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Abstract— Last few decades witness a dramatic increase in city 

population worldwide associated with excessive urbanization 

rates. This raises the necessity to understand the dynamics of 

urban growth process for sustainable distribution of available 

resources. Cellular automata, an artificial intelligence technique 

composed of pixels, states, neighborhood and transition rules, is 

being widely implemented to model the urban growth process 

due to its ability to fit such complex spatial nature using simple 

and effective rules. The main objective of our work is to use 

genetic algorithms to effectively calibrate, i.e., identify transition 

rule values, a cellular automata urban growth model that is 

designed as a function of multitemporal satellite imagery and 

population density. Transition rules in our model identify the 

required neighborhood urbanization level for a test pixel to 

develop. Calibration is performed spatially to find best rule 

values per township. Genetic algorithms calibration model, 

through proper design of their parameters, including objective 

function, initial population, selection, crossover and mutation, is 

prepared to fit the cellular automata model. Genetic algorithms 

start processing the initial solution space, through sequential 

implementation of the parameters, to identify the best rule values 

using a predefined criterion over the maximum number of 

iterations. Minimum objective function, representing the total 

modeling errors, is used to identify the optimal rule values. Each 

rule set is evaluated in term of urban level and pattern match 

with reality. Calibration with genetic algorithms proves to be 

effective in producing the optimal rule values in a time effective 

manner at an early generation. Proposed calibration algorithm is 

implemented to model the historical urban growth of 

Indianapolis-IN, USA. Urban growth results show a close match 

for both urban count and pattern with reality.     

I.  INTRODUCTION  

Much research efforts can be seen in the literature towards 
developing effective cellular automata based urban growth 
models. A number of these models’ designs succeed to a 
certain extent in modeling the urban process. However, there 
remain unsolved issues to make the developed models more 
reliable. Calibration of cellular automata urban growth models 
is among these issues that is still a challenge. Calibration in 
cellular automata urban modeling is meant to find the best 
transition rule values to reproduce the same urban level and 
pattern with reference to historical data [1]. Urban cellular 

automata models are very sensitive to transition rules and their 
parameter values [2]. The difficulty in calibrating cellular 
automata rules is due to the complexity of the urban 
development process [3]. Calibration styles in literature can be 
classified into three categories: visual, statistical, and artificial 
intelligence based. SLEUTH model calibration [4;5] is an 
example of urban growth model calibration that makes use of 
visual and statistical tests to identify best urban growth 
parameter values. Multi-criteria evaluation (MCE) method [6] 
and neural networks [2] also have been used in previous 
research for calibration purposes. Common calibration 
problems of cellular automata are related to the design of 
model itself. Most models require large input variables and 
composed of a big set of rules which makes the calibration a 
time consuming process. Genetic algorithms represent a new 
calibration direction that appears recently in cellular automata 
urban growth modeling. The early formal start can be seen in 
the attempt of formalizing genetic algorithms as a calibration 
tool for the SLEUTH model [7]. Further improvements are still 
required to make genetic algorithms a robust technique for 
urban cellular automata models calibration. Proper design of 
genetic algorithms, effective setup of their parameters, and 
selection of the objective function are issues of further interest.      

This paper focuses on improving the calibration of a 
previously designed cellular automata urban model [8] through 
adapting genetic algorithms. The developed cellular automata 
model is designed as a function of multitemporal satellite 
imagery and population density so that the transition rules 
identify the required neighborhood urbanization level for a test 
pixel to urbanize. The main objective of the work in this paper 
is to use genetic algorithms to automate the search method for 
best transition rule values of the designed cellular automata for 
reliable modeling. Calibration is performed spatially on a 
township level to take into account the spatial variation in 
urban dynamics where the same transition rules are applied to 
every township, however with different values. Temporal 
calibration through using historical images to recalibrate the 
model rules is also performed. The genetic algorithms 
calibration model is designed to fit the developed cellular 
automata urban growth model. All the design phases of genetic 
algorithms including: objective function, initial population 
preparation and encoding, selection process, crossover and 
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mutation are setup carefully to best reflect the modeling 
process. Initial population of solution strings are binary 
encoded with objective function being designed to represent 
the total modeling errors associated with each string according 
to the evaluation results identified with reference to reality. 
Elitism and rank selection procedures are used to start the 
production of next generation for genetic algorithms. After 
selection, crossover and mutation operations are implemented 
on the selected strings to finalize the new population of 
solutions. Finally, the cellular automata is run for the new 
population to evaluate their new objective function values. The 
procedure of running the genetics algorithms with the cellular 
automata model is repeated till a convergence criterion is met. 
The rule set that produces the minimum objective function 
value over all of the iterations is selected as the optimal 
transition rule for urban modeling. Detailed analysis of the 
output modeling results is performed as compared to reality. 
The change in rule values as function of genetic algorithms 
generation is identified and the pattern of convergence is also 
tested. 

