
2007 Urban Remote Sensing Joint Event

1-4244-0712-5/07/$20.00 ©2007 IEEE.

Cellular automata urban growth model

calibration with genetic algorithms

SHARAF AL-KHEDER, JUN WANG, JIE SHAN

Geomatics Engineering
School of Civil Engineering

Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA

Phone: +1-765-494-2168, Fax: +1-765-496-1105

jshan@ecn.purdue.edu

Abstract— Last few decades witness a dramatic increase in city

population worldwide associated with excessive urbanization

rates. This raises the necessity to understand the dynamics of

urban growth process for sustainable distribution of available

resources. Cellular automata, an artificial intelligence technique

composed of pixels, states, neighborhood and transition rules, is

being widely implemented to model the urban growth process

due to its ability to fit such complex spatial nature using simple

and effective rules. The main objective of our work is to use

genetic algorithms to effectively calibrate, i.e., identify transition

rule values, a cellular automata urban growth model that is

designed as a function of multitemporal satellite imagery and

population density. Transition rules in our model identify the

required neighborhood urbanization level for a test pixel to

develop. Calibration is performed spatially to find best rule

values per township. Genetic algorithms calibration model,

through proper design of their parameters, including objective

function, initial population, selection, crossover and mutation, is

prepared to fit the cellular automata model. Genetic algorithms

start processing the initial solution space, through sequential

implementation of the parameters, to identify the best rule values

using a predefined criterion over the maximum number of

iterations. Minimum objective function, representing the total

modeling errors, is used to identify the optimal rule values. Each

rule set is evaluated in term of urban level and pattern match

with reality. Calibration with genetic algorithms proves to be

effective in producing the optimal rule values in a time effective

manner at an early generation. Proposed calibration algorithm is

implemented to model the historical urban growth of

Indianapolis-IN, USA. Urban growth results show a close match

for both urban count and pattern with reality.

I. INTRODUCTION

Much research efforts can be seen in the literature towards
developing effective cellular automata based urban growth
models. A number of these models’ designs succeed to a
certain extent in modeling the urban process. However, there
remain unsolved issues to make the developed models more
reliable. Calibration of cellular automata urban growth models
is among these issues that is still a challenge. Calibration in
cellular automata urban modeling is meant to find the best
transition rule values to reproduce the same urban level and
pattern with reference to historical data [1]. Urban cellular

automata models are very sensitive to transition rules and their
parameter values [2]. The difficulty in calibrating cellular
automata rules is due to the complexity of the urban
development process [3]. Calibration styles in literature can be
classified into three categories: visual, statistical, and artificial
intelligence based. SLEUTH model calibration [4;5] is an
example of urban growth model calibration that makes use of
visual and statistical tests to identify best urban growth
parameter values. Multi-criteria evaluation (MCE) method [6]
and neural networks [2] also have been used in previous
research for calibration purposes. Common calibration
problems of cellular automata are related to the design of
model itself. Most models require large input variables and
composed of a big set of rules which makes the calibration a
time consuming process. Genetic algorithms represent a new
calibration direction that appears recently in cellular automata
urban growth modeling. The early formal start can be seen in
the attempt of formalizing genetic algorithms as a calibration
tool for the SLEUTH model [7]. Further improvements are still
required to make genetic algorithms a robust technique for
urban cellular automata models calibration. Proper design of
genetic algorithms, effective setup of their parameters, and
selection of the objective function are issues of further interest.

This paper focuses on improving the calibration of a
previously designed cellular automata urban model [8] through
adapting genetic algorithms. The developed cellular automata
model is designed as a function of multitemporal satellite
imagery and population density so that the transition rules
identify the required neighborhood urbanization level for a test
pixel to urbanize. The main objective of the work in this paper
is to use genetic algorithms to automate the search method for
best transition rule values of the designed cellular automata for
reliable modeling. Calibration is performed spatially on a
township level to take into account the spatial variation in
urban dynamics where the same transition rules are applied to
every township, however with different values. Temporal
calibration through using historical images to recalibrate the
model rules is also performed. The genetic algorithms
calibration model is designed to fit the developed cellular
automata urban growth model. All the design phases of genetic
algorithms including: objective function, initial population
preparation and encoding, selection process, crossover and

2007 Urban Remote Sensing Joint Event

1-4244-0712-5/07/$20.00 ©2007 IEEE.

mutation are setup carefully to best reflect the modeling
process. Initial population of solution strings are binary
encoded with objective function being designed to represent
the total modeling errors associated with each string according
to the evaluation results identified with reference to reality.
Elitism and rank selection procedures are used to start the
production of next generation for genetic algorithms. After
selection, crossover and mutation operations are implemented
on the selected strings to finalize the new population of
solutions. Finally, the cellular automata is run for the new
population to evaluate their new objective function values. The
procedure of running the genetics algorithms with the cellular
automata model is repeated till a convergence criterion is met.
The rule set that produces the minimum objective function
value over all of the iterations is selected as the optimal
transition rule for urban modeling. Detailed analysis of the
output modeling results is performed as compared to reality.
The change in rule values as function of genetic algorithms
generation is identified and the pattern of convergence is also
tested.

