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ABSTRACT 

This article proposes a novel solution for projective reconstruction for computer vision with non-metric camera. After a brief 
introduction of projective transformation as well as projective invariant and coordinates, the fundamental matrix is expressed 
as a production of two matrices, the projective base line matrix and the projective rotation matrix. This derivation is based on 
photogrammemc concepts and thus close similarity is found to the decomposition of the essential matrix for metric camera. 
A projective coefficient, which is proven to be the cross ratio of lengths of two conjugate projective rays, is therefore derived 
to calculate the homogeneous coordinates and projective coordinates (cross ratio of volume elements) of the projective 
model. In order to reconstruct the object from its projective model, as an extension to the well-known 2-D direct linear 
transformation (2-D DLT) solution for metric camera in conventional photogrammetry, a 3-D DLT solution is proposed. The 
reconstruction is linearly completed with minimum five conjugate known object points. Test results and analyses verify the 
solution and methodology. 
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1. INTRODUCTION 

Despite the difference in application fields, photogrammetry and computer vision have the same theoretic background and 
many joint efforts have been made in past years [Hartley, et al, 19931. As a convention, photogrammetry uses metric camera 
for its topographic applications where interior orientation of the camera is often calibrated and known. On the contrary, non- 
metric camera is the main device for image acquisition and thus becomes an important topic in computer vision. As a subject 
with common applications to computer vision, close-range photogrammetry has developed and used the direct linear 
transformation algorithm (DLT) to process non-metric images in the last 30 years [Abdel-Aziz, et al, 19711. This algorithm is 
based on the collinearity in single image. Although comprehensive theory has been developed for stereo pair of metric 
camera in photogrammerty, there lacks such a similar methodology dealing with a stereo pair taken from non-metric camera - 
the DLT remains the major processing algorithm based on single phote calculation. Recent literatures in computer vision 
have been focused on object reconstruction from a non-metric stereo pair. It has been shown that the recovery is up to a 
projective transformation if the interior orientation is not known. Various algorithms for projective recovery have been 
discussed and developed in recent years in computer vision field [Faugeras, 1992; Hartley, 1992; Rothewell, et al, 19971. 

This article addresses the projective reconstruction from photogrammetric perspective view. The objective is to develop a 
solution and methodology for non-metric camera similar to metric camera. This can be considered as a generalization of 
conventional photogrammetric solution where the metric camera is the major concern. In section 2, the general concept of 
projective geometry is briefly introduced where cross ratio of volume elements is shown as projective invariant and therefore 
defined as projective coordinate. Section 3 introduces the fundamental matrix by using photogrammetric derivations. It is 
shown that the fundamental matrix can be expressed, up to a constant, as a product of the projective base line matrix (a skew 
symmetric matrix) and the projective rotation matrix. Derivatives from the fundamental matrix are the ratios of the base line 
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components, six relations for the elements of the projective rotation matrix and the cross ratio of lengths of two conjugate 
projective rays. These derivatives will be used for the reconstruction of the projective model of the object. Section 4 first 
shows that the projective model can be defined with its homogenous coordinates which in turn are calculated with the 
derivatives from the fundamental matrix. Similar to the 2-D DLT solution for single photograph, a 3-D DLT solution is 
designed which completes the projective transformation for the projective model to its object space. In this way, the object is 
fully reconstructed by first forming its projective model with the derivatives of the fundamental matrix, and then followed by 
a 3-D DLT operation which conducts the projective transformation to the projective model. Tests given in Section 5 verify 
the development and the proposed solution. Results show that 3-D DLT algorithm can reach compatible results with the 2-D 
DLT algorithm where the former needs five conjugate known object points instead of six known object points on each 
photograph of a stereo pair. Final concluding remarks are summarized in Section 6. 

2. PROJECTIVE TRANSFORMATION, INVARIANTS AND COORDINATES 

1. Projective transformation 

The mathematics of photography is based on projective geometry. A general projective transformation was introduced by 
[Brill et al, 19831. Its 3-D expression can be written as . 

ur= a,,U + a,,V + a,,W + a,, 
a,,U + a4,V + a4,W + a,  

vr = a,,U + a,,V + a2,W + 
a,,U + a4,V + a4,W + a ,  

w' = a,,U + a3,V + a3,W + a,, 
a4,U + a4,V + a,,W + a ,  

This equation can also be expressed with homogeneous coordinates as follows 

where 

E = ( U V W ~ ) ~  

are homogeneous coordinates of an object point before and after the transformation. As a convention in photogrammetry, - u and $ are called object coordinate and model coordinate, respectively. A. = (a , ,  } is the 4x4 projective transformation 

matrix. t # 0 is a constant factor relevant to that object point. 

