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Abstract — Image fusion is to combine multiple images from the 
same sensor or different sensors into composite products, 
through which more information than that of individual input 
images can be revealed. As an example of image fusion, pan-
sharpening is a process of transforming a set of low-spatial-
resolution multispectral images to high-spatial-resolution images, 
by fusing a co-registered fine-spatial-resolution panchromatic 
image. In the fused output, spectral signatures of a multispectral 
image and spatial features of the panchromatic image, as the best 
attributes of both inputs, are almost retained. The spatially 
enhanced image is visually appealing. But spectral distortion may 
be incurred during this procedure. Currently performance 
evaluation is focused on colorful spatial looking.  In this paper we 
will investigate the application of unsupervised linear unmixing 
to jointly evaluate the spatial and spectral fidelity of a pan-
sharpened image. 
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I. INTRODUCTION 

Pan-sharpening is a typical approach to integrating the 
geometric detail of a high-resolution panchromatic image and 
the spectral information of a low-resolution multispectral 
image to produce a high-resolution multispectral image. Many 
pan-sharpening methods have been developed. These methods 
can be divided into four major categories: intensity-hue-
saturation (IHS) transform based methods, principal 
component analysis (PCA) based methods, arithmetic 
combination based methods, and wavelet transform based 
methods. Each of them has some advantages and limitations 
[1-6].  

It is necessary to quantitatively evaluate the performance 
of different pan-sharpening methods. Current performance 
evaluation is mainly focused on image spatial looking. For 
instance, frequently used metrics for spatial similarity are 
mean square error (MSE), root mean square error (RMSE), 
correlation coefficient, entropy, etc. When spatial resolution is 
improved, there is tradeoff for spectral fidelity. So it is better 
to jointly evaluate both spatial and spectral information. A 
new quality index for this purpose is proposed based on the 
theory of hypercomplex numbers, or quaternions, in [6]. 
Unfortunately, it is suitable to multispectral images with no 
more than four bands.     

We will propose a new evaluation method based on linear 
unmixing. It is well known that the rough spatial resolution of 
a remote sensing image makes different materials be present 
in the area covered by a single pixel. The linear mixture model 
says that a pixel reflectance in a visible-near infrared 
multispectral or hyperspectral image is the linear mixture from 
all independent pure materials (i.e., endmembers) present in an 
image scene. Let L be the number of spectral bands and r an 
L×1 column pixel vector. Assume that there are P 
endmembers present in an image scene, which construct an 
L×P signature matrix [ ]PmmmM 21= , where jm  
represents the j -th endmember. Assume that 

( )TPααα 21=α  is a P×1 abundance vector associated with 
r, where jα  denotes the abundance fraction of the jm  in r. In 
the linear mixture model, r is considered as the linear mixture 
of m1, m2, …, mP as  
 nMαr +=  (1) 
where n is the noise term. If M is known, α can be estimated 
by minimizing the following error 

 ( ) ( )MαrMαr
α

−− Tmin . (2) 

In addition, two constraints are generally imposed on α: 

abundance sum-to-one constraint, i.e., 1
1

=∑
=

P

p
pα , and 

abundance non-negativity constraint, i.e., 0≥pα  for all 
Pp ≤≤1 . There is no closed-form solution to such a 

constrained linear unmixing problem. So an iterative method 
generally is used. 

II. PAN-SHARPENING METHODS 

Four different types of pan-sharpening methods are briefly 
reviewed here. 

Intensity-hue-saturation transform based methods 

Three bands of a multispectral image are considered as in a 
color image. The intensity-hue-saturation (IHS) transform is 
conducted, which separates the intensity information from the 
color information (hue and saturation). Then the panchromatic 
image replaces the intensity image. Pan-sharpened image can 
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be generated by inverse IHS transform. The drawback of this 
method is that it is only suitable to a three-band multispectral 
image. Otherwise, we have to select three bands from all 
original bands for pan-sharpening. 

Principal component analysis based methods 

Principal component analysis (PCA) is another commonly 
used technique for pan-sharpening. PCA is applied to the 
original image. Then the first principle component (PC) image 
is replaced by the panchromatic image. Here we assume that 
the first PC image with largest variance contains the major 
information in the original image. However, we know that 
data information is distributed among several PCs. So 
obviously this method brings about spectral distortion. 
However, it is suitable to an image with any number of bands. 

Arithmetic combination based methods 

The most famous technique in this category is Brovey 
transform, which is actually a band-multiplicative method. For 
the i-th band, it is generated by: Fused Band i = Pan * Band i / 
(Band 1 + Band 2 +… + Band N). The computation is on 
pixel-by-pixel basis. 

