase to the three-
dimensional intersection problem, the “forward” pose
problem. The closed-form solution of P4P as presented
in the following supplies us directly with Cartesian
coordinates of the perspective center which is resected
relative to four given points. The underlying nonlinear
adjustment problem needs to be treated in a forthcoming
paper.



218

1. P4P in terms of Mobius barycentric coordinates

The primary situation of a P4P in the three-dimensional
Euclidean manifold E*: = {,/23,gw} of standard metric
g,» subject to u, v € {1,2, 3} is as follows: Directions at
an unknown point p € E are observed to at least four
known points p; € E* subject to i,j € {1,2,3,4}.
Equivalently the measurements may be all possible
combinational angles between two unit vectors
opi/|ppil| and pp;/||pp;ll, respectively centred at the
point p. Figure 1. illustrates the graph of the five-
dimensional simplex. In total there are six poss1ble
measurements of space angles defined by cosy,;
<P |pp] > /N 2ei /11 25; | subJect to the inner product
< ppi[ppj > and the norm || 2pi |, |[pp; || respectively. If
four known points p; € E° are given, then the P4P is
defined by an unknown point p € E* and six angular
measurements ;. In addition, in geodesy, photogram-
metry, machine and computer vision there is the need for
the orientation elements of the theodolite, the camera or
the CCD sensor. Likewise in the case of photogram-
metry, where p is the perspective centre of the camera or
the CCD sensor, the original measurements are image
coordinates of the point p;,p; € E?, respectively, i # j,
which are related to space angles y;; accordmg to (1.1) of
Box 1.1. In contrast, in terms of horlzontal and vertical
directions, respectively, namely {o;, B}, {%;, B;},i # J,
measured by a theodolite, the space angle y,; are
represented by (1.2) of Box 1.2.

4 N
Box 1.1: Representation of space angles y;; in terms
of image coordinates (¥;,¥,Z), (X;,9,Z;) 0 f1p01nts Di

and p; with respect to an orthogonal Euclidean frame
centred at the perspective centre subject to
z;=z; = —f, where f is the focal length of the
camera or the CCD sensor.

X .
i T T o — — = =
\/xinr i2+z? x12»+y}+212-

X% + vy +

= (1.1)
VI I X 5+
N J
4 N
Box 1.2: Representation of space angles y;; in terms

of spherical coordinates (a;, f;), (%, ;) of points p;
and p; with respect to a theodolite orthogonal
Euclidean frame (o;,; : horizontal directions, f;, f;
: vertical directions).

cos i;; = cos fi; cos f; cos(a; — o) + sin fi; sin f;
(1.2)
NS J

In order to generate Mobius barycentric coordinates
of the points p; and p, respectively, we introduce the

P2

j 41 p3 2

Fig. 1. P4P or three-dimensional resection problem

affine basis (A.F. Mobius,
1969)

1827, H.S.M. Coxeter,

{pip2. D13, P13}
or equivalently

{Xz—Xl,Xs—Xl,X4—X1}

which span an %° equipped with a general metric g,,.
With respect to the tetrahedron {p,p>,p3,ps}, Figure 2.
is a visualization of the affine basis subject to affine
geometry.

Note that an affine basis is defined as a basis of an R
which is translational invariant or equivariant under the
action of the translation group. In addition, in the
definition of the affine basis we have used the equivalence
relation py ~ X1, py ~ X, D3 ~ X3, P4 ~ X4, where
{X1,X2,X3,X4} are placement vectors.

Relative to p; ~ x; the point p ~ x can be represented
in the affine basis by (1.3)-(1.7) of Box 1.3, where
{1, A2, 23, A4} are the Mobius barycentric coordinates of
p~X. In particular, we have introduced A;:=1-—
(A2 4 23+ A4). As soon as we cover E* by Cartesian
coordinates {x,y,z} in one global chart via (1.6) we are
led from (1.5) to (1.7). {x,y,z, 1} are called homogeneous
coordinates of p for the following reason.

p3 ~ (0,07 la 0)

P2~ (01 17070)

Pa ~ (07 0’ 07 1)

P~ (170’ 070)

Fig. 2. Mobius barycentric coordinates of four points, pi,pa, p3, pa,
which constitute an affine basis according to (1.11)
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Fig. 3. Homogeneous coordinates {x,1}, projective geometry,
{X,Y} € #?, rational functionx = X/Y,1 = Y/Y

As illustrated by Figure 3., the point p in %#* is
connected to the origin O by a straight line which we
refer to as the projection line with O as the perspective
centre. The projection line is supposed to intersect the
three-dimensional ~ Grassmann manifold Gi3(Xs = 1),
through X; = 1, a linear submanifold of #*. In order
to visualize this perspective projection we present two
examples (1.1, 1.2)

4 I

Box 1.3: Mobius barycentric coordinates, affine basis.

X —X| = (Xg — X1)/12 + (X3 — X1)/13 + (X4 — X1)/14(1.3)
X = X (1 7/127137)v4)+X2)»2 + X3/13 + X4/4 (14)

X = X141 + X + X343 + X4y (15)
subject to

Mth+h+44=1 (1.6)
X X1 X2 X3 X4 ;bl

y Vi oy ||k (1.7)

z Z1 Zp Z3 ZzZ4 /l3 .
1 1 1 1 1 Aq
N J

Example 1.1 and 1.2 motivate the representation of
the coordinates {x,y,z} € G43(X4 = 1) in terms of the
rational functions

X XN X
“x, ' Tx Tx
subject to {X1,X>, X3, X4} € a8

As being outlined by Example 1.3 and 1.4 the name
“homogeneous coordinates” is derived from the fact that
any inhomogeneous algebraic manifold in the Grass-
mann manifold Gs3 under the action of the perspective
group (1.8) is transformed into a homogeneous algebraic
manifold in #*. Finally in Box 1.4 we collect some basic
properties of Mobius barycentric coordinates which will
make obvious its name.

