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Principal Component Analysis for Hyperspectral 
Image Classification

Craig Rodarmel and Jie Shan

ABSTRACT: The availability of hyperspectral images expands the capability of using image classification 
to study detailed characteristics of objects, but at a cost of having to deal with huge data sets. This work 
studies the use of the principal component analysis as a preprocessing technique for the classification of 
hyperspectral images. Two hyperspectral data sets, HYDICE and AVIRIS, were used for the study. A brief 
presentation of the principal component analysis approach is followed by an examination of the infor-
mation contents of the principal component image bands, which revealed that only the first few bands 
contain significant information.  The use of the first few principal component images can yield about 70 
percent correct classification rate. This study suggests the benefit and efficiency of using the principal 
component analysis technique as a preprocessing step for the classification of hyperspectral images.
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Introduction 

The spectral resolution of a sensor deter-
mines much of the capability and perfor-
mance of a remote sensing system, which 

uses the detected spectral properties of the object 
for processing and analysis. The spectral resolution 
refers to the spectral width that a sensor can detect 
in one single image band. Several types of images 
with different spectral resolutions have been identi-
fied (Schowengerdt 1997). The common panchro-
matic image records the object in one band which 
covers the entire visible portion (ca. 300 nm wide) 
of the spectrum. It is therefore known as broad-
band image. Multispectral images, e.g., SPOT and 
Landsat images, have a relatively narrow spectral 
width of about 50-100 nm. Hyperspectral images 
are those having 5-10 nm spectral width, which 
can reach a nearly contiguous spectral record for 
the object. Though future development will lead 
to ultraspectral images at a spectral resolution of 
less than 5 nm, recent research activities are mostly 
focused on multispectral and leading increasingly 
toward hyperspectral images. Currently avail-
able airborne hyperspectral imaging systems are, 
among others, AVIRIS (Airborne Visible/Infrared 
Imaging Spectrometer (Porter and Enmark 1987)), 
HYDICE (Hyperspectral Digital Image Collection 

Experiment), DAIS (Digital Airborne Imaging 
Spectrometer (Lanzl and Mueller 1999)), HyMap 
(http://www.intspec.com, Australia), MAIS (Modular 
Airborne Imaging Spectrometer), and Push-broom 
Hyperspectral Imager (PHI) (Zhang et al. 2000). 
By the time of writing this article (January 2002), 
the space-borne hyperspectral sensor Hyperion 
with 220 bands on board of EO-1 satellite had suc-
cessfully collected the first space-borne hyperspec-
tral images [see http://eo1.gsfc.nasa.gov]. Other 
space-borne hyperspectral systems are being 
planned such as HyperSpectral Imager (NASA), 
NEMO (Naval EarthMap Observer) (Wilson and 
Davis 1999) and OrbiView-4 from ORBIMAGE.

The use of hyperspectral images brings in new 
capabilities along with some difficulties in their 
processing and analysis. Unlike the widely used 
multispectral images, hyperspectral images can be 
used not only to distinguish different categories of 
land cover, but also the defining components of 
each land cover category, such as minerals, and soil 
and vegetation type. On the other hand, there are 
also difficulties in processing so many bands. The 
large amount of data involved with hyperspectral 
imagery will, however, dramatically increase pro-
cessing complexity and time. Effectively reducing 
the amount of data involved or selecting the rele-
vant bands associated with a particular application 
from the entire data set becomes a unique, yet pri-
mary task for hyperspectral image analysis. Besides, 
as is described as the Hughes effect (Hughes 1968; 
Shahshahani and Landgrebe 1994), the classifica-
tion quality may decrease if more image bands are 
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used for the reduction. Feature or subspace 
selection preprocessing therefore needs to 
be performed on the data (Campbell 1996). 
In this paper we use the principal compo-
nent analysis (PCA) to select the best bands 
for classification, analyze their contents, 
and evaluate the correctness of classifica-
tion obtained by using PCA images. 

The principal component analysis has 
been used in remote sensing for different 
purposes. A mathematical derivation and 
historical review of PCA are presented in 
(Gonzalez and Woods 1993). Brief discus-
sions may also be found in (Lillesand and 
Kiefer 2000; Campbell 1996). Most of the 
research explores ways of obtaining effec-
tive multispectral image classification, 
while the study of PCA performance and 
its improvement has been limited. Mather 
(1999) presented a comprehensive and 
detailed summary of different applications 
of PCA, including correlation analysis of 
Landsat TM images for effective feature 
recognition and identification of areas 
of change with multitemporal images. 
Carr and Matanawi (1999) introduced 
the correspondence analysis into PCA for 
SPOT multispectral image analysis and 
studied its possible application for image 
compression. As most existing work deals 
with multispectral imagery, it is open for 
discussion whether its conclusions apply to 
hyperspectral imagery as well. 

