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Fuzzy inference guided cellular automata urban-growth modelling using
multi-temporal satellite images
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PO Box 150459, Zarqa 13115, Jordan

(Received 28 July 2006; in final form 15 May 2007 )

This paper presents a fuzzy inference guided cellular automata approach.

Semantic or linguistic knowledge on urban development is expressed as fuzzy

rules, based on which fuzzy inference is applied to determine the urban

development potential for each pixel. A defuzzification process converts the

development potential to the required neighbourhood development level, which

is taken by cellular automata as initial approximation for its transition rules.

Such approximations are updated through spatial calibration over townships and

temporal calibration with multi-temporal satellite images. Assessment of the

modelling results is based on three evaluation measures: fitness and Type I and

Type II errors. The approach is applied to model the growth of the city of

Indianapolis, Indiana over a period of 30 years from 1973 to 2003. A fitness level

of 100 ¡20% with 30% average errors can be achieved for 80% of the townships

in urban-growth prediction.

Keywords: Cellular automata; Fuzzy logic; Urban modelling; Calibration

1. Introduction

The complexity of urban growth phenomena makes it extremely difficult to capture

its dynamics using traditional mathematical models (Batty and Xie 1994a). Among

the dominant dynamic models, the cellular automata (CA) approach is probably the

most impressive because of its technological evolution in connection with urban

applications (Yang and Lo 2003). It is also attracting more attention from the urban

research community recently since cellular automata is able to adapt to the complex

urban process with simple transition rules. However, recent work in this area tends
to complicate the cellular automata transition rules, such that it is almost impossible

to view the link between the interactive development processes and their effect on

the output patterns.

Since Tobler (1979) introduced cellular automata to geographical systems, many
advances have been achieved. Cellular automata were used to model and explain the

built form of French villages and the layout of rooms in houses (Hillier and Hansen

1984). It was also applied to study how different varieties of urban dynamics might

arise (Couclelis 1985, 1988, 1989). Though originally not intended to model urban

growth, Couclelis’ work provided a theoretical and methodological framework for
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using cellular automata to solve complex dynamic geographical problems. A

diffusion-limited aggregation (DLA)-based cellular automata model (Batty and Xie

1994a, b) was developed to simulate the growth of urban areas. Their Dynamic

Urban Evolutionary Model (DUEM) model was designed to model land-use

changes through transition rules. One of the drawbacks in their model was its

inability to effectively handle certain types of data such as road network and spatial

location. The work of White and Engelen (1993, 1994) allowed for the integration of

socio-economic and natural system models in a realistic way (White and Engelen

1997). They used the standard non-spatial models of regional economics and

demographics, as well as a simple model of environmental change to predict the

demand for future agricultural, residential, and commercial/industrial land-uses

(White and Engelen 1997, 2000). Clarke et al. (1997) presented a cell-based urban

land-use change model SLEUTH (Slope, Land use, Exclusion, Urban extent,

Transportation, Hillshade). The model has four major input data layers: slope, seed

layer, transportation, and protected land. It captures four types of urban land-use

change: spontaneous growth, new spreading centre growth, edge growth, and road-

influenced growth. These four growth types are applied sequentially for each growth

iteration through five growth coefficients: diffusion, breed, spread, slope resistance,

and road gravity. The calibration in the model is meant to find the best set of these

five coefficient values to reproduce the urban pattern. SLEUTH was used later to

model and predict the urban growth for the San Francisco Bay Area in California

and the Washington DC/Baltimore corridor (Clarke and Gaydos 1998). Recently,

Yang and Lo (2003) used the SLEUTH model to simulate urban growth in Atlanta,

Georgia. The calibration was completed using historical data extracted from a series

of satellite images. They established a what-if scenario system to assess the impact of

different policies on the urbanization process. Wu and Webster (1998) used the

multi-criteria evaluation (MCE) method to define the transition rules. The

calibration in their model is meant to find the best weight vectors for the set of

input layers. Similarly, Li and Yeh (2002) used neural networks (NN) to calibrate

the parameters in cellular automata modelling.

Despite the remarkable achievements in cellular automata urban modelling, its

performance can be further improved in many aspects. First, there is no standard

method for the definition of transition rules. They are usually chosen based on

common understanding about the effects of various natural and social factors on the

urban-growth process (Li and Yeh 2004). Wu (2002), however, expressed the

transition rules using probability functions, which makes the interpretation of such

rules difficult and hence less useful for decision-makers. Cellular automata

modelling is all about simplifying a complex process by applying simple rules.

Therefore, any cellular automata model, in order to be practical enough, should

adapt semantically explicit transition rules that can be easily interpreted by the

users. Second, the rules need to be accurately and effectively calibrated. This is an

important issue that had been neglected until recent efforts were made to apply the

cellular automata method as a reliable procedure for urban development simulation

(Wu 2002). The difficulty partially lies in the complexity of the urban development

process on the one hand (Batty et al. 1999) and the ability, on the other hand, to find

a simplified mathematical model sufficiently reliable to present the urbanization

process. In addition, because of the large rule parameter space, there is a need to

develop cellular automata models that are computationally efficient and robust

enough to explore the most likely subset of the parameter space. This can be
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achieved by providing good initial values for the rule parameters. Third, many of the

cellular automata models use a large number of input variables (e.g. the SLEUTH

model). This complicates the selection of transition rules to present the effects of

each individual variable on urban growth. Moreover, some variables might be

highly correlated, and adding more variables may not necessarily improve the

modelling results. Finally, cadastral maps, instead of satellite images, are often used

as cellular automata input data (Clarke et al. 1997, Wu 2002, Li and Yeh 2004).

