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Abstract. The twin perspective 4 point (twin P4P)
problem — also called the combined three dimensional
resection-intersection problem — is the problem of finding
the position of a scene object from 4 correspondence
points and a scene stereopair. While the perspective
centers of the left and right scene image are positioned
by means of a double three dimensional resection, the
position of the scene object imaged on the left and right
photograph is determined by a three dimensional
intersection based upon given resected perspective
centers. Here we present a new algorithm solving the
twin P4P problem by means of Mobius barycentric
coordinates. In the first algorithmic step we determine the
distances between the perspective centers and the
unknown intersected point by solving a linear system
of equations. Typically, area elements of the left and
right image build up the linear equation system. The
second algorithmic step allows for the computation of
the Mobius barycentric coordinates of the unknown
intersected point which are thirdly converted into three
dimensional object space coordinates {X,Y,Z} of the
intersected point. Typically, this three-step algorithm
based upon Mébius barycentric coordinates takes ad-
vantage of the primary double resection problem from
which only distances from four correspondence points to
the left and right perspective centre are needed. No
orientation parameters and no coordinates of the left
and right perspective center have to be made available.

Introduction

The twin perspective 4 point (twin P4P) problem - also
called the combined three dimensional resection-intersec-
tion problem (Figure 1.1) — is the problem of finding the
positions of a scene object from 4 correspondence points
and a leftlright scene image (stereoscopic machine or
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computer vision). While the perspective centers of the left
and right scene image are positioned by means of a
double three dimensional resection, the positions of a
scene object imaged on the left and right are determined
by a three dimensional intersection based upon resected
perspective centers.

Our new algorithmic solution to the twin P4P
problem will be based on Mobius barycentric
coordinates (A.F. Mdbius,1827) which are reviewed by
M. Berger (1994, p.67-82), for instance, and are applied
by W. Pachelski and E. Grafarend (1994) and W.
Pachelski(1994). As an alternative solution of P4P we
refer to M.A. Abidi and T. Chandra (1995). Section 1 is
an introduction of Mdbius barycentric coordinates
illustrated by Figure 1.2 with respect to an affine basis
generated by the simplex of 4 correspondence points.

Section 2 aims at a constructive setup of three
algorithmic steps to solve the twin P4P. At first we
develop the perspective equations of P4P before
secondly we represent the volume coordinates A; of
barycentric type in terms of the left and right perspective
area elements. With respect to volume coordinates A; we
suceed to setup the first algorithmic step, namely the
computation of distances from the left and right
perspective center to the intersected point by solving a
linear system of equations. As an input we need only (i)
observed image coordinates of the 4 correspondence
points and of the one intersected point, (ii) perspective
area elements of type left and right and (iii) distances
from the left and right perspective center to the four
correspondence points as produced from the first step of
solving the three dimensional double resection also
called the Grumert equations (J.A. Grunert (1841),
E. Grafarend, P. Lohse and B. Schaffrin (1989),
E. Grafarend and J. Shan (1996), R.M. Haralick et al
(1994), F. Miiller (1925)). As soon as the distances in the
seven dimensional simplex are determined, by means of
the second algorithmic step, we are able to compute the
four barycentric coordinates {Aj, Ay, As, A4} of the
intersected point from derived volume coordinates A;.
Finally by the third algorithmic step, the barycen-
tric coordinates {Aj, Ay, A3, A4} are converted into



Fig. 1.1 Twin P4P or double resection - intersection problem
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Fig. 1.2 Affine basis based upon the four dimensional simplex
{P17P2,P3,P4} in %}

Cartesian coordinates {X,Y,Z} of the intersected point
with respect to the Cartesian coordinates of the four
correspondence points.

Section 3 focuses on a discussion of the three step
algorithm solving twin P4P by means of Mobius
barycentric coordinates, in particular on those transfor-
mations which leave the barycentric observations of
volume coordinates and perspective area elements invar-
iant. A numeric example with an aerial stereopair is
presented to depict our algorithm

1. Setup of twin P4P and the Mobius barycentric
coordinates

The primary situation of the twin P4P in the three
dimensional Euclidean manifold of standard metric
E = {#,g,n} subject to u,v € {1,2,3} is as follows:
By means of an intersection problem, directions to an
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unknown point P € E> are observed from the left
perspective center P; as well as the right perspective
center P,.. In turn, the left and right perspective center
are positioned by direction observations to at least four
known points P; € E* subject to i € {1,2,3,4} by means
of a twin resection also called ‘““double resection” or
”binary resection’’. Figure 1.1 illustrates the graph of the
seven dimensional simplex constituted by (i) the
intersected unknown point P, (if) the resected perspec-
tive center P; and P, and (iii) four given points P, € E’.
Those four known points generate an affine basis
(A.F. Mobius (1827), A. Berger (1994), pp. 67-82),
namely.