X z (1.8)
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Example 1.1: Homogeneous
projective geometry, {X,Y} € #°.
According to Figure 3. the projection line OP
intersects the Grassmann manifold G, (Y =1)
through ¥ =1 or the line x € P! parallel to X
through ¥ = 1, within %#°. Obvious is the ratio

coordinates  {x, 1},

~

i

X =— y:—

Example 1.2: Homogeneous
projective geometry, {X,Y,Z} € R

According to Figure 4. the projective line OP
ntersects the  Grassmann manifold Gz2(Z =1)
through Z =1 or the plane {x, 3y} e P? parallel to
{X,Y} through Z = 1, within #°. Here we want to
prove the rational functions

X Y

VA V4

x 1 X

)—(—?:Mc—? (Ex.1.1:1)
. J
4 ™

coordinates {x,y, 1},

Firstly in the plane {x,y} € P?> we introduce polar
coordinates in form of

(Ex.12:1)

N

Example 1.3: Homogeneous
projective geometry,
G, (Z =1).

Assume an ellipse E}, to be given in the Grass-
mann manifold G3»(Z =1), namely in the plane
{x,y} € #* by means of (Ex 1.3:1). Under the central
projection outlined in Example 1.2, namely by means

x=rcoso y=rsina (Ex.1.2: 2)
Secondly we refer to ratios
x_VEER 1
R Vx2yy? Z
VX2 +Y?
po YA (Ex.1.2: 3)
VA
y Y
t == —=
ano="=~
Sin o — tan o _ Y
VI+tanZa VX + Y2
cos o = ! = X
V1+tanlfa VX2 4 Y2
= x= _X =rsin o =
X—rcosa—z y=rs zfo
(Ex.1.2 : 4)
o %
4 N

coordinates {x,y, 1},

Grassmann

manifold,

Continued
J
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7
R
P(X,Y,Z)
Z =1 y
(87 P2(Z = 1) = G3,2
P(z,y)
0 Y

X

Fig. 4. Homogeneous coordinates {x,y, 1}, projective geometry,
{X,Y,Z} € #°, rational function x = X/Z,y = Y/Z, 1 =Z/Z

4 N
(Example 1.3 Continued)

of the rational functions (Ex 1.2:1) the ellipse E! ap A8
an mhomogeneous algebraic manifold is mapped nto
the cone C> “» as a homogeneous algebraic manifold
(Ex. 1.3:2)

E,,;={xe# +—_1 a,b € R",a> b}

|2 b2

= {x € #|P’x* +d** - a’b* =0,

a,be R, a> b} (Ex.1.3:1)
X Y
2
C§b~_{x6g3|b2 —&-a?—a b* =0}
= {x69?3|b2)(2+a Y: - PP 7? =0}

(Ex.1.3:2)
- J
e ™

Example 1.4: Homogeneous coordinates {x,y,z, 1},
projective geometry, Grassmann manifold Ga3
Xy =1).

Assume the triaxial ellipsoid E to be given in
the Grassmann mamfold Gy3(Xy = 1), namely in the
hyperplane {x,y,z} € P*, a three-dimensional linear
submanifold of %#* by means of (Ex. 1.4:1). Under
the central projection outlined by (1.8) as rational

Continued

e N
(Example 1.4 Continued)

function the triaxial ellipsoid E2 be aS an inhomoge-
neous algebraic manifold is mapped into the hypercone

C},. as a homogeneous algebraic manifold (Ex.
1.4:2).
2 2
E, . ={xe® 2+Zz+ =1,
a,b,c€e A ,a>b>c}
={x € B|P’** + *a*y + PP — dPh P =0,
a,b,c e A ,a>b>c} (Ex.1.4:1)
X X X:
x=2L y:—2 z=22 (1.8)
Xy Xy Xy
Co,. = {XeR
X} X3 X3
b 2)(2 + c2a2X22 + a2b2X2 a’b’c? =0}
={X e %
P AX] + PP X; + a*bP X} — b X} = 0}
(Ex.14:2)
4 I

Box 1.4: ;Properties of barycentric coordinates.

If the point p ~ x is located in the centre of the
tetrahedron {pl 7pz,pj,,p4} ~ {X] , X2, X3, X4}, namely

X=(0x1+x+x3+x4)/4
Y= +y+y+m)/4
Z = (Zl+22+23 —|—Z4)/4

(1.9)

then the barycentric coordinates

;u] X1 X2 X3 X4
| _|»n » oy o

;L} Z1 Zy) Z3 Z4
A4 1 1 1 1

3

(1.10)

—_ N e =
|
PN

—

namely {A1,42, 43,4} = {1/4,1/4,1/4,1/4} results.
This property of barycentric coordinates made
Mobius (1827) to refer them to a “barycentre”. Since
the barycentric coordinates sum up to one, they form
a partition of unit.