Despite the popularity and appropriateness of using cadastral maps, we argue that

this method may not use comprehensive and contemporary land-use and land-cover

information recorded on imagery, which nowadays is becoming widely available at

minimal cost. In addition, images are able to clearly reflect certain land use and

growth constraints (e.g. water areas) and have more details and contents than highly

generalized cadastral maps.

Cellular automata controlled by fuzzy logic is a recent development. Most models

view a pixel as a binary system or what is called crisp cellular automata. Each pixel is

treated as either fully developed or undeveloped. This ignores the fact that a pixel

might be partially developed, since the urban growth process is continuous in space.

Besides, the role of the pixel development potential in identifying its own

development requirement is totally ignored in crisp cellular automata. It is not

reasonable to treat a pixel that has an 80% potential to develop in the same way as

another pixel with only a 20% potential. The 80% pixel needs a lower urbanization

level in the neighbourhood to develop compared with the 20% pixel. Wu (1996,

1998) used fuzzy-logic control in defining the urban transition rules. The fuzzy

model captured the feature of land-conversion behaviour, while cellular automata

simulated the global pattern from local rules. A set of membership functions for

several linguistic variables were defined to represent the input data. Liu and Phinn

(2003) modelled urban growth by identifying the state of a pixel using a fuzzy

membership function for spatial delimitation of urban, suburban, and rural areas.

Their model was based on the assumption that the number of years required for the

full urban development of the considered region is known. A fuzzy inference engine

was used to resolve the transition rules. An important note considering this model is

that fuzzy logic is used to define both the transition rules and the pixel states, which

makes the calibration process more complex.

This study presents a fuzzy inference guided cellular automata approach. The role

of fuzzy inference is threefold: to apply common semantic or linguistic knowledge to

urban modelling; to simplify the definition of the cellular automata transition rules;

and to reduce the search space for their calibration. The output from fuzzy inference

is used as the initial values for the parameters in the transition rules. Calibration of

the transition rules is conducted temporally based on the classification results of

historical Landsat satellite images and spatially over a grid system defined by the

township map. In addition to the satellite images, the input data also include a

digital elevation model (DEM), a road map, and a population census map. The

methodology is evaluated by a dataset covering the Indianapolis area, Indiana over

a period of 30 years from 1973 to 2003.

2. Principles

A synthetic city, shown in figure 1, is used to describe the principle of the fuzzy

inference guided cellular automata. The size of the synthetic city is 2006200 pixels.

Three factors in this example are considered for urban development: land use,

Fuzzy inference guided cellular automata urban-growth modelling 1273
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elevation, and distance to the city centre. The land-use image (map) has six classes:

lake, river, road, urban, non-urban, and pollution source. The DEM and distance to

the city centre are respectively normalized and used as input to the fuzzy inference

process.

Fuzzy logic was first introduced by Zadeh (1965, 1971) to model a continuous

process as an extension to the crisp set theory. Fuzzy inference allows us to

linguistically describe the concepts related to urban growth. In fuzzy inference, the

distance to the city centre (d) is a fuzzy variable or linguistic variable. This fuzzy

variable may take Close, Medium, or Far as fuzzy values. Fuzzy values are related

to their crisp values, i.e. the exact (normalized) distances, through a membership

function. Essentially, the membership function categorizes the crisp distance values

into the fuzzy values. Equation (1) is the membership function for the distance to the

city centre when x5d, while figure 2(a) is the corresponding plot. It should be noted

that one crisp value may belong to more than one fuzzy value at different degrees.

For example, according to the membership function in figure 2(a) or equation (1),

d50.45 belongs to Close with a membership degree 0.5, to Medium with a

membership degree 0.25, and to Far with a membership degree 0. The same concept

Figure 1. Synthetic city (left) and its elevation (right).

Figure 2. Membership functions of (a) distance and elevation and (b) output.
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can be applied to a DEM whose membership function is also defined by equation (1)

when x5h.

mx xð Þ~

Close or Low

1 0ƒxƒ0:4

{10xz5ð Þ 0:4ƒxƒ0:5

0 x§0:5

8
><

>:

Medium

0 xƒ0:4

5x{2ð Þ 0:4ƒxƒ0:6

{5xz4ð Þ 0:6ƒxƒ0:8

0 x§0:8

8
>>><

>>>:

Far or High

0 xƒ0:7

5x{3:5ð Þ 0:7ƒxƒ0:9

1 §0:9

8
><

>:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð1Þ

The output for the fuzzy inference also needs to be defined. In this study, the

fuzzy output variable y represents the required neighbourhood development
(urbanization) level for a pixel to become urban according to its own development

potential. The development potential of a pixel may take three fuzzy values: High,

Medium, and Low. The lower the development potential of a pixel, the more urban

pixels that are needed in its neighbourhood for its development. The output fuzzy

membership function is shown in figure 2(b) and equation (2).

mout yð Þ~

High

1 yƒ2

{ 1
2

yz2
� �

2ƒyƒ4

0 y§4

8
><

>:

Medium

0 yƒ3
2
3

y{2
� �

3ƒyƒ4:5

{ 2
3

yz4
� �

4:5ƒyƒ6

0 y§6

8
>>><

>>>:

Low
0 yƒ5

1
2

y{2:5
� �

y§5

�

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð2Þ

The fuzzy input variables and the fuzzy output variable are associated through fuzzy

rules. As an example, we introduce the following two fuzzy rules:

N Rule 1: IF (distance is Medium AND elevation is Medium) THEN output is

Medium.