{P\P,,P\P;, PPy} or {X, — X1, X3 — X1, X4 — X1}

where {X1, X7, X3, X4} are placement vectors. Equi-
valently, they span an #° equipped with a general metric
gw. With respect to the tetrahedron{Pi,P>,Ps,Ps},
Figure 1.2 is a visualization of the affine basis subject
to affine geometry. Note that an affine basis is defined as
a basis of an % which is translational invariant or
equivalent under the action of the translation group. In
addition, in the definition of the affine basis we have
used the equivalence relation P, ~ X; 1 =1, 2, 3, 4).

The point P~X can be represented in the affine basis
by (1.1)-(1.5) of Box 1.1 where {A}, Ay, A3, A4} are the
Mobius barycentric coordinates of P~X. In particular
we have introduced A; :=1 — (A; + A3 + Ayg). Assoon
as we cover E* by Cartesian coordinates {X,Y,Z} in one
global chart, via (1.4) we are led from (1.3) to (1.5).
{X,Y,Z,1} are called homogeneous coordinates of P as
motivated in E. Grafarend and J. Shan (1996), for
instance.

If the Cartesian coordinates of the point P~ X are
given, its Mobius barycentric coordinates { Ay, Ay, A3, Ag}
with respect to the affine basis can be computed via
(1.6)-(1.12). The corresponding determinants {A;, A, As,
A4, A} characterize six times the volume of the respective
tetrahedra {P,Pz,Pg,P4}, {P],P,P3,P4},~~-{P],Pz7
P, Py}. Itis for this reason that the quadruple coordinates
{A1, A2, A3, A4} of a point P € 3, namely the Mobius
barycentric coordinates, are called volume coordinates,
too.

4 ™
Box 1.1. Mébius barycentric coordinates, affine basis
X -Xi :(X2 —Xl)/\z + (X3 —Xl)/\3

+ (X4 — X1)A4 (1.1)
X=X1(1 — Ay — A3 —A4)+X2A2
4+ X3A3 + X4y (1.2)
X = XiA1 + XoA) + X3A5 + X4y (1.3)
subject to
L Continued
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4 N
(Box 1.1. Continued)
AM+MA+A+A=1 (1.4)
(X X X X5 Xy Ay
Y _ i » Y I A (1.5)
Z Zi Zy Iz Zy||As '
1 1 1 1 1 A4
[ A XX X ox] ' [x
A _ i »n n 1n Y (1.6)
As L 7 7y 7 A '
| A4 1 1 1 1 1
A
A,:K v e {1,2,3,4} (1.7)
X X X5 Xy
_|\Y h ¥ Y| _
Al = 7 22 Z3 Z4 —6V01{P,P2,P3,P4} (18)
1 1 1 1
X, X X X
In v nonl
Az = 7 7y Z —6V01{P1,P,P3,P4} (19)
1 1 1 1
X1 X X Xy
nn Y on|
Ay = Z2 7 7 7 = 6vol{P1, P», P, P4} (1.10)
1 1 1 1
X X X3 X
'h » Y Y| _
A4 = Z] Zz Z3 7 —6V01{P1,P2,P3,P} (111)
1 1 1 1
X X X35 Xy
Inn o oyl
A = Zl Zz 23 Z4 —6V01{P1,P2,P3,P4} (112)
1 1 1 1
o J

2. Solving twin P4P by means of Mobius barycentric
coordinates

At first let us assume that by means of a solution to the
double resection problem based on Mobius barycentric
coordinates — see E. Grafarend and J. Shan (1996,
equations (2.8)-(2.10) subject to (3.1)-(3.9)) — we have
determined the Cartesian coordinates {X;,Y;,Z;} and
{X,, Y,,Z}, respectively, of the left perspective center P
and the right perspective center P,, respectively, illus-
trated in Figure 1.1.

4 ™
Box 2.1. The perspective equations of twin P4P.