II. CELLULAR AUTOMATA URBAN GROWTH MODEL

A. Study Area and Input Data

In a previous research work, we developed a cellular
automata based urban growth model [8]. The model was tested
through simulating and predicting the historical urban growth
of city Indianapolis, IN, USA (Fig. 1a). The model uses two
types of input data: Historical classified satellite images and
population density grids. A set of classified satellite images [9]
over Indianapolis (1982, 1987, 1992 and 2003-TM) in
NAD1983 UTM projection was prepared. Seven classes were
identified in the images, namely: water, road, residential,
commercial, forest, pasture, and row crops with commercial
and residential classes representing the urban class of interest.
The population density grids were produced using an
exponential function (1) of the distance between the census
tract centroid and the overall city centroid.

B DISTANCE
POPULATION DENSITY A e= (1)

Using the census tract maps at 1990 and 2000, based on which
the yearly change in model parameters (A and B) was
identified, the model was used to calculate the population
density for each pixel throughout the years from 1982 to 2003
to produce the input grids.

B. Transition Rules and Calibraition

Cellular automata transition rules (Ø) of the developed
model were physically built over the input imagery. The rules
used a 3x3 neighborhood, A

t
i,j in (2) to identify the test pixel

future state, at+1
i,j in (3).

33

)(

1,1

)(

,1

)(

1,1

)(

1,

)(

,

)(

1,

)(

1,1

)(

,1

)(

1,1

,

x

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

aaa

aaa

aaa

A =

++++

+

+

 (2)

 a
t+1

i,j = Ø(At
i,j) (3)

Figure 1. City of Indianapolis and township map, Indiana, USA

Transition rules (Ø) were designed to identify the required
neighborhood urban level for a test pixel to urbanize. The
following is a summary of such rules:

1. IF test pixel is water, road OR urban (residential or
commercial) THEN no change.

2. IF test pixel is non-urban (forest, pasture OR row crops)
THEN it becomes urban if its:

• Population density is equal or greater than threshold
(Pi) AND neighboring residential pixels count is
equal or greater than threshold (Ri); or,

• Population density is equal or greater than threshold
(Pi) AND neighboring commercial pixels count is
equal or greater than threshold (Ci).

where (R,C)i are integer numbers range from 0 to 8 (3x3
neighborhood) and Pi is a real number ranges from 0 to 3 (0.1
increment). The Calibration (i.e., identifying best (R,C,P)i
parameter values) of such rules was performed spatially on a
township level, Ts (Fig. 1b) to fit the local urban dynamic
features and over time to consider the temporal urban changes
at each township, Tt in (4).

 Øcalibrated = f(Ts, Tt,) (4)

 in the calibration formula represents the criteria selected to
find the best rule set for certain township spatial location Ts at
given time epoch Tt. This criterion in our model represents the
total modeling errors/mismatch between modeled output and
reality that need to be minimized for best match. in (5) was
defined as a function of fitness F in (6) and total errors E in
(7) evaluation measures. Fitness and total errors measure the
compatibility in terms of urban count and pattern within each
township with respect to reality, respectively.

 = Abs (F-100%) + E (5)

%100

__
=

counturbantruthGround

counturbanModeled
F

%100
_

__
=

countTotal

counterrorTotal
E

 (6)

 (7)

2007 Urban Remote Sensing Joint Event

1-4244-0712-5/07/$20.00 ©2007 IEEE.

III. CALIBRATION WITH GENETIC ALGORITHMS

Calibrating transition rules (Ø) to find the optimal set
(R,C,P)i for each township among the large number of possible
combinations (2511=9x9x31) is a time consuming process.
Genetic algorithms are introduced to effectively identify such
parameters in a time effective manner. This section covers first
the design phases of the genetic algorithms calibration module
as implemented to cellular automata urban growth model. Then
a comprehensive analysis is performed to evaluate the
modeling results.