N Rule 2: IF (distance is Close AND elevation is Medium) THEN output is High.

The role of fuzzy rules is to determine the development potential of a pixel. Figure 3

illustrates how this is achieved by evaluating the fuzzy rules through a fuzzy

inference process. In the evaluation of the fuzzy rules, the minimum–maximum

(Mamdani) method (Mamdani 1974) is adopted. Let d50.45 and h50.55 for a given

pixel. Its membership to each corresponding fuzzy value can be determined through
the membership functions shown in figure 2(a) or equation (1). For Rule 1 above,

the membership of d50.45 belonging to Medium is 0.25, and the membership of

Fuzzy inference guided cellular automata urban-growth modelling 1275
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h50.55 belonging to Medium is 0.75. Using the Mamdani method, the minimum of

the memberships, 0.255min(0.25,0.75) is retained as the membership of the fuzzy

output Medium. Similarly, for Rule 2 above, the membership of d50.45 belonging

to Close is 0.5, and the membership of h50.55 belonging to Medium is 0.75. The

membership of the fuzzy output High is 0.55min(0.5, 0.75). As shown in figure 3,

the two fuzzy output membership functions (Medium and High in equation (2)) are

merged into one by taking the maximum at the corresponding output fuzzy values.

Finally, the fuzzy output function is converted to a single crisp value using the

centre of area (COA) method, which considers the area-weighted average or

centroid of the membership area, i.e.

y�~

PN

i~1

y�i mout yið Þ

PN

i~1

mout yið Þ
ð3Þ

where N is the number of fuzzy graph points and is taken as 100 in this study. In this

example, the defuzzified value is y*53. As addressed before, the output value y*

stands for the required number of urban pixels in the neighbourhood of a test pixel

in order for it to develop to urban. It will be used as the initial value for the cellular

automata transition rules.

A total of seven fuzzy rules are applied to the synthetic city as summarized in

table 1. The rules are defined based on the influence of the two input factors

(Distance and Elevation) on urban development. The values in the table refer to the

membership functions of the output variable under fuzzy inference. For example, if

a test pixel has Low elevation and Close distance to the city centre, then it has High

development potential and hence needs a small number of urban pixels in the

neighbourhood to develop. The fuzzification–defuzzification process is the same as

described above except that there are seven (instead of two) rules to be considered.

A brief description of the principle of cellular automata is helpful for

understanding its association with fuzzy inference. Cellular automata, originally

Figure 3. Fuzzy inference process.
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introduced by Ulam and von Neumann in the 1940s as a framework to study the

behaviour of complex systems (von Neumann 1966), is commonly defined as a

dynamic discrete system in space and time that operates on a uniform grid being

controlled by a predefined set of transition rules (Sipper 1997). Its atomic element is

a cell or pixel in this study. A pixel can take one of the possible states or values, such

as road, vegetation, or urban in the land-use image. The state of a pixel may change

over time due to the dynamic nature of the system. Such a state change is governed

by a set of transition rules defined for the neighbourhood of the pixel. In this study,

a 363 neighbourhood is used. For example, a transition rule can state that a

vegetation pixel will change its state to urban if three or more of its neighbouring

pixels are urban. Such an evaluation of the transition rules is carried out pixel by

pixel over the entire image and is repeated until certain criteria are met. The number

of iterations or the differences between the cellular automata outcome and the

ground data are often used as iteration criteria.

As addressed earlier, fuzzy inference and cellular automata are coupled by using

the output of the fuzzy inference as the input to the cellular automata. Specifically,

the fuzzy inference determines the required number of urban pixels in the

neighbourhood for a pixel to develop to urban. The cellular automata use this

number as a threshold value to test if there are enough urban pixels in the

neighbourhood for a pixel to become urban. The following are the transition rules

used for the synthetic city, where y* is the fuzzy output:

N IF a pixel is urban, river, road, or lake, or has pollution source in its

neighbourhood, THEN there is no change in its state.

N IF a non-urban pixel has equal or more than y* urban pixels in its

neighbourhood, THEN change it to urban.

N IF a non-urban pixel has a road or lake in its neighbourhood AND has equal

or more than (y*–2) urban pixels in its neighbourhood, THEN change it to

urban.

The transition rules are designed to enforce some growth constraints on certain land

uses, such as water resources, that the modeller wishes to exclude from the

urbanization process. On the other hand, some land-use classes, such as roads and

lakes, are considered as favourable factors for urban growth in the transition rules.