If the point p ~ x is located on one of the points of
the tetrahedron, say p = p; ~ x = xq, then the bary-
centric coordinates

Continued

-

-




namely {4, Ay, 3, 44} = {1,0,0,0} result.
If the point p is located arbitrarily, then the
barycentric coordinates are represented by

A;
Ji==t Vie{l1,2,3,4)

A (1.12)
where
X X Xz Xy
Y h 1 1
A] =
Z Zn 7y Z4
1 1 1 1
= £ 6vol{p, p2, p3, s} (1.13)
X, X X3 X
h Y » 14
Az L=
A A
1 1 1 1
==+ 6vol{p1,p,p3,ps} (1.14)
X1 Xo X Xy
Y, b, Y Y
A3 L=
2 ZLr Z 7y
1 1 1 1
==+ 6001{]71;]727[7,]74} (115)
X X X3 X
W b, ¥ Y
A4 L=
2 7 7y Z
1 1 1 1
==+ 6U01{Plap27173,p} (116)
Xi X X3 X
i » Y3 Y
Ao |02 Bk
Ly Ly 7z Z4
1 1 1 1
= =+ 6vol{p1,p2,p3, s} (1.17)
where A, Ay, -+, A are (six times) the volume of the

hyperfaces, i.e. the volumes of the respective tetra-
hedra {pvpzﬂp3ap4}7 {pl >pap37p4}a Ty {plap27p3ap4}'

As special case we can represent the
Mobius barycentric coordinates for an affine basis in
R* or R, respectively, where 4; amount to the area of
the faces or the length of a line segment, respectively. It
has to be mentioned that the barycentric coordinates of
a point depend on the chosen affine basis. For a given

Continued

-

4 N\
(Box 1.4 continued)
A xioxn oxox|  [x 1
Ll _ |y » oy o n|_10
13 o Z1 Zp Z3 Z4 zZ1 o 0 (1.11)
n 1 1 1 1 1 0

221

4 N
(Box 1.4 continued)

point p, if we choose different sets of four points
constituting an affine basis, then different barycentric
coordinates of p will be obtained. The affine basis
constituted in 2, %, #°, respectively, is set up with
two different points, three points which are not
collinear, and four points which are not coplanar.

If we treat the length between the base points, the
area of a face constituted by three base points and the
volume of the tetrahedron hyperface constituted by
four base points as unit, then the barycentric
coordinates are essentially the length of a line
segment, area of a triangle, volume of a tetrahedron
hyperface, respectively. It is for that reason that the
triple coordinates of a point p € #%, namely, the
Mobius barycentric coordinates, are called area
coordinates, t00.

J

2. P4P in terms of observables

By means of (1.7) we expressed the unknown position of
the point p ~ (x,y,z) in terms of Mdbius barycentric
coordinates {11, , 73,4} subject to Aj + A+ A3+ 4
=1, namely with respect to an affine basis
{xy —x1,X3 —X|,X4 —X; }. The benefit of such a
transformation (x,y,z) = (41, 42,/23,44) is taken as
soon as we succeed to relate the Mobius barycentric
coordinates via (1.12) J; = A;/A for all i € {1,2,3,4} to
the observables of type space angles i/, ., the purpose of
this paragraph.

From analytical geometry of E* := {%* guw} We are
used to represent, according to Box 2.1, a volume
element vol{p, p>, p3, pa} by (2.1) as the projection of the
vector product pps * pps onto pps. By taking advantage
of the Lagrange identity we relate the Cramer
determinant A} = (6 vol{p p2,p3,p4}) by (2.2) to the
inner products <ppz| ps >= o2l |pps | cos s,
< pps|pp: >= |lpp2 || cte. Those inner products im-
plemented into A7, -- A via (2.3) lead to the repre-
sentation of M ébius barycentrzc coordinates (2.4) in
terms of the observed space angles, via (2.5), (2.6) finally
written in the form (2.7).

Substituting {)1,@, 23, 24f(Y;;) of type (2.7) into
(1.7) we ﬁnally arrlve at the representatlons (2.9), (2 9),
(2.10) {x,y,z}(;;), which solve P4P in E* := {%°, gm}
in Box 2.2. é 8), (2.9), (2.10) solvmg P4P in
E’:={#,g,} are generalization of the Ansermet
equations (A. Ansermet, 1910) of Appendix A, which
solve P3P in E?:= {#% g, }. But in contrast to the
Ansermet equations which are completely determined by
the angular measurements Y, the equations (2.8), (2.9),
(2 10) solving P4P in E? depend also on the distances
| opi |l for all i € {1,2,3,4}. These distances || pp;|| are
determined by an algorithm outlined in the next
paragraph.