-X —X] X7

Y-V | =siR | » (2.1)
| Z—Z; | L —fi
(X — X, [ x,

Y-VY. | =sR| (2.2)
Z-7 | L/
subject to

mR Ja Xy (=) -2 z)

= =
||ppl|| /x?_i_ylz_'_f‘lz

(2.3)

R o —xP -1+ z-2)

Tl Ny
(2.4)
X i X/ i -Xl
YI=sR| y |+ |1
=il L%
[ x, ] X,
=sR| » | + |7 (2.5)
2
X X |7 7
Y R, Y; Yi
= Sl
Z Z[ _fl
1 0 1 _S;l i
X |1 x
_ B T (2.6)
A
0 1 _sr—l ]
N J

In addition, let us denote by {X —X,,Y —Y,,Z — Z;}
and {X —X,,Y —Y,,Z—Z,} the difference Cartesian
coordinate of the unknown point P which is to be
intersected from the left perspective center P; as well as
from the right perspective center P,. Following perspective
geometry the difference Cartesian  coordinates
X-X,Y-Y,Z-27;} and {X-X,Y-VY,,Z—-2},
respectively via (2.1), (2.2), can be represented in terms
of left and right image coordinates {x;,y;,—f;} and
{xs, 0, —f+} of the point P with respect to the left image
planelleft photograph frame and the right image plane/
right photgraph frame. f;, f, respectively denote the /eft



focal length, the right focal length, respectively. s;,s,, and
R;, R,, respectively refer to the left, right, scale ratio and
to the left, right three dimensional rotation matrix,
elements of the special orthogonal group SO(3) in three
dimensions.

4 N
Box 2.2. Mobius barycentric coordinates of point P
intersected from left and right perspective center (taken
Ay as an example)

X X X3 Xy
Y h Iy
A =
7z 7 7 Z
1 1 1 1
Xp || Xt X, X3 Xy
P R, Y ||V VYo V5 Yy
= S1S1,5158]
e Zi\| =t =/ =i =S
0 | st Sﬁl SZI Sal
Xr xr xrz xrg xm
R.| Y. || Vr VY VY In
= 887,878y (2.7
e Z |\ S S S )
L . |
e e
subject to
—_—
S . — | PPy ||
S pp—
| 2pi ||
@ X (- 1P+ (2 - 2)
/XL VLS
—_
_ PP |
rg o T ——,
| papr |
VX=X + (Y- 1)+ (Z— 2)
= (2.8)
NERST:
X
R Y;
Yo s IRI=1 (29)
0 1
X,
R| V| .
ozl IR)| =1 (2.9)
0 1
- J

For derivation of (2.1), (2.2) we refer to E. Grafarend
(1983, formulae 1(1)-1(6)), for instance. (2.3),(2.4) are
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left, right length ratios being expressed with respect to
Euclidean norms of PP, PP,, D1 DDy -

4 ™
Box 2.3. Representation of the volume coordinates in
terms of left and right perspective area elements (taken
Ay and Ay as example)

X X X3 Xy
Y h 1 Y
Ay = = S1S1,51,51,
Z 2y Zz Z4
1 1 1 1
| X, X Xl . X1 X Xl
X9 S|y v v | =S, filve v v |
1 1 1 1 1 1
. X1 X, Xl . X1 X, X
+si S|y v v | = s filve v v
1 1 1 1 1 1
(2.10)
X X X3 Xy
Y h 7 Y
Al = = SrSrySrySry
Z 7y Zy Z4 )
1 1 1 1
xr2 xr; xm xr xrg xm
x S;lfr Yro Vs Yy _S;ZIfF Yoo Vs Vg
1 1 1 1 1 1
Xp Xy Xy, Xp Xy Xpy
+ Sr;lfr Yo Yy Un _S;:llﬁ Yoo Vo Vrs
1 1 1 I 1 1
(2.10;)
“example’:
X2 X3 X4 Xy X3 X4
»o oy o | ==fln » n
—f —=f —f 1 1 1
= —2farea{p>, p3, ps}
Ai(left) = 2fisnsisi, areai{pa, p3, pa}
+ 2fi[=si,s1, areai{p, p3, pa}
+ 51,81, areai{p, p, pa}
= spsi, areal{p, p2, p3}si (211)
Continued

N
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(Box 2.3. Continued)