The cellular automata model is run for 0, 25, 50, and 60 times using the above

transition rules. The modelling results are shown in figure 4, which clearly illustrates

the effects of the fuzzy-coupled transition rules on urban growth. The lower region

of the city is characterized by high elevations (figure 1), and thus it is difficult for

urban development as a result of using the above fuzzy rules. Similarly, the city

grows gradually from the city centre because the fuzzy rules are in favour of

locations near the city centre. In the mean time, the transition rules guide the city

development along the road, river, and away from the pollution sources. All the

Table 1. Fuzzy rules for urban development potential of the synthetic city.

Distance to city centre

Elevation

Low Medium High

Close High High Medium
Medium NA Medium Low
Far NA Low Low

Fuzzy inference guided cellular automata urban-growth modelling 1277
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above results suggest that the proper use of the fuzzy rules and transition rules can

lead to a desired urban development pattern. Conversely, if a real urban

development pattern is used as ground data to calibrate the rules, i.e. to determine

the parameter values or thresholds in the transition rules, then they will be able to

model the real urban development process.

3. Urban growth modelling of Indianapolis

3.1 Data and algorithm design

The above principles are applied to model the growth of the Indianapolis area,

Indiana. Five images from the years 1973, 1982, 1987, 1992, and 2003 over a period

of 30 years provide the temporal land-use information. The image of year 1973 is

from Landsat MSS with four spectral bands (60-m resolution), while the other

images are from Landsat TM with seven spectral bands (30-m resolution). All the

images are spatially registered to the same reference system of UTM NAD 1983.

Based on the USGS classification system (Anderson et al. 1976), seven classes are

identified in the images: water, road, residential, commercial, forest, pasture, and

row crops. The commercial and residential classes represent the urban class of

interest in this study. Training samples on the images are selected with reference to

the 1-m resolution black and white ortho-photographs (1998 photography) and the

Indiana Geological Survey land-cover classification maps (produced based on 1999

TM images). As a result of the maximum-likelihood classification using all spectral

bands, five historical land-use maps are created. The urban modelling is carried out

on the resampled classification images at 60-m resolution, since this is the lowest

resolution in the input images; and upsampling would actually not be meaningful in

terms of fidelity and precision, whereas further downsampling would unnecessarily

ignore the details in the input images. In addition, this choice would also balance the

modelling error and computational cost, since the latter is exponentially

proportional to the image resolution. On the other hand, a larger pixel size or

neighbourhood size would dramatically increase the urban growth simulation rate

(Al-kheder and Shan 2005), which would cause the modelling process to be less

controllable.

Besides the images, the road network, the DEM, and the year 2000 census

population map are also used, as shown in figure 5. An image showing the distance

to the closest road is created from the road-network input. For the year 2000 census

population map, the distance is computed between each population tract’s centroid

and the overall centroid. Population density (population per square km) is then

Figure 4. Synthetic city modelling results from fuzzy inference guided cellular automata.
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modelled as an exponential function of the distance to the overall centroid.

Population density~A|e{B|Distance ð4Þ

To reduce the variation in the census data, the population densities for tracts within

a distance interval of 2 km are averaged. Figure 6 shows the population density as a

function of distance for the year 2000. By comparing with the population data in

1990, it is identified that the population density parameters A and B in equation (4)

vary by approximately 1% and 3% per year, respectively. By using this relationship,

we calculate the population density at each pixel based on its distance from the

overall centroid for each year in the simulation period. It should be noted that the

three factors (road, population, DEM) are selected according to our historical

growth observation of the city from satellite images. In addition, previous research,

such as that of Wu (1998) and Liu and Phinn (2003), emphasized the importance of

such factors in controlling the urban growth process. Furthermore, our model

design is general enough to be capable of including other social or environmental

factors, such as income level, which can be considered in the same way as population

data.

Fuzzy inference concepts are applied to the Indianapolis data. The membership

functions of the normalized DEM and distance to roads, and the population density

Figure 5. Input data for Indianapolis urban growth modelling.

Fuzzy inference guided cellular automata urban-growth modelling 1279

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
6
:
1
2
 
2
8
 
O
c
t
o
b
e
r
 
2
0
0
8



are defined as equation (1). Table 2 summarizes the fuzzy rules being used in this

study. They are chosen based on the effects of the input data on the urban

development. The fuzzy output defined in equation (2) is converted to a crisp value,

which represents the required number of urban pixels in the neighbourhood for a

pixel to develop according to its own development potential. Pixels with a high

development potential require fewer urban pixels in their neighbourhood to develop

than do pixels with a low development potential. This crisp value will be used as the

initial threshold in the transition rules and will be updated through calibration.

The cellular automata transition rules are defined as a function of the land use,

growth constraints, and fuzzy output:

N IF a pixel is road, water, commercial, or residential, THEN no change.

N IF a non-urban (forest, pasture, or row crops) pixel has equal or more than YR

residential pixels in its neighbourhood, THEN change it to residential.

N IF a non-urban pixel has equal or more than YC commercial pixels in its

neighbourhood, THEN change it to commercial.

N IF the sum of commercial and residential pixels of a non-urban pixel in its

neighbourhood is equal to or more than YS pixels, THEN change it to

whichever is greater.

Figure 6. Population density (pop/sq km) as a function of distance for year 2000.