ij2
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Box 2.1: The transformation of P4P observables of type space angles into Mébius barycentric coordinates
Ay =< pp2[pp3 * ppa >=< (X2 — X)|(X3 — X) * (x4 — X) > (2.1i)
Ay =< ppi|pps * ppa >=< (x1 — X)|(x3 — X) * (X4 — X) > (2.1ii)
As =< pp1|pps * ppa >=< (x1 — X)|(x2 — X) * (X4 — X) > (2.1iii)
Ay =< ppi|ppz * pp3 >=< (x1 — X)|(X2 — X) * (X3 — X) > (2.1iv)
“Lagrange identity (Cramer determinant)”
<(X—-X)|x—Xx)> <(X2—-X)|(x3-Xx)> < (X2—-X)[(x4 —Xx) >
A=< (x3—%)|(xa—%X)> <(x3-%)|(x3—%X)> < (x3—x)|(x4 —X) > (2.21)
<(x4—x)|(x2—%x) > <(x4—x)[(x3—%x)> < (x4—X)|[(x4 —Xx)>
<(xp=x)|(x2—%x) > <(x1—=x)[(x3—%X)> < (X; —X)|[(X4 —X) >
A=< (x3—x)|(x2—%X)> <(x3-%)|[(x3—X)> < (x3—x)|(x4 —X) > (2.2i1)
<(x4—x)|(x2—X) > <(x—Xx)[(x3—%X)> < (X4—X)|[(X4 —X) >
<(xp=x)|x1—x)> <X —=-x)[(x2—%X)> < (X3 —X)|[(xX4 —X) >
A=< (x—x)|(x1=X)> < (X3-x)|[(x2—%X)> < (x2—x)|(x4 —X) > (2.2iii)
<(x4=x)|(x1 —X) > <(Xg—Xx)[(x2—X) > < (X4—X)|[(X4 —X) >
<(xp=x)|x1—x)> <X —=-x)[(x2—%X)> < (X3 —X)[(x3—X) >
A=< (x—x)|(x1—X)> < (X3-X)|(x2—%X)> < (X2 —x)|(x3 —X) > (2.2iv)
<(x3=x)|(x1 —Xx) > <(X—-Xx)|[(x2—X)> < (Xx3—X)[(x3—X) >
A} = %2 = x*[Ixs = x|1*[[x4 = x|*
X (1 4208 /53 COS Y34 COS gy — COS> Yp3 — COS* 3y — COS® Yry5) (2.31)
A3 = [Ix1 = x| [xs — x]*[[xs — x|
X (1 420834 COSYryy COS Y3 — COS% Y3y — cOS® Yy — COS® Yry3) (2.3i1)
A3 = xi = x7[Ix2 = x|*[[xs — x|*
X (14 2c0os 4y COSYr 5 COS Yoy — COS Yy — cOS* 15 — COS Yray) (2.3iii)
A; = lxi = x[P[Ix2 = x|*[Ixs — x|*
X (1420815 COS a3 COS Y3 — COS> Yy — OS> py — COS 13;) (2.3iv)
A=A /A= (234)||x2 — x]|| [|x3 — x [|x4 — x]||/A (2.4)
Jo=Ay/A = (341)||x3 — x| [|xa — x [|x1 — Xx]|/A (2.4i1)
J3=A3/A = (412)||x4 — x| ||Ix1 — X [|x2 — x| /A (2.4iii)
Ao =As/A = (123)|Ix; — X|| ||x2 — X ||x3 — Xx]||/A (2.4iv)
subject to
(234) := :l:\/l + 2.COS 23 COS Y34 COS Yyy — COS? Yp3 — COS? Y3y — COSZ Y gy (2.51)
(341) := j:\/l + 208 34 COS Y4y COS Y 3 — COS Yrqy — COS% Yy — COSZ /5 (2.5ii)
(412) := i\/l + 208 yy COSY 5 COS Yoy — COS Yy — COS2 Yy — COSZ oy (2.5iii)
(123) .= i\/l + 2081y, COS a3 COSY3; — COS2 Yy — COSZ Yy — COS2 Y5, (2.51v)
N
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4 N
(Box 2.1 Continued)
if
6= [[x1 = x|[|]x2 = x][[]x3 — x[]x4 — x[[/A (2.6)
then
A= (234) o/|lxi = x|| 22 = (341) 6/|[x2 = x|[ A3 =(412) &/[[x3 —x|| 24 =(123) 6/||x4 — X]| (2.7)
- J

4 )
Box 2.2: The transformation of P4P observables of type space angles into Cartesian coordinates of the unknown
pc2>int P, , three dimensional analogous to the two-dimensional Ansermet (1910) algorithm of P3P in
E™ =A%, 9.}

_Axy + Axy + A3x3 + Jaxy
N Mt +A3+ 4
_ (234)x1/|[x1 = x[| + (341)x2/[|x2 — x|[ + (412)x3/[[x3 — x[| + (123)x4/[|x4 — X]|
(234)/|[x1 — x|| + (341)/[Ix2 — x|| + (412)/[|x5 — x| + (123) /| |x4 — x|

e = x| x2 = ]| |1x3 — x]| [Ix4 — x|
B XI—=X2 YI—W 21—

X1 —X3 yi—) Z1—123

X]—X4 VI —Y4 ZI —Z4

x [(234)x1/[[x1 — x[| + (341)x2/[|x2 — X|[ + (412)x3/[[x3 — x[| + (123)x4/[|x4 — X[[] (2.8)

= A1x1 + Aoxo + A3x3 + Agxy

_ Ayt aya 4 Asys + Jams
Mt I+ 23+ A
(2340 /11x1 = x| + (341)y2/[%2 — X[ + (412)y3/||x3 — x| + (123)y4/|[x4 — x]|
(234)/I[x1 — x|| + (341)/[|x2 — x|| + (412) /[|x3 — x| + (123) /| [x4 — x|
A = x| x2 = x| |[x3 — x]] [|x4 — x|
X]—X2 V11— )2 Z1 —22
X1 —X3 Y=Y Z1 —Z3
X1 —X4 Y1 — Y4 Z1 —Z4
x [(234)y1/]Ix1 = X[ + (341)y2/[[x2 — X[ + (412)y3/[x3 — x|| + (123)y4/|[x4 — x{[] (29)
= llzl;{_:_izzz 1 j:zzjr_;4i424 = Aiz1 + Azo + A3z3 + A4zy
(234)z1/[[x1 — x|| + (34D)z2/|[x2 — x|| + (412)z3/[x3 — x|| + (123)z4/|[x4 — x||
(234)/I[x1 — x[| + (341)/|[x2 — x| + (412) /||x3 — x| + (123)/|[x4 — x]|
= x[] ixa = x| [1x3 — x| [[x4 — x]|
X]—=X2 Y=Y Z1—2
X|—X3 Y —)3 Z| —Z3
X]—X4 VI — V4 Z| —Z4
x [(234)z1/[[x1 — x|[ + (341)z2/[[x2 — x || + (412)z3/[|x3 — X[ + (123)z4/|x4 — x[[]

= ;Llyl + /12)/2 + )v3y3 + )v4y4

(2.10)
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3. P4P in terms of distances and observables
of type space angles

Within the five-dimensional simplex {p,p1,P2,p3,pa} the
space angle ;; of the faces {p,pp,} # j, centred at atpare
related by (3. l) to the distances || pp; ||, ||pp; ||, ||pip;|] by
means of the side cosine theorem, namely constructing
the Grunert equations (Grunert, 1841) (3.3), with respect
to the coeflicients a;;, b;;, respectively, defined by means
of (3.2) proportional to the cosine of space angles ¥,
the distances |[ppj||, respectively. One set of Grunert
equations, e.g. (3.311), (3.3iii), (3.3vi), is solved. The
geometric background of these quadratic forms in
{x2,x3}, {x3,x4}, {x2,x4}, one dimensional manifolds
imbeded in ZT x Z7 x #", in general, is described in
E. Grafarend, et al (1989) in detail. Here we map a point
in {#7,g,,} by a projection line onto the Grassmann
manifold Gs»(x, =1) introducing the homogeneous
coordinates (3.4iii)ys := x3/x2, 4 := x4/x,, respectively,
as outlined in Example 1.1 and 1.2.