2. Projective invariants 

It will be shown that the cross ratio of volume elements is invariant under 3-D projective transformation. This can be 
understood as a generalization of the cross ratio of length segments in 1-D [Duda et al, 19731 and the cross ratio of area 

elements in 2-D. The volume element Ack, is calculated with following determinant 

v; v, vk vl 
A , ,  = 1 w; w, wk wl 

- - -  
= (Ei U ,  U k  u , )  



The cross ratio of volume elements is then defined with the determinants defined by five given points 1,2 ... 5 and any point i 
as follows 

It can be shown that such defined cross ratio is invariant under projective transformation [Brill et al, 1983; Barrett et a1,1994]. 
It should be pointed out that the five points 1,2  ...5 in the above definition fonn a basis of a projective transformation. This 
basis can be globally or locally chosen, depending on application requirements. 

3. Projective coordinates 

Projective coordinate was introduced by [Duda, et al, 19731, which intends to describe an object with invariant quantities 
under projective transformation. Due to the invariance of the projective coordinates, they can be used for object 
reconstruction and recognition. By permuting the indexes in Eq.(S), following coordinates are chosen as projective 
coordinates for object point i relative to the basis 1.2 ... 5 

A1234 '125 C, (i) = -- 
A1235 A124i 

Many works have been done on the computation of the projective coordinates and invariants [Barrett et al. 1991; Barrett et al, 
1995; Hartley, 19941. In the following sections, a photogrammemc solution will be developed. 

3. FUNDAMENTAL MATRIX AND ITS DECOMPOSITION 

1. Fundamental matrix 

The fundamental mamx will be introduced by using the concept of the essential matrix. The essential matrix is related w~th 
metric camera with known interior elements. The coplanarity equation is written as [Longuet-Higgins,l981; Thompson, 
19681 

xTEx2 = 0 (7 

where 

are image coordinates in image spaces, (xl yI),(x2 y2) are image coordinates on image planes, fl, f2 are principal 

lengths, respectively for left and right images. Matrix E is called essential mamx [Longuet-Higgins.1981; Thompson, 19681 
and can be expressed as 

where B is the screw symmemc mamx composed by base line components 



R is the orthogonal rotation matrix between left and right image spaces. 

For non-metric camera, following notations are used 

where TI and i2 are homogeneous coordinates of image points. Their relationship with Cartesian coordinates is 

where 

are interior orientation matrices for left and right images respectively. 

Substituting Eq.(12) into Eq.(7) will yield 

where 

Matrix E is called the fundamental matrix for this stereo pair [Faugeras, 19921. The details about above derivation can be 
found in [Shan, 1996; 19971. Eq.(14) is used to determine the fundamental matrix. It is a linear homogeneous equation with 
eight parameters, among which only seven are independent. That is because the fundamental matrix is rank deficient, namely 

This equation will be used as a constraint to stabilize the solution of the fundamental matrix [Barakat et al, 19971 

2. Decomposition of the fundamental matrix 

In the following section, decomposition is conducted to the fundamental matrix. A set of formulas is obtained which are 
similar to the ones in metric camera photogrammetry. 

For metric camera, the model coordinates of a point are expressed as 



where b = ( B ,  By B ~ ) ~  is the base line vector, p i s  the model coordinate victor of a point, 4 (i=1.2) is length ratio of 

projective rays, namely the length ratio of vector p and vector X ,  , and vector p - b and x2 . Substituting Eq.(12) into 
Eq.(17) will give the relationship for quantities of non-metric camera 

- p = X 1 ~ ,  =X,Hr2+5 
(18) 

where 

is defined as model coordinates for non-metric camera with unknown interior parameters; 

is called the projective base line vector 

is called the projective rotation matrix. Those quantities are thus defined because comparing Eq.(18) with Eq.(17) will show 
that that model coordinates for non metric camera take similar forms as for metric camera. These definitions will be further 
reasoned in the following discussion. 

To decompose the fundamental matrix, Eq.(15) can be rewritten as 

where 

As is shown in [Shan, 19961 B i s  a skew symmetric matrix and its elements are proportional to the elements in vector6 . 
Since this proportional constant can be taken into account in the calculation of the fundamental matrix, we can simply let 

The above equation shows that matrix E i s  a skew symmetric matrix composed by projective base line components. 