Table 2. Fuzzy rules for urban development potential of Indianapolis.

Population density

Low Medium High

Distance to road Close Medium Medium High
Medium Medium Medium Medium
Far Low NA Medium

Elevation Low NA NA High
Medium NA High NA
High Low Medium High

Medium Pop. Density & Low Elevation & Far Distance R Medium

1280 S. Al-Kheder et al.
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YR, YC, and YS are the threshold parameters for residential, commercial, and the

sum of these two classes in order for a test pixel to become urban as described in the

above transition rules.

3.2 Calibration and evaluation

Calibration is essentially to determine the values for YR, YC, and YS such that the CA
modelling outcome can best represent the real urban development. For this purpose,

the fuzzy output y* is used as an initial value subject to certain corrections, i.e.

YR~y�zeR

YC~y�zeC

YS~y�zeS

ð5Þ

where (eR, eC, eS) are the corrections or the calibration coefficients to be determined

through calibration. For this objective, we use multi-temporal images as ground

data for calibration over time. In addition, the entire study area is divided into 24

townships using a township layer as shown in figure 7. A township has an average

size of 93 km2 and represents the ownership of land which can be sold or acquired

for different urban development uses. For this reason, each township may

potentially have its own urbanization properties and process. The same cellular
automata transition rules are defined for all townships; however, different townships

can have different rule values. In this way, the transition rules will also be calibrated

spatially to consider local growth properties and pattern. A small integer search

space, from 23 to 3 for the first two calibration coefficients (23(eR, eC(3) and

from 0 to 3 for the third one (0(eS(3) with an increment of 1, is defined. For

example, a combination of (eR50, eC50, eS50) for the calibration coefficients means

that the fuzzy output is used as the threshold in the transition rules without any

modification. Another example (eR523, eC50, eS50) means that only the
residential threshold parameter is changed to be three pixels less than the fuzzy

output. The best results from the above search space (eR, eC, eS) will be retained as

the final modelling outcome.

Three evaluation measures are designed to select the best outcome from the

calibration process. The fitness measure defined in equation (6) is the ratio of the

number of urban pixels in the simulated image to the urban count in the ground-

data image

Fitness%~
Simulated urban count

Ground data urban count
|100 ð6Þ

The other two measures, Type I and Type II errors, count the mismatch pixel by
pixel between the simulated and real images. The Type I error counts the pixels that

are urban in the ground data image but non-urban in the simulated image, while the

Type II error counts the pixels that are non-urban in the ground data but urban in

the simulated. Among the three quality measures, fitness measures the success in

reproducing the real urbanization level. A fitness of more than 100% suggests an

overestimation of the urbanization level in the modelling process, while a fitness of

less than 100% indicates an underestimation of the urbanization level. Type I and

Type II errors represent the pixel-by-pixel differences between the simulation results
and the ground data. They also provide a strict measure for the mismatch between

the simulated and real urban patterns. Such errors need to be minimized for
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accurate modelling. The weighted average of Type I and II errors based on the

urban and non-urban counts represents the overall modelling error. Out of all the

simulation results in the search space, the final outcome is selected as the one that

produces the minimum possible average error with a fitness level within 100¡10%.

It should be noted that all the measures are computed and summarized based on

townships, and each township is evaluated separately.

Our modelling study involves two aspects: simulation and prediction. Simulation

means running the model between two historical images (representing two growth

years) where calibration (finding the best rule values) is performed at the end year to

find the best rule values to produce the urban growth (level and pattern) between

these years. However, the prediction means that the best rules found at a certain

calibration year are used to extrapolate the urban growth pattern to identify the

future urban growth. The oldest image of 1973 is used as the first input to the

Figure 7. Study area of Indianapolis with township grid overlaid.
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cellular automata simulation. The computation is run for all possible combinations

of (YR, YC, YS) from 1973 to 1982. The best parameter set is selected for each

township based on the above criteria by comparing the simulation results with the

1982 image. In the next step, the selected rule values and the 1982 image are used to

produce the simulation for 1987. The same procedure is repeated in 1987 to find the

best set of calibration coefficients.

As addressed above, the term prediction refers to modelling without calibration at

the destination year, i.e. one set of rule values is used for the modelling without

modification. Prediction is carried out for the years 1992 and 2003, respectively.

Once the best sets of calibration coefficients in 1987 are selected, the same rules are

used to predict the year 1992. This represents a short-term prediction of a 5-year

interval. The next prediction is performed for 2003 for a long-term period of 11

years starting from 1992 with its calibration results. A larger search space from 24

to 4 for all calibration coefficients (eR, eC, eS) is used for this long-term prediction to

investigate more combinations. The prediction results in 1992 and 2003 are

evaluated respectively against their ground-data images. The final stage of

prediction is future prediction beyond the available ground-data images. After

calibration for the year 2003, the same rules are used to predict the year 2010 and

2020 under the same urbanization development conditions.