The forward algorithm in solving three quadratic
equations in the unknowns x; € 2" for all i € {2, 3,4},
namely the Grunert equations of Box. 3.1, starts with the

transformation of three inhomogeneous quadratic forms
into three homogeneous quadratic forms by projective
geometry as the first step. The second and third steps are
based upon the reduction of the homogeneous set of
equations towards one equation of four order, namely by
expressing y4(y3) (3.7). In the fourth step (3.7) is replaced
in (3.6i1) leading to the four order equations (3.8), (3.9)
for y, which may at most have four positive roots.

In the backward algorithm we use the at most four
positive roots of the four order equation (3.8) of y3 to
successively compute (/st step) x; via ys, (3.5), (2nd step)
x3 via y3,xp (3.41v), (3rd step) x4 via y3,ys, (3.7) and
(3.4iv) and finally (4th step) test the validity of the at
most four positive roots {xa,x3,x4}, ,;, With respect to
consistency of the equations (3.3i), (3.3iv) and (3 3v).

To ensure high computational stability in the
calculation of the at most four positive roots of the
Grunert equations, those three Grumert equations or
three points of known positions should be chosen which
have the best configuration: Three points of known
position are to be selected which guarantee maximum
summation of the face angles ;; with respect to the
unknown point.

-
Box 3.1: The Grunert equations (Grunert

pmlI° = 11ppi I + 11883\ — 2111 || 11583 | cos s
22m1> = 15311° + 11BB3 I — 211783 | 1125 || cos g
zszall” = 11pws | + [[pal” — 211pp3 || |1pi | cos s
1zazill” = 11pwi | + 150 | — 21158 || 11721 || cos vy
pizsll” = 1pwi I + 12831 = 211w || 11253 1| cos vy

2 2 2
p2pall” = oz |I” + |[opall” — 21| pp2 1| 11pps || cos vy
— 2 — 2 — 2
llpip2||” =: 612 |lpapsl|” =: b2 ||p3pall” =: b3a
— 2 — 2 — 2
llpapill” =: bar  |Ipip3l|” =: b3 ||papall” =: baa
app = —2cosY |, ax:=—2C08Y,y; Az = —2C0SYyy
ag) = —2c0sYy a3 :=—2C0SY 3 ax = —2C0SYyy
pprll :==x1 |[pp2ll :==x2 |[pp3ll :==x3 |[ppall == x4

-

1841) relatmg known space angles y;;
|[2pi ||, || 2p; || and known distances ||ppj|| for all i, € {1,2,3

~
to unknown distances

AL i FE

(3.2)

Continued




(Box 3.1 Continued)

2 2
x| + x5+ apxixy = by

x% +x§ +anxxy=by —2<a; <42
X% +xﬁ + azgxs3xg = by X; € R
xi +x% + aq1x4x1 = bgy b,‘j c Rt (33)

x% —i—x% +apixixs =by3 Vi, je {172, 374}
x% + xﬁ + araxox4 = by

“One set of Grunert equation (3.3ii) (3.3iii), (3.3vi)”
2, .2 _
X5 + X3 + axxyxy = by

2 2
X3 + x4 + azxzxs = by

2, 2
X5 +Xj + axxoxs = by

[ The Grunert algorithm ]

[ The forward algorithm ]

Ist step
2 x% X3 .
x| l+=5+an— | =bxy (3.41)
x2 X2
(B, b (3.4i)
|l 5+ 34— | = b3 .
2 % x% X2X2
2 4 X4
1+—= — | =5 34
x| 1+ x% + ax 5 ) 24 (3.4iii)
)2 =:)3 )& =:)a (341V)
X2 X2

(homogeneous coordinates)

2nd step

X3 = by /(1 + y3 + anys)
= b3/ (35 + 35 + @3ay3)u) (3.5)
= byy/(1 432 + azny)

(3.4ii) /(3.40), (3.4iii)/(3.40) :
bau(1 + y3 + azsys) = bas(33 + 35 + azaysyu) (3.61)

baa(1 +y3 + a2sys) = bos(1 + ¥ + azys) (3.6ii)
3rd step
(3.6i1)-(3.61)

Continued

N
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p ~
(Box 3.1 Continued)
(b3a — b23)y3 — ba3y; — asabasysya
+ anbuy; +byy = 0
b2sy; — ba3y; + axsbosys
— axbyys + by —byy = 0
(bss — bas — boa)y3 — azabasysys
+ a23(b3a — b24)ys + azabrzys
+ by —bu+by =0

(b3g — boy — bog)y? + azs(bsa — baa)ys

= azabyys — axby
(b23 + b3g — bag)
+ 3.7
azsbys — azb 37
4th step
(3.7)=(3.6ii)
Capi + 333 + C3 + Ciys + G =0 (3.8)
subject to
C4 = b23 (b34 — b23 — b24)2 — a§4b%3b24 (391)
Cs := (b3s — bz — b)
X [axazably + 2az3br3(bg — bay)]
+ a34b%3b24(2a24 - a23a34) (3911)

Cy := bas[ads(bas — by)?
+ 2(b3a — bz — boa) (b23 + bzs — brs)]