A\ (right) = 21,84,y area{p2,p3,pa}
+ 21 [—Spy8r, area{p,p3,pa}
+ 8p,8y, area,{p,p2,pa}
— Sy, arear{p, pa, p3}|sy (2.11;)

A (left) = Ay (right) (2.12)

similarly for A;:
X1 X X3 X4

i Y 3 1
AZ = = 81,51815514
Z1 Z 7y Z4
1 1 1 1
. Xp Xy Xy . Xy Xy Xy
XS Si\ve v v | = s filve vis o v
1 1 1 1 1 1
| X, X X | Xy X X
+sp S\ vy v v | = s i\ v v v
1 1 1 1 1 1
(2.13)
X X X5 Xy
i Y 3 Y
Ay = = Sy, SpSpySp,
2y Z Zy Zy
1 1 1 1
Xp Xpy Xy, Xp Xy X,
X S;llfr Ve Vs Wn _S;lfr Yo Vs Vn
1 1 1 1 1 1
Xrp Xr Xpy Xr  Xp Xy
+s;31f” Yoo Ve Vn _S;l.fr Yo Vr Vns
1 1 1 1 1 1
(2.13;)

Ax(left) = 2fis1,s1,81, areai{pi, p3, pa}
+ 2fi[—s1s1, areai{p,p3,pa}
+ sy,81, areai{p1,p,ps}
— 51,815 areai{p1, p, p3}]si (2.14y)

Ay (right) = 21,8,,5,,5,, area,{p\,ps,ps}
+ 21, [—Sps8r, area,{p,ps,ps}
+ 8y,8y, area,{p1,p,pa}
— SpSparea{p1, p, p3}]s, (2.14,)

Ay (left) = Ay (right) (2.15)

e ™

- J

Once we solve (2.1), (2.2) for the Cartesian coordinates
{X,Y,Z} of the intersected point P we receive the
standard representation of the transformation from
“image coordinates” {x;,y;,—f1}, {xr,yr, —f,} into “ob-
Jject space coordinates”: There appear left, right scale
ratio, s;,s,, left, right rotation R;, R, both elements of
SO(3) and left right translation {X;,Y;,Z;},{X,, ¥, Z,}-
(2.6) is the counterpart of (2.5) in the form of
homogeneous coordinates.

Secondly, we shall transform the unknown Cartesian
homogenous coordinates (2.6) of the intersected point P
by means of (1.6) into Mdbius barycentric coordinates
A;, namely A; (2.7). The left, right image coordinates of
the given points {P, P, P5, P4} are denoted by
v =11} {xr vy =}, € {1,2,3,4},  respectively.
The expansion of the left and right determinant of the
volume coordinates A1, A,, e.g., leads us to the decom-
position (2.10)-(2.15) in terms of area elements of type
left and right image. In the equations (2.12) and (2.15)
only the length ratios s; and s, are unknown. As
collected in Box 2.4 they can be used to establish a
system of two linear equations in two unknowns s; and
s,. The inhomogeneity of the system of linear equations
is given by (2.18),(2.19), while the coefficient matrix A4 by
(2.20)-(2.23). We could have inverted x = A~ 'y the
system of inhomogenous linear equation y = Ax in
order to obtain s; and s,, but we prefer the solution from
the numerical computation.

4 N

Box 2.4. Determination of left and right length ratios s,
and s, by means of a system of two linear equations.

ajxy +apxy =
11X1 12X2 leAX:y (2.16)
a1xy + anx; =y,

X1 =S, Xp:i=s, (2.17)

V= SpSLSy, areai{pr, p3, pat

— $,8738y, area,{p2, p3,pa} (2.18)
y2 = syspsiareai{pi, p3, pa}
- Srlsr3Sr4a’”eaz~{Pl7p3,P4} (219)

o -1
ap = Sp,S5,S51, X [sl2 area;{p,ps3,pa}

- Sglareaz{P’Pz,Pzt} + Sﬁlai’eaz{P,Pz,m}]

(2.20)
ap = _Srzsr3sr4 X [Sr_zlarear{pap%p‘l}
— srzlarear{p,szPzt} + s;larear{p,pzws 1
(2.21)
Continued
N




4 N
(Box 2.4 Continued)
az = S,8581, X [Sﬂlareal{l?aps,m}

+ s,;lareal{pl ,DsPa}t — sl_‘t]areal{pl , D, D3}

(2.22)
axn = — S, Sp,5r, X [, tarea {p, ps, ps}
+ s, area {p,ps, pa} — s;, area{py, ,p, ps}]
(2.23)
L )

On the basis of left and right scale ratio we compute the
Mobius barycentric coordinates by means of (1.7)-(1.12)
and (2.7), (2.13) etc., as outlined in Box 2.5. Those
barycentric coordinates { A, Az, A3, A4} have been given
as determinantal ratios n (2.24)-(2.27), where we had not
to specify “left” or “right”. Any choice can be made.
For instance, if we prefer a computation based upon
coordinates in the left image plane, we can use
(2.24)-(2.27) in the left mode. All quantities involved
have to be indexed ““left”.