4. Results and analysis

This section studies the calibration results and the modelling outcome. For this

purpose, the best (eR, eC, eS) calibration coefficients and quality measures for 1982

and 1987 are presented in table 3. Table 4 lists the numerical results for the

prediction years 1992 and 2003. First, we examine how the final calibrated values

vary from the fuzzy approximations. As a general comment, they are farther away

from the fuzzy output for townships away from the city centre (e.g. township #2),

and closer to the fuzzy output for townships closer to the city centre (e.g. township

#13). This suggests that simple fuzzy rules are unable to accurately model the urban

growth, and certain corrections must be applied, especially for places away from the

city centre. A closer look at table 3 reveals that the residential rule calibration result

is the closest to the fuzzy output. This means that the fuzzy output provides a better

initial approximation for the residential rules needed for reliable modelling

compared with the other two rules, and there tends to be a positive correction for

the calibration in all years. This indicates that the approximation provided by the

fuzzy inference overestimates the urban development. As a result, the transition

rules are tightened by the calibration by implementing positive corrections to the

fuzzy output to match the real urban pattern. As an example, figure 8 plots the

residential rule corrections and the residential pixel counts. It is seen that less

developed townships usually have more restricted rules (large rule values) compared

with more developed townships. This result is due to the fact that developed

townships usually have a faster development rate than underdeveloped ones, so

certain restrictions on their transition rules are needed to match the actual

development pace.

As discussed earlier, a fitness measure is meant to ascertain that the correct urban

development level is achieved. Figure 9, along with Tables 3 and 4, investigates the

fitness variation over the townships for simulation years 1982 and 1987 and

prediction years 1992 and 2003. Most (,3/4) calibration fitness results are within the

specified range of 100¡10%. For the prediction years (figure 9(c)), most townships
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Table 3. Calibration results for 1982 and 1987.

Township

1982 1987

Rules (eR, eC, eS) Fitness %

Error %

Rules (eR, eC, eS) Fitness %

Error %

Type I Type II Average Type I Type II Average

1 (1,0,2) 91.63 64.64 16.63 26.71 (3,3,3) 148.82 56.86 17.54 22.59
2 (3,3,3) 97.36 60.40 17.76 26.83 (3,3,3) 110.70 51.89 16.97 23.11
3 (0,3,1) 90.78 40.70 20.37 26.42 (2,1,3) 103.91 38.36 22.43 26.92
4 (3,3,3) 99.53 39.59 20.08 25.40 (3,3,3) 100.47 43.02 19.35 25.35
5 (3,3,0) 92.86 57.90 19.52 29.01 (2,3,3) 116.67 44.27 18.71 23.74
6 (3,3,0) 88.71 50.85 18.68 27.30 (2,3,2) 104.28 42.31 20.04 25.58
7 (0,0,3) 91.17 41.19 25.56 31.14 (1,3,1) 106.48 33.77 30.28 31.58
8 (0,3,3) 96.68 41.31 19.31 25.05 (3,3,3) 103.43 49.33 19.84 26.85
9 (0,3,3) 91.85 49.99 17.83 27.00 (0,0,2) 91.38 31.50 23.50 26.47
10 (0,3,1) 89.67 26.88 29.91 28.32 (3,3,1) 93.56 18.23 33.82 24.26
11 (0,–1,1) 90.89 25.61 33.58 29.22 (0,3,1) 102.53 14.17 43.90 25.36
12 (0,–1,1) 97.99 48.12 19.82 27.00 (1,0,3) 107.44 45.52 26.73 32.21
13 (0,–1,1) 93.43 22.65 27.53 25.08 (1,0,3) 94.85 17.54 31.27 23.90
14 (3,–2,1) 90.61 14.66 31.65 19.50 (0,3,1) 101.76 6.54 57.28 17.85
15 (3,–2,0) 101.17 2.16 60.05 11.59 (0,–3,3) 103.79 0.54 81.48 11.42
16 (0,3,1) 98.17 24.51 29.38 27.23 (1,1,2) 98.57 22.98 27.63 25.53
17 (3,3,0) 95.57 15.61 33.82 23.40 (2,0,3) 101.79 16.03 41.16 26.87
18 (23,–3,3) 99.69 0.08 76.38 8.90 (22,3,3) 101.54 1.22 81.58 11.80
19 (3,3,0) 94.40 9.06 46.54 17.00 (3,0,3) 100.97 7.25 46.31 16.87
20 (0,3,2) 91.33 39.97 23.79 29.65 (3,1,2) 106.27 35.67 27.54 30.34
21 (0,–1,1) 86.41 40.52 26.84 32.13 (3,3,3) 120.79 27.17 25.74 26.16
22 (0,0,3) 90.31 28.11 34.02 30.88 (0,3,3) 107.83 17.18 40.35 28.09
23 (0,–1,1) 91.67 28.14 32.99 30.51 (3,3,3) 107.56 17.23 29.10 23.81
24 (0,3,3) 90.34 47.38 26.44 33.44 (3,3,3) 128.73 44.75 26.78 31.31
Average 93.43 34.17 29.52 25.78 106.84 28.47 33.72 24.50
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Table 4. Year 1992, 2003 prediction results (5-, 11-year interval).