II. CELLULAR AUTOMATA URBAN GROWTH MODEL  

A. Study Area and Input Data  

In a previous research work, we developed a cellular 
automata based urban growth model [8]. The model was tested 
through simulating and predicting the historical urban growth 
of city Indianapolis, IN, USA (Fig. 1a). The model uses two 
types of input data: Historical classified satellite images and 
population density grids. A set of classified satellite images [9] 
over Indianapolis (1982, 1987, 1992 and 2003-TM) in 
NAD1983 UTM projection was prepared. Seven classes were 
identified in the images, namely: water, road, residential, 
commercial, forest, pasture, and row crops with commercial 
and residential classes representing the urban class of interest. 
The population density grids were produced using an 
exponential function (1) of the distance between the census 
tract centroid and the overall city centroid.  

 
 

B DISTANCE
POPULATION DENSITY A e=             (1) 

Using the census tract maps at 1990 and 2000, based on which 
the yearly change in model parameters (A and B) was 
identified, the model was used to calculate the population 
density for each pixel throughout the years from 1982 to 2003 
to produce the input grids.  

B. Transition Rules and Calibraition  

Cellular automata transition rules (Ø) of the developed 
model were physically built over the input imagery. The rules 
used a 3x3 neighborhood, A

t
i,j in (2) to identify the test pixel 

future state, at+1
i,j in (3).  
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Figure 1.  City of Indianapolis and township map, Indiana, USA 

Transition rules (Ø) were designed to identify the required 
neighborhood urban level for a test pixel to urbanize. The 
following is a summary of such rules:  

1. IF test pixel is water, road OR urban (residential or 
commercial) THEN no change.  

2. IF test pixel is non-urban (forest, pasture OR row crops) 
THEN it becomes urban if its:  

• Population density is equal or greater than threshold 
(Pi) AND neighboring residential pixels count is 
equal or greater than threshold (Ri); or,   

• Population density is equal or greater than threshold 
(Pi) AND neighboring commercial pixels count is 
equal or greater than threshold (Ci).  

where (R,C)i are integer numbers range from 0 to 8 (3x3 
neighborhood) and Pi is a real number ranges from 0 to 3 (0.1 
increment). The Calibration (i.e., identifying best (R,C,P)i 
parameter values) of such rules was performed spatially on a 
township level, Ts (Fig. 1b) to fit the local urban dynamic 
features and over time to consider the temporal urban changes 
at each township,  Tt in (4).   

                             Øcalibrated =  f(Ts, Tt, )                                 (4) 

 in the calibration formula represents the criteria selected to 
find the best rule set for certain township spatial location Ts at 
given time epoch Tt. This criterion in our model represents the 
total modeling errors/mismatch between modeled output and 
reality that need to be minimized for best match.  in (5) was 
defined as a function of fitness F in (6) and total errors E in 
(7) evaluation measures. Fitness and total errors measure the 
compatibility in terms of urban count and pattern within each 
township with respect to reality, respectively.   
  

                      = Abs (F-100%) + E                                     (5) 
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III. CALIBRATION WITH GENETIC ALGORITHMS  

Calibrating transition rules (Ø) to find the optimal set 
(R,C,P)i for each township among the large number of possible 
combinations (2511=9x9x31) is a time consuming process. 
Genetic algorithms are introduced to effectively identify such 
parameters in a time effective manner. This section covers first 
the design phases of the genetic algorithms calibration module 
as implemented to cellular automata urban growth model. Then 
a comprehensive analysis is performed to evaluate the 
modeling results.   

A. Design of Genetic Algorithms Calibration Module  

Genetic algorithms early starts come through an effort [10] 
to mimic the natural process in biology of cellular reproduction 
to solve problems with complex nature. Their ability as an 
automatic and effective search method for the global optimal 
solution from a limited and discontinues solution space favors 
them over other search methods. The development phases of 
genetic algorithms include objective function design, initial 
population preparation and encoding, selection, crossover and 
mutation. 

 that was defined earlier as the total modeling errors is 
used as objective function to evaluate the performance for each 
rule set (R,C,P)i. Rule set with minimum  value will be 
selected as the optimal set. Thirty sets of (R,C,P)i are randomly 
generated for each township to represent the total initial genetic 
algorithms solution population. Each (R,C,P)i set, that is 
associated with an objective function value, is binary encoded 
to represent one string in the solution pool. Ri and Ci are in the 
possible range of (0-8) integer values and have a binary coding 
range of (0000 to 1000). Pi continuously ranges between 0 and 
3, and is scaled to 0-30 as integer for encoding purposes, which 
corresponds to the binary coding range of (00000 to 11110). 
An example of a rule string (7, 7, 1.0) is encoded as a binary 
string (0111011100001), in which the first four digits are for 
Ri, the second four digits for Ci, and the last five digits for Pi. 
At the end of this phase, a total population of thirty binary 
strings associated with their objective values for each township 
is ready to be processed to produce the next genetic algorithms 
generation.  