The primary objective of this research 
is to determine the applicability of PCA 
in the classification of hyperspectral 
images. The contents of PCA bands for 
two common hyperspectral sensors (HYDICE and 
AVIRIS) were analyzed with a view of identifying 
the most informative bands. The selected PCA 
bands were then used for a supervised classifica-
tion and the results were evaluated by comparing 
them to the classification results obtained using 
the original hyperspectral data. 

The paper is organized as follows. Following this 
introductory section is a brief introduction of the 
PCA approach. The next section introduces the 
HYDICE and AVIRIS data sets used for this study 
and presents the test and analysis methods. The 
contents of the PCA bands are then examined, fol-
lowed by a comparison of the classification results 
obtained using the PCA bands and the original 
hyperspectral data set. Graphic and numeric mea-
sures are given to illustrate the results and analyses 
in this section. The last-but-one section compares 

the efficiency of the PCA transformation in terms 
of computational time. The final section present 
experience gained and future work.

Principal Component Analysis 
The principal component analysis is based on 
the fact that neighboring bands of hyperspectral 
images are highly correlated and often convey 
almost the same information about the object. The 
analysis is used to transform the original data so 
to remove the correlation among the bands. In 
the process, the optimum linear combination of 
the original bands accounting for the variation of 
pixel values in an image is identified. 

The PCA employs the statistic properties of 
hyperspectral bands to examine band dependency 
or correlation. Though, one may find many syn-
onyms for PCA, such as the Hotellling transforma-

Figure 1. Pixel vector in principal component analysis [adapted from 
Gonzales and Woods (1993)].

Figure 2. Geometry of principal component analysis and PCA bands. 



116 Surveying and Land Information Science Vol. 62, No. 2 117 

tion or Karhunen-Loeve transformation (Gonzalez 
and Woods 1993), all these transformations are 
based on the same mathematical principle known 
as eigenvalue decomposition of the covariance 
matrix of the hyperspectral image bands to be ana-
lyzed. Below is a brief formulation of the principle. 
Detailed discussions may be found in Gonzalez 
and Woods (1993) and Schowengerdt (1997).

An image pixel vector is calculated as:

                             

with all pixel values x1, x2, ..... zN at one correspond-
ing pixel location of the hyperspectral image data. 
The dimension of that image vector is equal to the 
number of hyperspectral bands N.  For a hyper-
spectral image with m rows and n columns there 

will be M=m*n such vectors, namely 
i=1,…,M. The mean vector of all 
image vectors is denoted and calcu-
lated as:

              
The covariance matrix of x is defined 
as:

         Cov(x) = E{(x-E(x))(x-E(x))T             

where:
E = expectation operator;
T superscript = transpose operation; 
and 
Cov = notation for covariance matrix. 

The covariance matrix is approxi-
mated via the following calculation: 

  
  
   

The PCA is based on the eigenvalue 
decomposition of the covariance 
matrix, which takes the form of:

            Cx = ADAT                                  

where: 

 D = diag( λ1, λ2...λN)     

is the diagonal matrix composed 
of the eigenvalues λ1, λ2...λN of the 
covariance matrix CX, and A is the 
orthonormal matrix composed of the 
corresponding N dimension eigenvec-
tors ak (k=1,2,…, N) of CX as follows:

 A = (a1, a2,…aN)

The linear transformation defined by:

 yi = ATxi   (I = 1,2,…, M)  

is the PCA pixel vector, and all these pixel vectors 
form the PCA (transformed) bands of the original 
images.  

Let the eigenvalues and eigenvectors be 
arranged in descending order so that λ1 > λ2 >... > 
λN, thus the first K (K < N, usually K<<N) rows of 
the matrix AT, namely the first K eigenvectors                               

                 , can be used to calculate an approxima-
tion of the original images in the following way:

  

(2)

(3)

Figure 3. Original hyperspectral images.

Figure 4. Sample PCA bands of the HYDICE image of the Washington, D.C., 
Mall area.

(1)

(4)

 (5)

 (6)

 (7)

 (8)

(9)
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where pixel vector zi will 
form the first K bands of 
the PCA images.