4 N
Box 2.5. Determination of MGdbius barycentric co-
ordinates {A1, Az, Az, Aa} of the unknown point which
is intersected

X D %) X3 X4
s y Y2y )4
A A
A sTs, sy S,
A=t = 2 3 4 (2.24)
A X1 X2 X3 X4
5| Yooy yi V4
-5 =5 =5 =f
sl—l Sz—l S3—1 SZI
X1 X X3 X4
s 1 Yy )3 Ya
A A A
A sTosT sy sy
Ay="2= 100 3 (2.25)
A X1 X2 X3 Xa
$5 N »2 y3 Ya
- = =5 =f
Sl—l S2—1 s3‘1 SZ]
X1 X2 X X4
s yoooo»n y Bz
A
A sTs, ST sy
Ay="2= 101 22 4 (2.26)
A X1 X2 X3 X4
53 yl. 2 y3' Y4
-5 =f =5 =f
sl—l S2—1 S;l SZI
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e ™
(Box 2.5 Continued)

X1 X2 X3 X
gl y
A

VP S CTR LR (2.27)
A X1 X2 X3 X4
S4 B B BN /!
A A A
s;os sy 8,

- J

Thirdly with given Mobius barycentric coordinates
{A1,As,A3,Ay} which are functions of the image
coordinates of the four reference  points
{xi,yi,—f},i € 1,2,3,4 either left or right and the image
coordinates {x,y,—f} again either left or right, of the
intersected  unknown point, by means of (1.5) we
compute the homogeneous coordinates {X,Y,Z,1} of
the unknown point P.

In addition, we reflect the functional influence of the
scale ratios s1, 52, 53,54 and s, either of left or right type,
in the representation of Mobius barycentric coordinates
(2.24)-(2.27). The transformation (1.5) {A1, Az, Az, A4}
(x1, X2, X3, X4, X, 51,52, 53,54,5) with respect to the base
{X1, X2, X3, X4} has not been explicitly written since it
is beneficial to concentrate instead on the numerical
computation.

/ ™
Box 2.6. Transformation of horizontal - vertical
directions {o, B} of a theodolite into image coordinates
{xay) _f}
tanoy = ol tanfl; = S (2.28)

x
: VAT
Yr Jr
tano, = — tanfl, = - ——— 2.29
Xr VX r 22)
x; = \/x] + ] + ff cosaycos
= —frcot B, cos a;
v = \/x7+y7 + f}sino cos f (2.30)
= —fjcot f§;sin oy
—fi=\/x] +y; + [} sinp
X = \/x2+ 2 + f2cosa,cos f,
= —f,cotf,cosa,
Continued
N /
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4 N
(Box 2.6. Continued)

\/X2 + 2 + fZsina, cos B, (2.31)

= —f,cotf,sina,

=232+ f2sin,
\_ J

This algorithm could be easily extended to geodetic
application where the observations of image coordinates
{x1,y1,—f1} and {x,, ., —f,} of the unknown point P are
not available, but rather its theodolitic observations of
left horizontal directions, left vertical directions {u, 3},
as well as right horizontal directions, right vertical
directions {u,, f,}. In this case, we have to replace all
image coordinates in all formulae by the transformation
outlined in Box 2.6.

It should be noted that f;, . could be arbitrarily fixed
to a constant respectively, since it does not affect the
values of the barycentric coordinates.

Yr

3. Algorithmic realization and a numerical example

Box 3.1 is the three algorithmic steps we have to follow if
we are going to solve the twin P4P in terms of Mobius
barycentric coordinates.

4 I
Box 3.1. Algorithmic steps of solving the twin P4P
problem in terms of Mobius barycentric coordinates

“Input data”
(1) observations:

{xn, =11}, {xr, 3, —f}: left and right image co-
ordinates of the unknown point P to be intersected
from the left and right perspective center P, and P,.