In the second phase of genetic algorithms calibration, rank 
and elitism selection methods are used to select the new 
solution population of thirty strings starting from the initial 
population. According to rank selection method, all strings are 
ordered based on their genetic algorithms objective function 
values in ascending order from minimum to maximum. The 
string with the lowest objective function value (lowest 
modeling error) is given a rank of 30, the second 29, etc., until 
the last string, which will receive a rank of 1. The selection 
probability (pi) for each string is calculated as a ratio between 
its rank (ri) and the ranks sum ( r): 

=
r

r
p i

i
    (8) 

This probability when multiplied by the population size (30 
strings) will identify how many copies each string is expected 

to contribute in the next generation. For example, a string with 
a selection probability of 0.03988 is expected to contribute 
1.1964 strings (30x0.03988) in the next population. This means 
that this string will reproduce one string of its type in the next 
generation. Through elitism selection, the first six strings with 
highest ranks, or lowest objective function values, are copied 
directly to the new solution population. The rest of strings (i.e., 
24) are selected from the old population according to their 
selection probability (rank selection method). By this step a 
new population of 30 strings is produced as a result of the 
selection process.     

The selected strings are processed further through the 
crossover operation. Crossover in genetic algorithms simulates 
the same process in biology whereby genes from two parents 
meet to produce new offspring that is a mix of the parents’ 
genes. Crossover is important in introducing new possible 
solutions to explore new areas of search space. The assumption 
is always that good parent strings, when crossed over, tend to 
produce offspring with the same or better qualities. Strings 
produced as a result of the selection process are mated in pairs 
at random [11]. Each pair of strings in the crossover population 
(as an output of the selection process) is selected randomly to 
be crossed over. Using a single-point crossover, an integer 
location k (4 in this work) between the first and one less than 
the string length (l 1) is identified as the crossover pivot 
point. Two new strings are produced by exchanging all the bits 
between locations k+1 and l inclusively for the two old strings 
selected for crossover. As an example of single-point 
crossover, assume that two strings C1,C2 (13 bits each as 
defined earlier) are selected for crossover, where k is set to be 
4, the crossover will result in two new strings as follows: 

 ),,,,,,,,,,,,(
131211109876543211
xxxxxxxxxxxxxC =  

 ),,,,,,,,,,,,(
131211109876543212
eeeeeeeeeeeeeC =  

 

          ),,,,,,,,,,,,(
13121110987654321

'

1
xxxxxxxxxeeeeC =  

          ),,,,,,,,,,,,(
13121110987654321

'

2
eeeeeeeeexxxxC =  

In our calibration algorithm, the best six strings are copied 
directly (elitism) and crossed over to produce new 12 strings. 
To complete the population, the best 18 strings are also crossed 
over resulting in a new total population of 30 strings. Crossover 
is performed using the above designed criteria. 

The last genetic algorithms operation to produce the new 
generation of solution space based on the post crossover 
population is the mutation process. Mutation in genetic 
algorithms is defined as a random deformation of the strings 
with a certain probability [12]. Mutation is introduced in 
genetic algorithms to produce new formations of strings in 
order to preserve genetic diversity and to avoid local optimum 
[12]. It simply represents the altering of selected variable bits 
in the string to enrich the search process with new possible 
solution combinations representing various sections of the 
solution space. In the calibration algorithm development, the 
best six strings within the crossover population are mutated 
through random addition of +1 or -1 to the (R,C)i parameter 
values. The following is an example of string mutation:  

0111011100001 (7,7,1) +1,+1 (8,8,1) 1000100000001 



2007 Urban Remote Sensing Joint Event 
 

1-4244-0712-5/07/$20.00 ©2007 IEEE. 

By mutation, a new generation of genetic algorithms 
representing a solution space of thirty strings is generated.  
Cellular automata model runs to evaluate the new objective 
function values for the new solution pool.  

B. Modeling and Evaluation  

The genetic algorithms operations discussed above are 
repeated recursively for a total of twenty generations. The rule 
set that produces the minimum objective function value over 
the course of the total number of iterations (20 iterations) is 
selected as the optimal for each township.  

City of Indianapolis urban growth represented by the set of 
classified historical images discussed earlier is used as a test 
bed to test the proposed calibration algorithm. Through 
designing an initial random solution space (30 strings), the 
calibration-modeling process is implemented to model 
(simulation and prediction) the historical urban growth of the 
city. Urban growth modeling is simulated from 1982 to 1987, 
where calibration is performed using genetic algorithms to find 
the best township rule values. The best rules at 1987 are used to 
predict 1992 for a short term prediction of five years. Another 
calibration is carried out at 1992 to predict the urban growth at 
2003 for a long term prediction of 11 years. Table I refers to 
part of the numerical evaluation results for simulation year 
1987 and predicted year1992 associated with their images at 
Fig. 2. 