Such formed PCA bands 
have the highest contrast 
or variance in the first 
band and the lowest con-
trast or variance in the last 
band. Therefore, the first K 
PCA bands often contain the majority of informa-
tion residing in the original hyperspectral images 
and can be used for more effective and accurate 
analyses because the number of image bands and 
the amount of image noise involved are reduced. 
According to Gonzalez and Woods (1993), the PCA 
bands are mutually independent or orthogonal 
and their covariance matrix takes the form of:

                        Cz = diag(λ1, λ2...λK)                         (10)

Detailed discussions on the properties and 
applications of PCA in multispectral images may 
be found in (Mather 1999). The geometry of the 
PCA concept is illustrated in Figure 2, where the 
original data consist of two bands, band 1 and 
band 2. There is considerable correlation between 
the two bands: a move in band 1 creates an almost 
linear change in band 2. Once the PCA takes place, 
however, the correlation between the PCA band 1 
and 2 vanishes. Another aspect of PCA analysis 
that can be seen in this illustration pertains to the 
variability within bands. Once the transformation 
has taken place, PCA band 1accounts for the maxi-
mum amount of variability or contrast possible in 
the image and PCA band 2 accounts for the second 
largest amount. This trend is likely to continue in 
the first few PCA bands, with the remainder con-
taining less and less useful information. 

Hyperspectral Images 
for the Study

Two hyperspectral data sets were selected and used 
for the analyses. The first was a HYDICE image of 
the Washington, D.C., Mall area (Figure 3a). This 
data set was acquired by an aircraft-borne sensor 
and originally contained 191 bands. The second 
was an AVIRIS image for Jasper Ridge, California, 
which originally contained 224 bands (Figure 3b). 
The HYDICE image shows in urban area, while the 
AVRIS image covers a predominantly rural area. 
Other information on these two hyperspectral 
images is summarized in Table 1.

Following the collection of image data, ground 
references for the two sites were collected. For 
the Washington, D.C., Mall area, previous clas-

sifications performed at Purdue University were 
used as reference (http://dynamo.ecn.purdue.edu/

~landgreb/Hyperspectral.Ex.html), along with 
general knowledge about the site.  For the Jasper 
Ridge, California, image, a GIS map created at 
the Center for Conservation Biology and JRBP 
(Jasper Ridge Biological Preserve) at Stanford 
University was used as the reference (http://
jasper1.stanford.edu/).

The ENVI image processing package (Research 
Systems, Inc 1999) and ArcView GIS from ESRI, 
Inc. were used as the major processing and analy-
sis tools in this study. ENVI hyperspectral image 
analysis functions were used to perform PCA on 
both hyperspectral data sets. To limit the data to 
be handled to a reasonable size, only subsets of the 
original bands were used for the analysis, and the 
PCA was performed on these subsets. In fact, for 
one particular application, usually only a small 
portion (subspace) of the entire band of hyper-
spectral data is used, as is discussed in Landgrebe 
(2000). In our analysis, the first 1-50 bands of the 
HYDICE image were selected and the first 1-60 
bands were used for the AVIRIS image. 

Content Analysis of PCA Bands
As indicated, the information content of PCA 
bands decreases with an increasing number of PCA 
bands, and most of the information may only be 
contained in the first few PCA bands. This fact was 
confirmed by the following analysis performed for 
hyperspectral imagery. The HYDICE image was 
used to calculate the PCA bands. Figure 4, which 
contains 128*128 pixel samples of the bands, 
clearly shows that the majority of the variability is 
accounted for in the first few PCA bands and that 
the remaining bands quickly become noise. In the 
Washington, D.C. urban area we studied, the first 
five PCA bands contained virtually all the useful 
information and, therefore, were used to substitute 
for the entire original data set for processing and 
analysis. In PCA bands 5 through to 10, only the 
most contrasting areas of the scene were visually 
distinguishable.  After band 10, the PCA bands 
appeared to be made entirely of noise. 

Similar studies collected in Mather (1999) 
give quantitative descriptions of the contents of 

Sensor Developer
Band range 

(µm)
Number

 of bands
GSD

Swath 
pixels

Sensor
 type

HYDICE U.S Navy 0.4-2.5 210 1m 320 Pushbroom 
AVIRIS JPL 0.4-2.5 224 20m 614 Whiskbroom

GSD = Ground sample distance. JPL = Jet Propulsion Laboratory. AVIRIS = Airborne Visible/
Infrared Imaging Spectrometer. HYDICE = Hyperspectral Digital Image Collection Experiment.