Similarly, for the matrix E, we may let its determinant equal to unit, namely 

which shows that E is a normalized matrix. Since E..(22) has the same form as Eq.(9), E is equivalently called projective 
rotation matrix with the property of unit determinant. 

As a summary of above derivation it is concluded: the fundamental matrix can be decomposed, up to a constant. as a product - - 
of the projective base line matrix Band  the projective rotation matrix R , where B is a skew symmetric matrix formed by - 
projective base line components and R h a s  unit determinant. In this way, model coordinates of a point in non-metric camera 
computer vision can be expressed in the same manner as in metric camera photogrammetry. 



Once the fundamental matrix is obtained elements in matrices Band K c a n  be calculated in the following way. First it 
should be pointed out the existence of the relation 

- 
E T b = O  (26) 

- - - - 
From this homogeneous equation, the ratio of projective base line components Brl Bx and BzI Bx can be obtained. For 
the elements in the projective rotation matrix, we first write Eq.(22) according to its column 

Since rank@) = 2,  only two components in every vector T. (i=1,2,3) can be determined; or equivalently, six relations 

among the nine elements of the normalized matrix a c a n  be established. If the three elements in the first row of Ematrix 
are chosen as known, the other six elements can be ekpressed as 

- - 
Another primary quantity to be derived from the fundamental matrix is the ratio k = 221 21 - a cross ratio of lengths of two 

-T- conjugate projective rays. Multiplying Eq.(18) with gT and noticing that B b = o ,  the least squares solution to k can 
thus be written as 

Above discussion shows that the fundamental matrix can be expressed as a product of the projective base line matrix and 
projective rotation matrix. From the fundamental matrix, one can determine the ratios of base line components and six 
relations among the elements of the projective rotation matrix, as well as the cross ratio of lengths of two conjugate 
projective rays. These are all the primary quantities derivable from the fundamental matrix of a stereo pair. 

4. OBJECT RECONSTRUCTiON 

In this section, the homogeneous coordinates of a model point are derived and then a 3-D transformation is proposed to 
calculate its object coordinates. 

1. Projective model and its computation 

Let 3 be the homogeneous coordinates of an object point. Its transformation to model coordinates p i s  
- p = T i i  (30) 

where T is a 3*4 transformation matrix. Substituting Eq.(30) into Eq.(18) yields 
- 
TE=XZ, 
- (31) 
BTE = TEE, 

There are six equations in total in Eq.(31). Any four of them will constitute a projective transformation of the object, 
provided its transformation matrix is not rank deficient. For symmetry, we choose the first two equations from the first group 
and last two equations from the second group in Eq.(31). Thus formed equation is 

~ i i = a ~  h (32) 
where 



- 
h = (6 7;, h, K4)T 

is the homogeneous coordinates of the model point and can be calculated with 

Comparison of Eq.(32) with Eq.(2) shows 6 is actually a projective transformation of object Ti , and the k vector for all 
points will then form a projective model of the object. 

The proiective coordinates can thus be calculated with 

Therefore, as soon as the cross ratio k is obtained from the decomposition of the fundamental matrix, the projective model 
can be reconstructed by calculating its homogeneous coordinates or projective coordinates with Eq.(34) or Eq.(35) 
respective1 y . 

2. 3-D direct linear transformation (3D-DLT) 

The 2-D DLT algorithm was proposed almost three decades ago [Abdel-Aziz et al, 19711. It is used to establish the 
relationship between a 3-D object and its 2-D photograph whose coordinates are measured on a comparator with arbitrary 
orientation. The 3-D DLT algorithm to be proposed in this section will establish the relationship between a 3-D object and its 
3-D projective model. The solution is linear. 

Rewrite Eq.(32) with its elements, 

- 
Eliminate factor and denote a,, /a, as 4, . . .., then we obtain 

Eq.(37) is the 3-D DLT solution which takes a similar form as the 2-D DLT solution. In this way the well-known 2-D DLT 
algorithm has been generalized to 3-D DLT, which describes the relation between object and its projective model instead of 
its projective photograph as in 2-D DLT. 



The algorithm for 2-D DLT solution can be used for 3-D DLT. After the homogeneous model coordinates are obtained with 

Eq.(34), the 3-D DLT solution is implemented. First, the unknown coefficients 4, 4 ,  ....h, are determined linearly with 

minimum five known points by using least squares adjustment. The object coordinates ( U V W )  will then be obtained by 

treating the h,4, . . . .h5coefficients as known parameters in Eq.(37). The object reconstruction is completed when all 

object points are determined. 