{xl,ylv _fl}{xlzaylza _fl}7 {x137y137 _fl}a
{xl4ay/47 _ﬁ}a {xrlayrlv_f;’}a {xryyrza _fr}a
{xr37yr37 _fl‘}a {xmayma _fr} :

left and right image coordinates of the four basis
points {P,P,,P;,P,} which generate the double
resection.

(i1) object coordinates of 4 known points

-

(Box 3.1. Continued)

Step one

“double resection”

(1) computation of the two perspective centers by
double resection
(1) distance ratios (2.8)

VG =X+ (h =0+ (@ -2,

87

4

N

V=X + (Y= %)+ (Z— 2,
from the first set of double resection.

V@ =X+ (- 1) + (2 - 2,)

T YL I

VX=X + (Y - )P + (2 - 2,)

—

2 2 2
Xy FVn T 5

Step two

“Computation of distance ratios sy,s,”

(1) area elements

1
areai{p>,p3,ps} = 5

1
2

1
areai{p,ps,ps} = 3

1
2

X[z x/3
Yi, Vi
I 1
X1, — X[
Vi, = Vi3
X Xl
Yo,
I 1
X| — X[,
Yi—=Yn

x;z —x14

Y, = Vi,

Yiy

X] — —X,

Y=Y

Continued
J

Table 2. Residuals relative to the best values (meters) by least
squares adjustment

- J
Point Barycentric algorithm Collinear algorithm

Table. 1. Photographic parameters No. dX dy dz dXx dy dz
Flight height: ca. 2250m 1 -1.70 1.60 -0.11 -1.60  1.00 0.50
Focal length: 88.94mm 2 -1.82 1.38 1.82 -1.90 1.52 1.37
Frame size: 230mm*230mm 3 -1.94 1.17 -1.03 -2.19 1.25 1.51
Camera: RC-10 4 -1.09 -0.36 -3.12 -2.67 1.22 2.25
Overlap: ca. 65% 5 -2.43 1.44 0.87 -2.44 1.59 1.88
Known points: 4, one at each corner RMS 1.85 1.27 1.72 2.19 1.33 1.61




4 N
(Box 3.1. Continued)

(ii) computation of matrix A € R**

(2.20) — (2.23)
(iii) computation of vector'y € #**!

(2.18) — (2.19)
(iv) computation of the inverse equation

x=Aly: {s1,s,}
“Step three”

“coordinate computation”

(1) computation of Mobius barycentric
dinatesA; (2.24), A (2.25), As (2.26), A4 (2.27)
(il) computation of Cartesian coordinates:{X,Y,Z}

(1.5)

coor-

“Output”

“output data”

unknown placement vector: {X,Y,Z}
N J

It has to be emphasized that the basic area elements are
invariant with respect to a translation and a rotation
of the image coordinates. In addition, any factor on
s1,8- - say c¢sy,cs, - does not change the computational
results of Mobius barycentric coordinates of the inter-
sected point P.

In summary, this result reveals the beneficial fact that
the Mobius barycentric coordinates {A1, Ay, A3, Ay} can
be equivalently calculated under an arbitrary scale.
Moreover, the solution of the twin P4P problem in terms
of M¢bius barycentric coordinates does not need the
complete solution of the three dimensional resection
problem for the left and right perspective center P; and
P. : Only the first step of the three dimensional resection
problem, namely the computation of distances from the
unknown resected point to known basis points, has to be
implemented. This accounts for a solution of the
Grunert equations (E. Grafarend, P. Lohse and
B. Schaffrin, 1989). Step two and three of the solution
of the three dimensional resection problem, namely, the
three dimensional coordinates of P, and P., and orienta-
tion parameters, are not necessary any more.
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Finally, to illustrate our twin P4P algorithm, we
present a numerical example with an aerial stereopair,
whose photographic parameters are listed in Tab.1. The
stereo-pair is observed with an analytical plotter. The
corresponding 3D object coordinates obtained during
this observation are treated as “’best values” with which
our algorithm is compared. In order to testify the
compatibility of our algorithm with the traditional
collinear equation algorithm (bundle solution), residuals
relative to the “best values” of both algorithms are
included in Tab .2, which clearly shows a tolerable
coherence of our algorithm with the traditional one,
while our algorithm makes unnecessary the orientation
parameters and perspective centers.
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