Township

1992 2003

Fitness %

Error %

Fitness %

Error %

Type I Type II Average Type I Type II Average

1 101.34 77.72 11.22 19.80 115.55 79.94 11.83 19.43
2 112.10 67.96 14.82 23.50 82.29 70.36 13.57 24.74
3 94.79 52.49 22.56 32.69 89.47 45.82 22.70 31.93
4 99.15 57.13 19.51 29.46 81.62 57.48 19.65 32.00
5 95.52 62.62 15.17 25.58 106.07 50.10 18.44 26.22
6 87.82 53.07 17.12 28.51 101.46 32.82 35.88 34.34
7 104.18 36.98 33.00 34.90 91.01 30.48 34.92 32.23
8 93.16 60.75 19.20 30.32 60.69 59.18 18.22 36.81
9 138.55 25.76 41.53 34.65 86.31 27.88 19.97 23.91
10 111.63 11.75 43.59 20.72 107.36 6.92 73.92 19.61
11 107.12 10.72 48.69 18.99 117.95 0.43 89.98 15.73
12 94.57 45.25 28.01 35.79 78.26 33.60 25.72 30.76
13 99.30 21.06 29.80 23.83 99.56 11.08 38.94 18.51
14 114.56 3.40 71.34 13.01 111.50 1.04 86.59 13.68
15 114.71 0.01 95.75 6.78 103.58 0.22 82.20 6.77
16 117.54 22.65 29.58 26.35 75.88 30.78 17.87 25.87
17 96.80 21.50 39.15 26.32 99.98 12.96 36.79 18.54
18 115.03 0.57 95.89 7.19 106.76 0.17 84.35 9.23
19 105.79 10.93 51.67 18.26 94.15 8.86 40.45 13.75
20 123.43 37.24 27.14 30.49 71.99 42.37 16.68 28.90
21 77.11 46.34 13.99 27.11 117.40 34.21 37.29 36.00
22 120.52 13.30 37.90 23.62 95.55 20.11 36.85 25.59
23 78.61 33.99 17.60 27.49 88.37 22.10 40.72 26.76
24 104.10 58.75 20.21 29.81 68.33 58.64 17.68 32.40
Average 104.48 34.66 35.19 24.80 93.80 30.73 38.38 24.32

Figure 8. 1992 residential calibration coefficients and residential urban counts.
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achieve fitness within the 100¡20% range, and about one-half of the townships are

within the 100¡10% range. As expected, short-term prediction fitness results (5

years, from 1987 to 1992) are closer to 100% as compared with the long-term results

(11 years, from 1992 to 2003). Most fitness results have a fairly random distribution

around the 100% line. Less developed townships are more sensitive to the changes in

the transition rules, since the number of urban pixels is small, and any small change

can affect the fitness level, as can be seen in the townships remote from the city

centre. In addition to the fitness, figure 9(b) and (d), along with Tables 3 and 4,

presents the average errors for the calibration and prediction years. The average

error represents the combined effects of Type I and II error types according to their

dominance in the township being tested. The pattern in the figures tends to show

higher errors for remote townships than with the townships near the city centre. This

suggests that well-developed townships yield fewer modelling errors. For a majority

(,80%) of the townships, the errors are less than 30% in both the simulation and

prediction scenarios, and both have a similar range of error variation.

The next evaluation is to study the components of errors to discover any useful

patterns related to our modelling. The distribution of the modelling errors with

respect to the urbanization level is shown in figure 10. It can be seen clearly that the

error domination for a specific township is related to its urbanization level. Type I

errors dominate townships with a lower urbanization level, while Type II errors

dominate those with a higher urbanization level. For example, townships 1–5 in the

Figure 9. Fitness (left) and average error (right) of calibrated (top) and predicted (bottom)
years.
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calibration year 1982 are mostly composed of non-urban pixels. This results in most

modelling errors being Type I, and Type II errors are a small percentage. This is due

to the fact that the Type II error count is divided by a large number of non-urban

pixels. Another example is township 15 in the middle of the city, which has a high

percentage (82.2%) of Type II errors and only 0.22% of Type I errors for the

prediction year 2003. In general, Type I errors are more dominant in townships far

from the city, while Type II is more dominant in closer townships. The weighted

average of the errors is a more comprehensive indicator, since it takes into account

not only the error magnitude but also the urbanization level. It balances the two

types of errors and is less sensitive to the absolute error count.

This paragraph further compares the modelling results with the ground data in

terms of spatial connectivity and smoothness. For this purpose, we examine a

window of 20620 pixels (1200 m61200 m) at three different locations off the city

centre. As shown in figure 11, the simulated (1987) and predicted (1992) images and

their corresponding ground data are selected. A clear observation is that the

modelling results have a higher connectivity than the classified ground-data images.

Ground data as a result of image classification are more discrete than the connected

and continuous simulation results. Another important observation is that windows

with close urban counts may still have different urban structures, which suggests

that urban count alone is not sufficient to judge the modelling quality and that

additional measures are needed to describe the urban structure. Type I and II errors

Figure 10. Modelling errors (left) vs. urban development level (right).
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meet this need by measuring how the modelling results match the real data on a

pixel-by-pixel basis. These two criteria along with the urban count (fitness) ensure

that the modelling results will have not only the correct urbanization level but also

the right urban structure.