5. TEST AND ANALYSES 

The first step in projective reconstruction is to determine the fundamental matrix. One critical issue in this step is to ensure to 
robustness of the solution. Many efforts have been made from scientists in computer vision and photogrammetrists [Barakat, 
et al, 1997; Csurka et al, 1997; Deriche, et al, 1994; Luong, et al, 19941. It is shown that the introduction of constraint Eq.(16) 
can stabilize the solution, especially when limited number of conjugate points are available in a stereo pair. However, the 
effect of this constraint is limited when a great nuinber of points (>30) is involved in the computation [Shan, 19961. Another 
issue in the implementation of the algorithm is the choice of the constant factor for the fundamental matrix. In order to avoid 
null elements, the element i?32 is chosen as unit. The reason is explained as follows. When the photo interior orientation is 

- 
done, i?32 is approximately equal to B x q 2  and the right term in Eq.(14) is - 7, , which is corespondent to the y-parallax in 

metric camera photogrammetry [Shan, 19961. In this way we further establish the parallelism of photogrammetry and 
computer vision. 

In the computation of cross ratio, any five points with good geometric configuration in a stereo pair can be chosen as basis 
provided that none four of them are coplanar. Cross rations are computed from known object points with Eq.(5) and from 
homogeneous model coordinates with Eq.(34). Their discrepancies (measured by RMSE, root mean square errors) are listed 
in Tab.1 for different photo orientations numbered with 0-4, where 0 indicates the photo orientation is completed. 
Comparison of row 1,2,3,4 with row 0 shows that the results are consistent and therefore the discrepancies are due to image 
measurement errors. However, one should note that singularity occurs when an object point is coplanar with three of basis 
points. In this case, the 3-D projective transformation degenerates locally to a 2-D one. ~ h u s ,  the cross-ratio of triangular 
areas should be used instead. 

Tab. 1 RMSE of cross ratios 
Test 1 Cross ratios RMSE 

Tab.2 RMSE of obiect ~o in t s  
1 Test I Coordinates RMSE 

For object reconstruction, a comparison study is designed between 2-D DLT and 3-D DLT solutions. In the 2-D DLT 
solution, six object points are selected as know points and the calculation is conducted for the image coordinates of each 
photo in the stereo pair. On the contrary, the 3-D DLT solution first constructs a projective model by calculating the 

fundamental matrix and then computing the homogenous coordinates K. The object is afterwards reconstructed by using the 
3-D DLT solution given in Eq.(37). The 3-D DLT has been conducted for various photo orientations, numbered with 1 to 4 in 
Tab.2. Test results in Table 2 show that the results of those two solutions relative to known best values are very consistent 
and their discrepancies are within the tolerance of image measurement errors. Due to the utilization of the intrinsic 
relationship of a stereo pair, 3-D DLT can reach slightly better results than the 2-D DLT solution. 

Number -- 
2-D DLT 

6. CONCLUDING REMARKS 

The concluding remarks of this article can be summarized in following aspects. The cross ratio of volume elements is 
invariant in 3-D projective transformation. It can then be defined as projective-invariant coordinates to describe the object. 
There exist parallel concepts in photogrammetry with metric camera and computer vision with non-metric camera. It has 

- 
1 1.93 1.46 1.72 

o x  
1.95. 
A 

1.58 
oz 

1.74 



been proven that the fundamental matrix can be expressed as a product of the projective base line matrix and the projective 
rotation matrix. Once the fundamental matrix is obtained from sufficient number of conjugate image points in a stereo pair, 
its base line components can be determined up to a constant. and six relationships among the nine elements of the projective 
rotation matrix can be determined too. One essential quantity to construct the projective model is the cross ratio k of lengths 
of two conjugate projective rays. The homogeneous coordinates of the projective model can be calculated with the 
fundamental matrix and its derivatives: cross ratio k and the projective base line matrix. The proposed 3-D DLT solution 
generalizes the existing 2-D DLT solution and reconstructs the object from its projective model. It needs minimum five 
known conjugate object points. If more than five are available, the least squares adjustment will be conducted for all points. 
The 3-D DLT can gain the same accuracy as the 2-D DLT solution, which should be applied to two photographs of a stereo 
pair with minimum six known points on each. Tests conducted in this article verify the derivation and validate the analyses. 
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