A. Design of Genetic Algorithms Calibration Module

Genetic algorithms early starts come through an effort [10]
to mimic the natural process in biology of cellular reproduction
to solve problems with complex nature. Their ability as an
automatic and effective search method for the global optimal
solution from a limited and discontinues solution space favors
them over other search methods. The development phases of
genetic algorithms include objective function design, initial
population preparation and encoding, selection, crossover and
mutation.

 that was defined earlier as the total modeling errors is
used as objective function to evaluate the performance for each
rule set (R,C,P)i. Rule set with minimum value will be
selected as the optimal set. Thirty sets of (R,C,P)i are randomly
generated for each township to represent the total initial genetic
algorithms solution population. Each (R,C,P)i set, that is
associated with an objective function value, is binary encoded
to represent one string in the solution pool. Ri and Ci are in the
possible range of (0-8) integer values and have a binary coding
range of (0000 to 1000). Pi continuously ranges between 0 and
3, and is scaled to 0-30 as integer for encoding purposes, which
corresponds to the binary coding range of (00000 to 11110).
An example of a rule string (7, 7, 1.0) is encoded as a binary
string (0111011100001), in which the first four digits are for
Ri, the second four digits for Ci, and the last five digits for Pi.
At the end of this phase, a total population of thirty binary
strings associated with their objective values for each township
is ready to be processed to produce the next genetic algorithms
generation.

In the second phase of genetic algorithms calibration, rank
and elitism selection methods are used to select the new
solution population of thirty strings starting from the initial
population. According to rank selection method, all strings are
ordered based on their genetic algorithms objective function
values in ascending order from minimum to maximum. The
string with the lowest objective function value (lowest
modeling error) is given a rank of 30, the second 29, etc., until
the last string, which will receive a rank of 1. The selection
probability (pi) for each string is calculated as a ratio between
its rank (ri) and the ranks sum (r):

=
r

r
p i

i
 (8)

This probability when multiplied by the population size (30
strings) will identify how many copies each string is expected

to contribute in the next generation. For example, a string with
a selection probability of 0.03988 is expected to contribute
1.1964 strings (30x0.03988) in the next population. This means
that this string will reproduce one string of its type in the next
generation. Through elitism selection, the first six strings with
highest ranks, or lowest objective function values, are copied
directly to the new solution population. The rest of strings (i.e.,
24) are selected from the old population according to their
selection probability (rank selection method). By this step a
new population of 30 strings is produced as a result of the
selection process.

The selected strings are processed further through the
crossover operation. Crossover in genetic algorithms simulates
the same process in biology whereby genes from two parents
meet to produce new offspring that is a mix of the parents’
genes. Crossover is important in introducing new possible
solutions to explore new areas of search space. The assumption
is always that good parent strings, when crossed over, tend to
produce offspring with the same or better qualities. Strings
produced as a result of the selection process are mated in pairs
at random [11]. Each pair of strings in the crossover population
(as an output of the selection process) is selected randomly to
be crossed over. Using a single-point crossover, an integer
location k (4 in this work) between the first and one less than
the string length (l 1) is identified as the crossover pivot
point. Two new strings are produced by exchanging all the bits
between locations k+1 and l inclusively for the two old strings
selected for crossover. As an example of single-point
crossover, assume that two strings C1,C2 (13 bits each as
defined earlier) are selected for crossover, where k is set to be
4, the crossover will result in two new strings as follows:

),,,,,,,,,,,,(
131211109876543211
xxxxxxxxxxxxxC =

),,,,,,,,,,,,(
131211109876543212
eeeeeeeeeeeeeC =

),,,,,,,,,,,,(
13121110987654321

'

1
xxxxxxxxxeeeeC =

),,,,,,,,,,,,(
13121110987654321

'

2
eeeeeeeeexxxxC =

In our calibration algorithm, the best six strings are copied
directly (elitism) and crossed over to produce new 12 strings.
To complete the population, the best 18 strings are also crossed
over resulting in a new total population of 30 strings. Crossover
is performed using the above designed criteria.

The last genetic algorithms operation to produce the new
generation of solution space based on the post crossover
population is the mutation process. Mutation in genetic
algorithms is defined as a random deformation of the strings
with a certain probability [12]. Mutation is introduced in
genetic algorithms to produce new formations of strings in
order to preserve genetic diversity and to avoid local optimum
[12]. It simply represents the altering of selected variable bits
in the string to enrich the search process with new possible
solution combinations representing various sections of the
solution space. In the calibration algorithm development, the
best six strings within the crossover population are mutated
through random addition of +1 or -1 to the (R,C)i parameter
values. The following is an example of string mutation:

0111011100001 (7,7,1) +1,+1 (8,8,1) 1000100000001

2007 Urban Remote Sensing Joint Event

1-4244-0712-5/07/$20.00 ©2007 IEEE.