+ a3axazabis(ba + ba) + adyb3;(baz — bo)

alyb3s(bys — b) (3.9ii1)
C := 2a3b23(bsg — byg)(bys + bg — boy)

+ axazbsy(bss + bog — br3)

— ay3a3,bb (3.9iv)
Co := b3(ba3 + b3y — b)* — alyblbs (3.9v)

[ The backward algorithm ]

Ist step

insert y; into (3.5) in order to obtain x;

2nd step

insert y3 and x; into (3.4iv) in order to obtain x;

3rd step

insert y3 into (3.7) to obtain yu, insert yy into (3.41v) to
obtain x4

Continued
NG
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4 N\
(Box 3.1 Continued)

4th step
use all at most four positive solutions of (3.8) to

compute {x2,X3,X4},,34 and insert the at most four
positive  solutions into  (3.3i),  (3.3iv) and

3.3v) to test validity.
\( ) 'y )

4. P4P, an example

A practical verification of the P4P is the following.
Table 1. is a list of {x,y,z} coordinates of four given
points in {#°,g,.,}. In contrast, Table 2. summarizes the
observations of type space angles, namely cosiy,;.
Following the P4P algorithm described in the pre
ceding chapters, we have computed the intermediate

quantities  |[ppi|| = [[xi — xlI. [[2p3]] = [Ix2 —x]I.
7p31l = [Ixs— xII. |53l = lIxs — x|l as distances from

the Grunert equations, the substitutional quantities
0,(234),(341), (412),(123) and the Mobius barycentric
coordinates are listed in Table 3. Finally Table 4. lists the
{x,y,z} coordinates of the unknown point as being
computed from (2.8), (2.9), (2.10).

4 I
The P4P algorithm

Step 1. Compute the space angles ;; of the five-
dimensional simplex {p, p1, p2, p3, pa} from either (1.1)
or (1.2) relating space angles to original observations
of type ‘“image coordinates” or “horizontal and
vertical direction”.

Step 2. Compute the distances ||x; — X,|| from given
Cartesian coordinates of the point p;, p;, respectively.
Step 3. Solve the Grumert equations (3.3) by the
algorithm (3.4)—(3.9).

Step 4. Compute the Cartesian coordinates of the
unknown point p by means of (2.8)—(2.10) subject to
Kthe bracket terms (2.5): (234), (341), (412), (123).

Tab 1. P4P, Cartesian coordinates of four given points

D1 D2 P3 Pa
X 0 2 2 0
y 0 0 2 2
z 1 -1 1 -1

Tab 2. P4P, observables of type space angles

cosyn 0.870388 cos a3 0.870388
COS Y34 0.870388 COS Yq 0.870388
cos Y3 0.636364 COS Yoy 0.636364

Tab 3. P4P, intermediate quantities, solutions of the Grunert
equations

IIx; — x || = 3.3166 |x2 — x| = 5.1962
IIx3 —x || = 3.3166 |Ix4 — x|| = 5.1962
0 = 18.5625

(234) = (412) = + 0.2233
i =1.250,=-075

(341) = (123) = £0.2099
)3 =125, = -0.75

Tab 4. P4P, Cartesian coordinates of the unknown point

x = 1.0000 y = 1.0000 z = 4.0000

Appendix A.

The Ansermet algorithm solving P3P in E* = {#*, g}

As soon as we reduce the perspective 4-point problem in
the three-dimensional Euclidean manifold E’ =
{#°,g,,} to the perspective 3-point problem in the
two-dimensional Euclidean manifold E* = {%#?,g,,} (in
accordance with the PnP notation we shortly denote this
problem here as P3P problem in two dimentions), we are
led to the Mébius barycentric coordinates (A1) of Box Al
subject to (A2) or (A3) illustrated by Figure Al.
Correspondingly by specifying (1.7) we transform the
Mobius barycentric coordinates {11,2,73} into the
Cartesian coordinates {x,y} by means of (A4) and
(AS5) of Box A2. Implementing A =2 area{pi,p>,p3}
(A3) into (A4), (AS) leads to (A6), (A7) similar to (2.8)—
(2.10) as a representation of Cartesian coordinates {x, y}
in terms of the observables of the type angles
{¥n3,¥31, ¥} and given Cartesian coordinates
{Xlayl} ~ P1, {x27J’2} ~ D2, {x37y3} ~ D3. Indeed (A6)>
(A7) can only be made operational as soon as we are
informed of |x; — x||, ||x2 — x]|, ||x3 — x]|, for instance
by solving the corresponding Grunert equations (3.3)
subject to Yy, + Y3 + 3 = 21
An alternative solution of P3P in two dimensions is
based upon the C.F. Gaufs criterion (C.F. Gaufs, 1842, A.
Schreiber, 1908), namely the computation of Q defined by
(A8) which is the mutual product sum of < pip>|pips >
area{p,p>,p3} and < pp; |pps > area {p1,p>, p3}. Actu-
ally the product sum generates a constant which does not
change for a cyclic permutation of indices. For instance, an
alternative representation of the product sum Q is < pyp3|
papi > area{p,pi,p3} and < pp3|ppi > area{pi,ps, p3}
or < ppilpps > area {p.pi.p2t and < ppilpps >
area{pi,p2, p3}. As soon as we represent the elements of
area by 2area {p,prps} = I|x2 — x||[Ixs — x|| sin g
or  2area  {p1,p2,p3} =[x2 — xil[[x3 — x| sinyy;
by means of (A9)-(All), we generate the Mqbius bary-
centric coordinates (A13) as being proportional to 4; ~

1 A 1
(cotyhyy —cotiyy) , Ao ~ (cotyhy —cotihy)



ps3

P13 P2

Y41

Fig. 1A. P3P in E? := {ﬂz,guv}, Ansermet barycentric coordinates
[paprp3 = o3, [papps = oy

J3 ~ (coty 3— cotiy,) " respectively. Finally we are led
to the Cartesian coordinates {x,y} of (Al4), (A15) as the
weighted mean of the given Cartesian coordinates {xi,y }
~p1, {x2,02} ~ p2, {x3,¥3} ~ ps, the weights defined by
(A16) subject to (Al7). (A14)(A16) are the Ansermet
barycentric coordinates ¢1,¢»,g3 transformed into the

Cartesian coordinates{x,y} of the unknown point

{x.y} ~p.