The modelling results over the entire study area are shown in figure 12 for the

calibration years (1982 and 1987) and figure 13 for the prediction years (1992 and

2003). The simulated images are produced using the corresponding ground data as a

reference for rule calibration, while the prediction results are produced without

calibration at the destination year. Once the calibrated rules are obtained for 1987,

the same rules are used to predict 1992. The 2003 image is predicted from the

calibrated rules for 1992. It is seen that the prediction in general provides results that

are as good as the simulated results in terms of the urbanization pattern. The results

validate that the fuzzy inference guided cellular automata is able to adapt to the

urban dynamic changes spatially (township effect) and temporally (time-variable).

This supports the understanding that the urbanization process is dynamic in space,

and the transition rules need to vary spatially in the study area. Rule calibration

over time reduces the accumulation and propagation of simulation errors over the

prediction period. The results prove that multi-temporal satellite images are effective

ground data to serve this purpose. Moreover, the close structure match between the

modelled and real data is mainly due to the use of Type I and II error measures.

Minimizing such errors ensures that the modelling process reproduces a realistic

urbanization pattern. Finally, figure 14 presents the prediction results for years 2010

and 2020. Future prediction years assume that the same urban pattern calibrated at

Figure 11. Ground data and modelling results in three selected windows for 1987 (left) and
1992 (right).
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2003 will be followed with the same urbanization rate. Smooth results can be seen

for future prediction with accelerated directional urbanization toward the north-

east, north, and east directions, which follows the pattern in the historical data from

1973 to 2003.

Figure 12. (a) Indianapolis 1982 calibration results. (b) Indianapolis 1987 calibration
results.
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5. Conclusions

Coupling fuzzy inference with cellular automata has several distinct advantages.

Fuzzy inference can take into consideration the linguistic knowledge about the

urban development. In this way, concepts and semantic knowledge about urban

development can be easily incorporated into the modelling process. The fuzzifica-

tion step conceptualizes various input data, while the defuzzification step digitalizes

Figure 13. (a) Indianapolis 1992 prediction results. (b) Indianapolis 2003 prediction results.
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the fuzzy inference outcome. We regard this as very beneficial for urban planners
and decision-makers, since they only need to provide rules or knowledge instead of

exact mathematic expressions for geographic phenomena. Unlike the traditional

crisp cellular automata, the fuzzy inference guided cellular automata method takes

the development potential of a pixel into account to preserve the continuous spatial

nature of the urban growth process. Moreover, this approach also simplifies the

definition of the transition rules and provides good approximations for their

parameters.

Calibration in fuzzy inference guided cellular automata modelling is meant to find

the calibration coefficients, i.e. the corrections to the fuzzy inference output, within
a small search space to best match the real urbanization level and pattern. We

present a calibration strategy in both the spatial and temporal domains. The

township-based calibration considers the spatial variations in the urban develop-

ment and proves to be efficient in improving the prediction outcome. Calibration

over time based on the historical satellite images detects the dynamic urban growth

pattern so that the rules can be adapted accordingly, and the prediction errors will

not accumulate for a long time. This is necessary, since some growth periods may

experience excessive or slower growth rates than other periods.

The three quality measures, Fitness and Type I and II errors, are shown to be

effective and comprehensive in identifying the best calibration results. The fitness

measure ensures that the correct urban development level is achieved, while the Type

I and II errors represent the mismatch between the simulated and the real urban

patterns. Because of the nature of the pixel-by-pixel evaluation, Type I and Type II

errors are shown to be critical in the quality evaluation. It is appropriate to retain

the best modelling results as those with the fewest errors at a satisfactory fitness level

(e.g. 100¡10%). Under the above quality measures, the majority (,3/4) of the
townships achieve a fitness level of 100¡10% in the calibration, while only about

one-half of the townships meet the same fitness level in the prediction. Based on this

Figure 14. Future prediction of Indianapolis at year 2010 and 2020.
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study, it is shown that 80% of the townships can achieve a fitness level of

100%¡20% in urban prediction.

Our study observes that the Type I error dominates under-developed areas, while

the Type II error dominates well-developed areas. However, the weighted average

errors behave less dramatically across the townships, and in fact both the calibration

and the prediction scenarios yield about the same average error of 25–30%. The

study reveals that image classification contributes to such errors due to the discrete

outcome of the pixel-based image classification and the local continuity of the

cellular automata modelling. Consequently, the average errors are critical and tend

to exaggerate the real inconsistency between the modelling results and the ground

data, despite having a very similar pattern and structure.

This study also reveals a few topics to be further explored. The selection of the

fuzzy membership functions and the fuzzy rules is rather subjective in this study,

motivated mainly by a proof of concept study. However, a certain optimization is

needed as a guide to better approximation for the cellular automata modelling. It

would be interesting to study how the final modelling outcome is dependent on the

fuzzy membership functions and the fuzzy rules. The searching space for the

transition rule calibration in cellular automata may need to be tuned in an

autonomous way during the calibration process to obtain effective as well as

sufficiently accurate results. Object-based classification instead of the pixel-based

classification might be more suitable for providing the ground data for the transition

rule calibration and assessing the modelling outcome. Scale or resolution has always

been a critical issue in urban modelling. The rules and methodology found at one

scale need to be tested at another scale to evaluate their suitability and performance

across different scales or resolutions. Moreover, the pixel size and the neighbour-

hood dimension in the transition rules should also be studied in terms of their effects

on urban modelling and rule calibration.
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