By mutation, a new generation of genetic algorithms
representing a solution space of thirty strings is generated.
Cellular automata model runs to evaluate the new objective
function values for the new solution pool.

B. Modeling and Evaluation

The genetic algorithms operations discussed above are
repeated recursively for a total of twenty generations. The rule
set that produces the minimum objective function value over
the course of the total number of iterations (20 iterations) is
selected as the optimal for each township.

City of Indianapolis urban growth represented by the set of
classified historical images discussed earlier is used as a test
bed to test the proposed calibration algorithm. Through
designing an initial random solution space (30 strings), the
calibration-modeling process is implemented to model
(simulation and prediction) the historical urban growth of the
city. Urban growth modeling is simulated from 1982 to 1987,
where calibration is performed using genetic algorithms to find
the best township rule values. The best rules at 1987 are used to
predict 1992 for a short term prediction of five years. Another
calibration is carried out at 1992 to predict the urban growth at
2003 for a long term prediction of 11 years. Table I refers to
part of the numerical evaluation results for simulation year
1987 and predicted year1992 associated with their images at
Fig. 2.

TABLE I. NUMERICAL EVALUATION RESULTS

1987 Simulation 1992 Prediction Town-

ship # Fitness% Total Error, E % Fitness % Total Error, E %

1 148.8 22.93 101.34 19.80

2 110.0 23.21 110.27 23.45

3 96.7 26.36 85.69 32.36

4 99.2 25.42 97.64 29.48

5 113.4 23.84 92.26 25.89

6 99.3 25.10 82.33 28.89

7 99.9 30.78 87.45 34.66

8 102.2 26.81 90.82 30.40

9 100.1 28.00 97.59 31.58

10 100.3 27.59 113.25 24.20

11 101.9 26.15 111.01 21.81

12 100.1 31.38 89.59 36.65

13 85.5 22.85 87.30 26.57

14 86.6 18.00 97.33 16.51

15 101.1 11.78 113.75 7.10

16 100.2 25.93 103.42 27.17

17 90.9 24.86 83.56 28.60

18 98.7 10.89 109.63 8.11

19 100.1 16.78 99.86 16.15

20 99.4 29.42 110.35 29.47

21 118.8 26.12 75.66 27.62

22 103.6 28.00 114.58 30.57

23 105.7 24.00 76.05 28.58

24 127.2 31.15 103.02 29.73

Avg. 103.74 24.47 97.24 25.64

 1987

 1992

 Real Simulated/Predicted

Figure 2. Simulation (1987) and prediction (1992) image results

C. Analysis

Simulation and prediction urban modeling results, as shown
in Table I and Fig. 2, show a general close match to reality in
term of urban count and pattern. Table I fitness results for both
prediction and simulation show close match in urban count
(close values to 100%) between the modeled and real data with
average fitness of 103.74 (little overestimate) and 97.24 (little
underestimate), respectively. The urban pattern match is also
clear in the table where an average total error between 24-26%
is achieved. This indicates an approximate match level of 75%
on a pixel by pixel basis between modeling and reality. This is
a high accuracy level compared to the results shown in
literature for the urban land spatial fit area that was only 28.15
to 44.6% [13]. The close urban pattern match is also clear in
Fig. 2 where both predicted and simulated images have urban
distribution similar to those shown in their corresponding real
images.

On the side of computation time for transition rule
calibration, genetic algorithms show higher efficiency as
compared to traditional exhaustive search calibration method.
On average, it took genetic algorithms six and half hours of

2007 Urban Remote Sensing Joint Event

1-4244-0712-5/07/$20.00 ©2007 IEEE.

continuous CPU time to run for the twenty generations to reach
the optimal rule set per township. This is about of time
needed by the exhaustive search in this study. Looking at the
fine scale (township level) regarding the change in objective
function shows this fact as well (Fig. 3). As shown in this
Figure for selected townships 7 and 14 at different calibration
years (1987, 1992 and 2003), the minimum objective function
values are achieved at early generations (within the first 10
generations for most townships). This indicates the ability of
the proposed calibration algorithm in reaching an optimal
solution in a time effective manner while preserving the
modeling quality as referred to reality.