4 N\
Box Al: The transformation of P3P observables of
type angles into Mdbius barycentric coordinates.

, A . .
A== lxe = x|| I3 = x[| sin 3 /A (Ali)
N . .
do == xs = x| llx1 — x| sin 3, /A (Alii)
\ AY) .
iy=p3 = [Ix1 — x| [|x2 — x| siny,/A (Aliii)
subject to
M+Ah+A3=1 (AZ)
or
A =[x = x]| [[x2 = x|| [Ix3 —x|| x
Sin Y, sin s, sin, (A3)
[xi = x|~ fIx2 = x[[ " []x3 —x]|
o J

Appendix B. Solution for orientation elements

Given the Cartesian coordinates of those points which
build up the five dimensional simplex {p, p\,p2,p3, pa}, we
are left with the problem to determine the orientation
elements of the observational reference frame of the
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theodolite, the camera or the CCD sensor. These
orientation elements will be needed for solving the three
dimensional intersection problem from two perspective
centres which are localized by the solution vectors of the
twin P4P problem, for instance. The starting point is the
representation of the relative placement vector x; — X in
spherical coordinates {o;, B;, || pp; ||} in case of {horizon-
tal directions, vertical directions, distances} taken in a
local level theodolite frame and a subsequent rotation
from the local level theodolite frame into the global
reference frame in which the Cartesian coordinates of
p,p; for alli € {1,2,3,4} have been given or computed.
Alternatively the relative placement vector Xx; — X is
represented in Cartesian coordinates {X;, y;, —f} taken in
a local cameralCCD sensor frame relative to the
perspective centre and a subsequent rotation from the
local cameral CCD sensor frame into the global reference
frame described above. An outline of the fundamental
coordinate transformations is given in Box B2 in terms
of image coordinates of a local cameralCCD sensor
frame, and in Box BI in terms of spherical coordinates
of a local level theodolite frame.

(B1) and (B11) represent the basic transformations
which are inconsistent equations due to measurement
inconsistenties within the observations {uo;, f;} and
{%:, 31} respectively. The orthogonal matrix R € SO(3)
has been decomposed according to the  Lipschitz
representation (‘“‘unit quaternions”) as the  Cayley
product of the matrices (I—S)™' and (I+S) where S
is a skew matrix: (B2), (B3). The transpose matrix S’ has
been vectorized by means of (B3iii) vecS” € #°*! which
in turn by means of the matrix K € Z°*® has been
mapped onto veckS” = [a b ¢|" (read: “vecskew”),
namely, the essential elements of the antisymmetric
matrix ST. In order to determine the three orientation
elements (a, b, ¢) one set of equations would be
sufficient, for instance those generated by
(x1 —x,» —y,z3 — z). Instead we are proposing to use
all the 4 points within the P4P to calculate the three
orientation elements (a, b, c¢) by means of adjustment
(B8), (B9), so as to generate a more reliable solution. For
this purpose (B4), (B12) contain, as a matrix equation
for S, all point coordinates (x; —x,y; — y,z; — z) for all
i€{1,2,3,4}. Those equations are constructed from
(B1), (B11) by implementing (B2), (B3) and ordering a
set of inhomogeneous matrix equations. A final vecteriza-
tion based upon the Kromnecker product “‘®,” namely,
vec(AB) = (I, ® A)vecB = (B @ I))vecA  for  all
Ac " Be ™D (see E. Grafarend and B. Schaffrin
(1993, p. 419) for instance) followed by the essential
elements mapping vecB = KveckB, if B = —B’, leads to
the inconsistent equations (B8) solved into (B9) by ““least
squares’ .
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4 )
Box A2: The transformation of P3P observables of tzype angles into Cartesian coordinates of the unknown point p,
the A. Ansermet (1910) algorithm, P3P in E*> = {%°, 9}

_Aixy + Aaxg + Aaxs
Mt A+ 43

_ X1 —x|| [[x2 = x]|| [|x3 = x| | sin; X sin s, . siny/, X3 (A4)
1 — x| [x2 — x| 3 — x|

= Aix1 + Aaxo + A3x3

A

_ My + oyr + A3y

= Y1+ dayr + A3z

M+ 22+ A3
x; — x| [|x2 — x| ||x3 — x sin sin sin
el e = xl =] [ sing | singy L sing a5
A = X1 e = X7 T T — x
_ sin Yp3x1 /|Ix1 — X|| + sin 10/ [|x2 — X|| + sin 503/ []x5 — x|| (A6)
sinyo3 /(X1 — X[ +sin 3y /[|x2 — x[| + sin gy, /[|x3 — x|
_ sin Yoy /(X1 — x|| 4+ sin 3y 32 /[1x2 — x|| + sin 3 /[1x5 — x|| (A7)

sin o3 /[|x1 — x| + sin s, /(%2 — x|| + sin 5 /[|x3 — x|

“The Gaup criterion”

Q: = < pip2|pip3 > area{p, p2, p3}+ < pp:|pp3 > area{p\,p2, p3}
= (< X2 —X1|X3 —X; > A+ <x —X|X3 —-X > Az)/2

= |xa — x| Ixs — x| [[x2 = x| [|x5 — x| [COS Ya138in o3 + sin ;5 cos %3]