Wavelet based methods 

A wavelet based method includes three steps: forward 
transform, coefficient combination, and backward transform. 
There are different ways to fuse the wavelet coefficients of the 
original image and panchromatic image. For example, one 
fusion rule takes the vertical, horizontal, and detail 
coefficients from the panchromatic image, and takes the 
approximation coefficients from the multispectral image. 
Another rule takes the average of vertical, horizontal, and 
diagonal coefficients of the panchromatic and multispectral 
images, and takes the approximation coefficients from the 
multispectral image. We can also compare the vertical, 
horizontal, and diagonal coefficients from panchromatic and 
multispectral images and pick the largest magnitudes as the 
fused wavelet coefficients.  

Hybird methods can be developed by the combination of 
different types of techniques to achieve the lowest spectral 
distortion. 

III. LINEAR UNMIXING BASED PERFORMANCE EVALUATION 

The evaluation method we propose to use is based on 
linear unmixing method. Both endmember signatures and their 
abundance distributions will be estimated for the original 
image and pan-sharpened image. Then two sets of endmember 
signatures are compared to evaluate the spectral information 
distortion, while two sets of fractional abundance images are 
compared to evaluate the spatial similarity using a method, 
such as correlation coefficient. 

Because pixel spectral signatures are changed during the  
sharpening process, an unsupervised method is used to 
estimate the endmember signatures in M as well as their 
abundances. The unsupervised fully constrained least squares 

linear unmixing (UFCLSLU) algorithm is used for this 
purpose [7]. Initially, any arbitrary pixel vector can be selected 
as an initial denoted by m0. However, a good choice may be a 
pixel vector with the maximum length. It is assumed that all 
other pixel vectors are pure pixels made up of m0 with 100% 
abundance. A pixel vector that has the largest least square 
error (LSE) between itself and m0 is found and selected as a 
first endmember m1. Because the LSE between m0 and m1 is 
the largest, it can be expected that m1 is most distinct from m0. 
Then [ ]10mmM =  is formed. The FCLSLU algorithm is used 
to estimate the abundance fractions for m0 and m1, denoted by 

( )r)1(
0α̂  and ( )r)1(

1α̂  for each pixel r respectively as the 
estimates from the first iteration. Now an optimal constrained 
linear mixture of m0 and m1, ( ) ( ) 1

)1(
10

)1(
0 ˆˆ mrmr αα + , is 

computed to approximate the r. Then the LSE between r and 
this estimated linear mixture is calculated for all image pixel 
vectors r. Once again a pixel vector that yields the largest LSE 
will be selected to be a second object pixel vector m2. As 
expected, such a selected object pixel is the most dissimilar to 
m0 and m1. The same procedure with [ ]210 mmmM =  is 
repeated until the resulting LSE is below a prescribed error 
threshold η or enough endmembers are generated.  

Before this processing, the size of an original image is 
expanded to the same size of the panchromatic image using an 
interpolation method, such as bilinear interpolation.  

IV. EXPERIMENT 

The Quickbird multispectral and panchromatic images 
about Davis-Purdue Agricultural Center (DPAC) were used in 
the experiment. As shown in Figure 1, the dimension of the 
panchromatic image is 2600×2600, while the multispectral 
image is of size 650× 650 with four bands (blue, green, red, 
and near infrared). Their spatial resolutions are 2.6m and 
0.75m, respectively. 

                                           
                          Pan image                                   Multispectral image 

 Figure 1.   Original  Panchromatic  and Multispectral imags.   

Figure 2 lists the pan-sharpened images using PCA and 
wavelet methods. Here, the color-infrared composite images 
are displayed. Compared to the original image in Figure 1, we 
can see that color (spectral) distortion is obviously in the 
PCA-based pan-sharpened image, while colors in the one from 
wavelet method seem more faithful.  
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                    PCA                                                       Wavelet 

Figure 2.   Fusion results using four methods. 

             

             

From the original image (after bilinear interpolation) 

 

             

             

From the pan-sharpened image (Wavelet) 

Figure 3. Fractional Abundance Images  

Then four endmemebers and their fractional abundance 
images were estimated, as shown in Figure 3 and 4 (only those 
from the original image and wavelet-based pan-sharpened 
images are presented here). Corresponding abundance images 

were compared, and correlation coeffiencts were calculated. 
Spectral information was compared via correlation coefficient 
between endmembers of the same materials in different 
images. As listed in Table 1, spatial and spectral correlations 
between the wavelet-based pan-sharpened image and orignal 
image are higher than the PCA-based pan-sharpened image. 

1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

Band number

M
ag

ni
tu

de

  1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

Band number

M
ag

ni
tu

de

 

                 For the original image                    For the pan-sharpened image 
Figure 4. Four endmemeber signatures  

Table 1. Averaged spatial and spectral correlation coefficients 

 Spatial Spectral 

PCA 0.7540 0.8598 

Wavelet 0.8431 0.9070 

V.  Conclusion 
We propose to use unsupervised linear unmixing method 

for evaluation of pan-sharpened images. Instead of working on 
individual band images, endmembers and their fractional 
abundance components from the pan-sharpened image and 
orignal image are compared. Such an application-oriented 
joint comparison can effectively compare both spatial and 
spectral information. However, its performance needs further 
investigation.  
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