Township#7

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Generation#

G
A

 o
b

je
c

ti
v

e
 f

u
n

c
ti

o
n

1987

1992

2003

Township#14

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Generation#

G
A

 o
b

je
c

ti
v

e
 f

u
n

c
ti

o
n

1987

1992

2003

Figure 3. Objective function change with generations

D. Conclusions and Final Comments

As this study demonstrated, genetic algorithms are able to

produce modeling results, both quantitatively and

qualitatively, close to the reality in a time effective manner. A

proper selection of the initial solution population and
parameters for encoding, crossover and mutation can enhance

the performance while searching for the optimal rule values. It

is shown that the computation time is significantly reduced

from 27 hours in the traditional exhaustive search to 6.5 hours

in the case of genetic algorithms. Optimal rule values for most

townships can be reached at an early (<10) stage of genetic

algorithm generations. Therefore, it is expected that the
genetic algorithms will more significantly benefit urban

modeling problems with larger set of input data and larger

solution spaces.

There is a need to carry out calibration in spatial units

smaller than townships to test the effect of spatial modeling

unit size on the reliability of modeling with the purpose of

improving the results. For this purpose, it is suggested to use

census tracts that represents the smallest spatial units based on

which attributes, such as population density, are distributed in

spatial calibration. This will help in capturing finer details in

the modeling process while calibrating the model over smaller
spatial units to reduce modeling uncertainty.

REFERENCES

[1] F. Wu, “Calibration of stochastic cellular automata: the application to
rural-urban land conversions,”. International Journal of Geographical
Information Science, vol. 16, pp. 795–818, 2002.

[2] X. Li and A.G.O. Yeh, “Neural network-based cellular automata for
simulating multiple land use changes using GIS,” International Journal
of Geographical Information Science, vol. 16(4), pp. 323–343, 2002.

[3] M. Batty, Y. Xie, and Z. Sun, “Modelling urban dynamics through GIS-
based cellular automata,” Computers, Environment and Urban Systems,
vol. 23, pp. 205–233, 1999.

[4] K. C. Clarke, S. Hoppen, and L. Gaydos, “A self-modifying cellular
automaton model of historical urbanization in the San Francisco Bay
area,” Environment and planning B, vol. 24, pp. 247–261, 1997.

[5] K. C. Clarke and J. Gaydos, “Loose-coupling a cellular automaton
model and GIS: long-term urban growth prediction for San Francisco
and Washington/Baltimore,” International Journal of Geographical
Information Science, vol. 12, pp. 699–714, 1998.

[6] F. Wu and C. J. Webster, “Simulation of land development through the
integration of cellular automata and multi-criteria evaluation,”
Environment and Planning B, vol. 25, pp. 103–126, 1998.

[7] N. C. Goldstein, “Brains vs. Brawn – comparative strategies for the
calibration of a cellular automata – Based Urban Growth Model,” 7th
International Conference on GeoComputation, Southampton, UK,
September 2003.

[8] S. Alkheder and J. Shan, “Change detection - cellular automata method
for urban growth modeling” International Society of Photogrammetry

and Remote Sensing Mid-term Symposium, WG VII/5, Netherlands, May
2006.

[9] J. R. Anderson, E. E. Hardy, J. T. Roach, and R. E. Witmer, “A land use
and land cover classification system for use with remote sensor data,”
USGS Professional Paper 964, Sioux Falls, SD, USA, 1976.

[10] J. H. Holland, “Adaptation in natural and artificial systems,” University
of Michigan Press, Ann Arbor, MI, 1975.

[11] D. E. Goldberg, “Genetic algorithms in search, optimization, and
machine learning,” Addison-Wesley publisher, MA., USA, 1989.

[12] U. Bodenhofer, “Genetic algorithms: theory and applications,” Lecture
notes. Johannes Kepler University in Linz. http://www.flll.uni-

linz.ac.at/teaching/ga/ga-notes.pdf. 2004.

[13] X. Yang, and C. P. Lo, “Modelling urban growth and landscape changes
in the Atlanta metropolitan area,” International Journal of Geographical

Information Science, vol. 17, pp. 463–488. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with minimum image resolution and no font embedding. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFcd5cc18c0020d574c0c1b3c40020c774bbf8c9c0b97c0020c0acc6a9d558ace00020ae00af340020ae30b2a5c7440020d3ecd568d558c9c00020c54aace000200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b67004f4e768456fe50cf52068fa87387800c4e144e0d5d4c51655b574f5330028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b67005c0f76845f7150cf89e367905ea6ff0c4e264e144e0d5d4c51655b57578b3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.000 842.000]
>> setpagedevice