Table 1. Hyperspectral image data used.
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PCA bands by using the ratios of the eigenvalue 
of each PCA band to the sum of all eigenvalues. 
Suprisingly, both the theoretical and experimen-
tal studies indicate that PCA bands with smaller 
eigenvalues (or low-order PCA bands) may contain 
apparently visible information that is useful and 
can contribute to the image classification As a 
matter of fact, Mather (1999) suggested that infer-
ence cannot be made solely based on the magni-
tudes of the eigenvalues, and a visual check of the 
obtained PCA bands is necessary and important. 
Given this conclusion, the next section will conduct 
image classifications by using both PCA bands and 
original images, and then analyze the effect of 
PCA bands on image classification. In this way, it 
is expected that a reliable examination would be 
conducted in this study. 

Classification of PCA bands
Hyperspectral images are usually used for detailed 
analysis of the properties of a given object. In 
theory, PCA transformation affects the clas-
sification of hyperspectral images. We will now 
evaluate the classification results of PCA bands by 
comparing them with the results obtained from 
the original images. Both HYDICE and AVIRIS 
images were used for this analysis. After obtaining 
PCA bands, the first step in the classification is to 
select training sites (see Figure 5). In this study, the 
training sites were areas of known land cover. The 
radiometric responses of the pixels in the images 
were statistically compared with the responses in 
the training sites by using the maximum likelihood 
classifier (Schowengerdt 1997; Landgrebe 2000). 
Each pixel in the images was then categorized into 
the class with which it was most closely associated. 

After the selection of training sites, image clas-
sification was conducted first for the original 

images, then for the entire PCA 
bands, and finally for subsets of 
the PCA bands.  The results of 
these classifications are shown 
in Figure 6 (for HYDICE) and 
Figure 7 (for AVIRIS). A visual 
comparison immediately shows 
that classifications from both 
original and entire PCA images 
reveal the same class patterns or 
distributions over the image. A 
further detail analysis is there-
fore necessary based on a pixel-
by-pixel comparison to study 
the effects of the PCA bands on 
the image classification.

When comparing the two clas-
sification results obtained, respectively, from the 
PCA-transformed and the original images, the 
latter were considered as the reference. These two 
classification results are subtracted pixel-by-pixel 
to detect misclassified pixels in the classification 
results of the PCA bands. The differential images 
obtained showed the correctly classified and the 
misclassified pixels along with the statistical data 
about the percentage of the correct classification. 
Samples of these differential images are shown in 
Figure 8 (for HYDICE) and Figure 9 (for AVIRIS). 
The percentages of pixels that were correctly clas-
sified relative to the total number of pixels in the 
image are listed in Table 2. Figure 10 is a graphical 
representation of the percentage of correctly clas-
sified pixels. An examination of Figure 8 and 9, 
Table 2 and Figure 10 will reveal the effects of PCA 
bands on image classification.  

The pattern of the classified image did not dete-
riorate as much as one would have expected based 
on the percentage of the misclassified pixels. In 
fact, the class pattern was depicted very well, even 
when only a few (~10 percent of the total images) 
PCA bands were involved in the classification. This 
fact was valid for both urban and rural areas. It 
might be the biggest benefit in using the PCA 
approach for hyperspectral image classification, 
since the overall appearance of the class patterns 
is not affected by the misclassification while the 
amount of data involved is significantly reduced 
to a few bands.

The correct classification rate increases slowly 
in a nearly linear manner as the number of the 
PCA bands used for the classification increases. 
For both data sets, the use of the first 10 percent 
(~5) PCA bands can obtain a correct classifica-
tion rate of about 70 percent; the first 20 percent 
(~10) PCA bands leads to about 75-80 percent 

Sensor
Bands 

Classified
Correct Rate

 (%)
Classification 

Time (sec)
Total Time1

(sec)

HYDICE

Original 1-50 100 46 46

PCA 1-50 99.99 46 66

PCA 1-25 92.05 16 36

PCA 1-10 83.47 7 27
PCA 1-5 77.24 5 25

AVIRIS
Original 1-60 100 65 65

PCA 1-10 73.89 7 20
PCA 1-5 69.63 4 17

1 The total time is the sum of classification time and PCA calculation time (except for the original  
imagery). The PCA calculation time for HYDICE and AVIRIS are respectively 20 and 13 seconds on 
Pentium II. 