= [x2 = x1|| IIx3 = x| [[x2 = x]| [[x3 — x]| sin(yr315 — ¥3) (A8)
Q
%2 —x]| [Ix3 — x[| = ~ (A9)
X2 — x| |Ix3 — X1 | sin(¥r215 — ¥23)
Ar = [xo —x || [[x3 = x || sin a3 (A10)
A = |Ix2 = xi| [[x3 — x1| sin 3 (All)
, Ay area{p,pr,p3} .
= ——-—— = — — A
b= G PP g = x| sinss/
_Q Sin s 1
Asin(y13 — Y3) (X2 — x1 ]| [Ix3 — x|
_ % S.m WYo3 sin Yy _ % 1 (A12)
A*sin(Yp13 — ¥o3)  A*cotiy; — cotiys
Q 1 Q 1 Q 1
LT A coty; —cotyhy, P Alcotypy —cotyy 0 AZcotyy, —cotip, (A13)
_ At A%xz + 43 gix1 £ gaxa + g3x3 (Al4)
M+ 20+ A3 g1+9g2+9gs
Continued

o %
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4 I
(Box A.2 Continued)
_ Ayt + A2y + A3y _ gt g+ (A15)
Ao+ 3 g1+ 92+ g3
subject to
1
g1 =
COtYp13 — COt Y3
1
g2 = Al6
cotzy; — cotiy (A16)
1
g3 =
cot i3, — cotyy,
A2
g1+92+9s ) (A17)
. J
4 I

horizontal and vertical direction in a local level theodolite frame.

X;—Xx cos o; cos f; ex;
vi—y | =R|[ppi||| sino;cos B; | =R|ppill| ey | Vie{l,2,3,4}
zi—z sin f; ez;

“for details consult E. Grafarend, P. Lohse and B. Schaffrin (1989, pp. 172-175)”

Ve

SOB3)sR=(I-S)'(I+8)

subject to
0 +4a +b
S=-S8"=|-a 0 +c
-b — 0
veckS” : = [a b ¢]"

vecS” = KveckS”

subject to
010 -100 0 0 0]
K=|0 01 0 00 —-1 0 0 c2°%3
000 0 01 0 —10

(B2)

(B3i)

(B3ii)

(B3iii)

(B3iv)

Box B.1: Transformation between observed coordinates of the relative placement vector x; — x in a local frame
and relative Cartesian coordinates in a global reference frame, case (i): spherical coordinates {e;, f;} of type

Continued
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tano; =

sino; =

Xi— X
Yi—y
Zi — Z

coso; =

yi/%  tanf; = —f/\/x} + 3}

1

Xi

\/1+tan2ai:\/x%+y,?

VX )

tan o;

T Viranf, R+

“same as (BI)”

Box B.2: Transformation between observed coordinates of the relative placement vector x; — x in a local frame
and relative Cartesian coordinates in a global reference frame, case(ii): image coordinates {x;,3;, —f} in a local
cameral CCD sensor frame.

V1 +tan?o, N VE + 37

[zl

Vi . tan f8; S
sin f§; = = —
Vit g 45+
“for details consult E. Grafarend, P. Lohse and B. Shaffrin (1989, pp. 172-175)”
i l2pill |
————— | 3 | =R—== Vi Vie{l,2,3,4}

VA Ly di |7,

subject to

4 ™
(Box B.1 continued)
r — — — e
xi—x—|ppilles » —y—lppilley, z1—z—|[[ppille
— — —
v. o [ Ippzllex, 32—y —lpP2lley, 22—z —|Ipp2|le:,
L — —_— —
x3—x—|ppilles y3—y—lpp3lley, 23—z — [[pp3lles
— — —
Lxs —x —|[ppalles, 34—y — llppilley, za—z—|ppslle:, ]
[xi —x+ |ppilles, v —y+llppilley, 21—z + [|ppille:, |
— — —
|2 —x+pp2lles, »—y+lpp2lley, z22—z+|pp2lle, g7
- — —_— —_—
x3—x+|ppslles, yvs—y+lppsllen, z3—z+|[ppslle,
—_— — —
Lxs —x+|[ppilles, 34—y +llppilley, za—z+|ppslle:, ]
= XS’ (inconsistent) (B4)
Y=Y -Y X=Y+Y, (BS)
y :=vecY = (I; ® X)vecS” +v = (I; ® X)Kveck S +v (B6)
A:=(LoX)K u:=veck S =[abc" (B7)
y=Au+v (B8)
Iv]|* = min <=i = [a be" = (ATA) ATy (B9)
. J
s ™

(B10i)

(B10ii)

(B10iii)

(BI1)

Continued

J
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4 N\
(Box B.2 continued)
“same as (B.2) and (B.3)”
[xi —x—ppillxi/dv -y —y—lppilln/dv 21—z = |ppillz1/di ]
y. = |- Ipp3ll%2/dy y2 =y = |[pP2l32/d2 22 — 2 — || pp3 |22/ da
x3—x—|[ppslxs/ds ys—y—ppsllys/ds 23—z — || pp3lizs/ds
Lxg —x — ||ppal|%a/ds  ys —y — |pPdllya/ds 24—z — || ppa|[2a/da ]
[x1 —x+ [ppillxi/dv v =y +lppilln/di 2z —z+ llppilz1/di ]
| —x+lplx/dy =y +ppln/dy 22—z + |p3l22/da | o1
- — 1= /7 — = /3 — = /3 S
x3—x+|[|ppsllxs/ds y3 —y +ppsllys/ds z3 —z+ || ppsllzs/ds
Lxg —x+ ||ppal|%a/ds  ya —y + |pPdlla/ds 24—z + || ppal[Za/da ]
= Xs7 (inconsistent) (B12)
“same as (BS) — (B9)”
o J
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