TABLE I.  NUMERICAL EVALUATION RESULTS  

1987 Simulation             1992 Prediction Town-

ship # Fitness%    Total Error, E %  Fitness %   Total Error, E % 

1   148.8                 22.93   101.34             19.80 

2   110.0                 23.21   110.27             23.45 

3   96.7                   26.36   85.69               32.36 

4   99.2                   25.42   97.64               29.48 

5   113.4                 23.84   92.26               25.89 

6   99.3                   25.10   82.33               28.89 

7   99.9                   30.78   87.45               34.66 

8   102.2                 26.81   90.82               30.40 

9   100.1                 28.00   97.59               31.58 

10   100.3                 27.59   113.25             24.20 

11   101.9                 26.15   111.01             21.81 

12   100.1                 31.38   89.59               36.65 

13   85.5                   22.85   87.30               26.57 

14   86.6                   18.00   97.33               16.51 

15   101.1                 11.78   113.75               7.10 

16   100.2                 25.93   103.42             27.17 

17   90.9                   24.86   83.56               28.60 

18   98.7                   10.89   109.63               8.11 

19   100.1                 16.78   99.86               16.15 

20   99.4                   29.42   110.35             29.47 

21   118.8                 26.12   75.66               27.62 

22   103.6                 28.00   114.58             30.57 

23   105.7                 24.00   76.05               28.58 

24   127.2                 31.15   103.02             29.73 

Avg.  103.74                24.47    97.24              25.64 

 

   

                                            1987  

  

                                            1992 

                   Real                               Simulated/Predicted  

 

Figure 2.  Simulation (1987) and prediction (1992) image results   

C. Analysis  

Simulation and prediction urban modeling results, as shown 
in Table I and Fig. 2, show a general close match to reality in 
term of urban count and pattern. Table I fitness results for both 
prediction and simulation show close match in urban count 
(close values to 100%) between the modeled and real data with 
average fitness of 103.74 (little overestimate) and 97.24 (little 
underestimate), respectively. The urban pattern match is also 
clear in the table where an average total error between 24-26% 
is achieved. This indicates an approximate match level of 75% 
on a pixel by pixel basis between modeling and reality. This is 
a high accuracy level compared to the results shown in 
literature for the urban land spatial fit area that was only 28.15 
to 44.6% [13]. The close urban pattern match is also clear in 
Fig. 2 where both predicted and simulated images have urban 
distribution similar to those shown in their corresponding real 
images.  

On the side of computation time for transition rule 
calibration, genetic algorithms show higher efficiency as 
compared to traditional exhaustive search calibration method. 
On average, it took genetic algorithms six and half hours of 



2007 Urban Remote Sensing Joint Event 
 

1-4244-0712-5/07/$20.00 ©2007 IEEE. 

continuous CPU time to run for the twenty generations to reach 
the optimal rule set per township. This is about  of time 
needed by the exhaustive search in this study. Looking at the 
fine scale (township level) regarding the change in objective 
function shows this fact as well (Fig. 3). As shown in this 
Figure for selected townships 7 and 14 at different calibration 
years (1987, 1992 and 2003), the minimum objective function 
values are achieved at early generations (within the first 10 
generations for most townships). This indicates the ability of 
the proposed calibration algorithm in reaching an optimal 
solution in a time effective manner while preserving the 
modeling quality as referred to reality.      
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Figure 3.   Objective function change with generations  

D. Conclusions and Final Comments 

As this study demonstrated, genetic algorithms are able to 

produce modeling results, both quantitatively and 

qualitatively, close to the reality in a time effective manner. A 

proper selection of the initial solution population and 
parameters for encoding, crossover and mutation can enhance 

the performance while searching for the optimal rule values. It 

is shown that the computation time is significantly reduced 

from 27 hours in the traditional exhaustive search to 6.5 hours 

in the case of genetic algorithms. Optimal rule values for most 

townships can be reached at an early (<10) stage of genetic 

algorithm generations. Therefore, it is expected that the 
genetic algorithms will more significantly benefit urban 

modeling problems with larger set of input data and larger 

solution spaces.  

There is a need to carry out calibration in spatial units 

smaller than townships to test the effect of spatial modeling 

unit size on the reliability of modeling with the purpose of 

improving the results. For this purpose, it is suggested to use 

census tracts that represents the smallest spatial units based on 

which attributes, such as population density, are distributed in 

spatial calibration. This will help in capturing finer details in 

the modeling process while calibrating the model over smaller 
spatial units to reduce modeling uncertainty.    
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