Table 2. Correct classification rate and calculation time.
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correct classification 
rate. The use of more 
PCA band images will 
only slightly increase 
the correct classifica-
tion rate. With the 
use of 50 percent or 
more PCA bands the 
correct classification 
rate may reach up 
to about 90 percent. 
Therefore, the PCA 
approach can effec-
tively ensure a practi-
cally acceptable and 
accurate classification 
result by handling 
only a small data 
set (5-10 percent) 
derived from the 
original large amount 
of image data. 

The misclassifica-
tion mainly occurs at 
feature boarders or 
edges. The boarder 
effect is due to the 
loss of information or 
contrast in the pro-
cess of transformation, 
such that the boarder 
becomes “smoothed” 
or less contrasted in 
the PCA band images. 
This misclassification 
will decrease the geo-
metric accuracy of the 
classified image and, 
hence, the accuracy 
of derived thematic 
maps. However, as 
discussed earlier on, 
this misclassification 
does not change the 
general class pat-
terns and, therefore, 
the dominating clas-
sification results still 
remain correct. 

A comparison of 
the results of classi-
fied HYDICE and 
AVIRIS images shows 
that the rural area (AVIRIS image), which is mostly 
covered by forest and vegetation, is slightly more 

affected by the PCA images, while the urban area 
(HYDICE), with its roads, buildings, and trees, is 
less affected. This fact indicates that urban land-

Figure 5. Study sites where the images were taken. 

Figure 6. Classification results for the HYDICE images.
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use classification is less sensitive to information 
loss due to the mathematical transformation 
involved in the PCA approach than are rural areas 
and, consequently, requires fewer PCA bands for 
data reduction. The selection of the number of 
PCA bands for the classification may thus vary 
depending on the type of study areas. 

Comparison of Computational 
Time 

Table 2 also lists the computational time for the 
PCA analysis. The total time is the sum of the 
classification time and the PCA transformation 
time. The PCA transformation for the HYDICE 
and AVIRIS images took, respectively, 20 and 13 
seconds on a Pentium II CPU. If the classification 
is applied to the original images, no PCA transfor-
mation is needed and the total time will only be the 
classification time. Because PCA transformation 
only needs to be carried out once, the total com-
putational time essentially depends on the number 
of PCA bands used in the classification. As can be 
seen in Table 2, the classification time is decreased 
when fewer bands are used in the classification. 
When the first five PCA bands are used, the clas-
sification time is seven and four seconds, respec-
tively, for the HYDICE and AVIRIS images, which 

is about 20.0 percent 
(5/25, HYDICE) and 
23.5 percent (4/17, 
AVIRIS) of the total 
time. This result sug-
gests that the PCA 
transformation will 
dominate the total 
processing time in 
practice, which in 
our studies is about 
43.5 percent (20/
46, HYDICE) and 
20.0 percent (13/65, 
AVIRIS) of the time 
when all original 
images are used for 
the classification. 

Conclusions
This study reveals that 
the PCA approach is 
a useful preprocess-
ing technique for 
hyperspectral image 
classification.  Among 

all the obtained PCA bands, the first few (about 
5) bands may contain most of the information 
contained in the entire hyperspectral image data. 
After the first 10 PCA bands, virtually all other 
bands contain only noise. Classifications using the 
most significant PCA bands yield the same class 
patterns as when entire hyperspectral data sets 
are used. The correct classification rate increases 
slowly in a nearly linear manner as more PCA 
bands are involved in the classification. The use of 
the most significant 5 (~10 percent) and 10 (~20 
percent) PCA bands can lead to correct classifica-
tion rates of about 70 percent and 80 percent or 
higher. Misclassifications caused by PCA-induced 
information loss mainly occur at feature class 
boarders in the image and are more sensitive for 
rural than for urban areas. The CPU time for PCA 
transformation will dominate the entire processing 
time if the most significant PCA bands are used. 
All these findings suggest that the use of the PCA 
approach for hyperspectral image classification is 
beneficial and effective. It significantly reduces the 
amount of data to be handled and achieves practi-
cally acceptable and accurate classification results 
that are comparable with those obtained using the 
entire hyperspectral image data. Future research 
efforts will include other alternative preprocessing 
approaches, such as canonical component analysis 

Figure 7. Classification results for the AVIRIS images.
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Figure 8. HYDICE misclassified pixels. 

Figure 9. AVIRIS misclassified pixels.

Figure 10. Correct classification rate for PCA band images.
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