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ABSTRACT: 
 
Building extraction and delineation is one of the most salient problems in cartographic features extraction. This paper presents a 
novel framework for reliable and accurate building extraction from high-resolution color imagery focusing on building boundary 
delineation and building roof compositional polygon segmentation. Proposed framework consists of three steps. First, anisotropic 
diffusion and clustering are applied as pre-processing for denoising and color quantization and then building boundary is extracted 
by active contour driven by edge-flow. Finally, building roof compositional polygons are segmented by JSEG. The framework is 
tested on a number of buildings and the results are shown. The result shows the completeness and accuracy that this framework can 
provide for extracting building from a high-resolution color image data set. 
 
 

1. INTRODUCTION 

For decades, automatic and semiautomatic extraction of 
cartographic features from various data sets such as aerial 
image, digital surface model (DSM), or terrestrial images has 
become an intensive research topic to substitute the time-
consuming and tedious manual digitizing. Among those features, 
buildings are the most salient in terms of their significance and 
complexity. Automatic building extraction has numerous 
applications is in geographic information system (GIS), 
cartographic analysis, urban planning, visualization, and 
telecommunication. 
Many automatic building extraction methods from DSM or 
multi-spectral imagery are developed but suffer from rough 
delineation result due to the relatively low resolution of the 
involved DSM and multi-spectral imagery. Also, low resolution 
and deficiency of the method cause the fact that several 
buildings and possibly their surroundings are extracted as one 
building. Therefore, the results can only used as an initial 
approximation to the final building and must be enhanced with 
improved reliability and further refined for better accuracy.  
This paper presents a novel framework for reliable and accurate 
building extraction from high resolution color imagery. It is 
focused on the delineation of building boundary and 
segmentation of building roof polygons or faces. First, the J-
image (Deng et al., 1999) is generated from an initial 
unsupervised classification using anisotropic diffusion (Perona 
and Malik, 1990) and k-means clustering. After that, the 
building boundary is extracted by multi-scale active contour 
with the edge-flow (Ma and Majunath, 2000) as the underlying 
velocity field for deformation and the J-image as the stopping 
function based on the level set method (Osher and Sethian, 
1988). Finally, building roof compositional polygons are 
segmented by JSEG (Deng et al., 1999). This paper will present 
technical details of the proposed approach by providing step by 
step intermediate results. The results demonstrate that the 
extracted building boundary coincides with the building image 
well and the segmented building roof polygons are close in 
shape to the real building roofs. 
The rest of this paper is organized as follows. Section 2 briefs 
the previous work for automatic and semi-automatic building 

extraction. Section 3 explains the proposed methodology and 
describes the detail process. Section 4 presents our 
implementation and shows its results on a real scene. The paper 
concludes on its performance and potentials, and future 
prospects in section 5. 
 

2. PREVIOUS WORK 

 In general, the primary data sets used in most building 
extraction systems are images and DSM, which are used 
separately or simultaneously. Brunn and Weidner (1998) 
segmented DSM for building extraction. However it is difficult 
to apply this algorithm to DSM derived from LIDAR data due 
to noisy outliers. After that, many building extraction method 
from LIDAR data were suggested (Morgan and Tempfli, 2000; 
Priestnall et al., 2000; Wang and Schenk, 2000; Alharthy and 
Bethel, 2002), however, the building extraction results using 
DSM still suffer from outliers and relatively low resolution.  
There are many efforts to use aerial or satellite images as the 
single data source for building extraction by means of auxiliary 
information such as shadow (Lin and Nevatia, 1998), perceptual 
grouping based on the line segment from edge detection (Kim 
and Muller, 1999; Sohn and Dowman, 2001) or both of them 
(Wei et al, 2004). However, auxiliary information is not always 
available, reliable, and precisely co-registered. The building 
extraction quality varies depending on accuracy of extracted 
edges and lines.  
Multiple images are also widely used to solve the occlusion 
problem and to use the elevation information by 
photogrammetric techniques. Roux and McKeown (1994) used 
a pair of images for building extraction. Noronha and Nevatia 
(2001) extracted rectangular buildings by hierarchical 
perceptual grouping and matching. Elaksher et. al. (2003) 
suggested 3D building extraction using a robust multi-image 
line-matching algorithm. Oriot (2003) proposed a semi-
automatic approach using statistical snakes with disparity map 
as initials to delineate building edges.  
Some other studies used image information combined with 
elevation information for building extraction (Haala and Hahn, 
1995; Zhao and Trinder, 2000; Seresht and Azizi, 2000). 
Recently, Khoshelham (2005) integrated image and height data 
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for parametric building reconstruction through interactive 
refinement. Several recent studies have used color information 
(Lari and Ebadi, 2007) and the spectral reflectance values to 
extract the buildings (Lee et al., 2003). Liu et al. (2005) fused 
high-resolution panchromatic image with low-resolution multi-
spectral imagery to use enhanced color and texture information 
for building extraction.  
 
 

3. METHODOLOGY 

The proposed framework for building extraction consists of the 
following steps. First, the original RGB color image is 
converted into CIE L* a*b* image and then the anisotropic 
diffusion is applied to each L* a*b* image band so that the color 
information of the objects are enhanced. Second, we generate 
the J-image that measures the local image inhomogeneities 
where high pixel values correspond to potential building 
boundary location and low pixel values correspond to 
homogeneous region. A J-image is computed from a class map 
generated by the k-means clustering using the two chromatic 
bands, a* and b*. Based on this J-image, borders between 
building and background are delineated by the edge-flow based 
active contour. In the third step, image segmentation is 
performed to determine building roof compositional polygons. 
The extracted building region is classified again using k-means 
clustering with all three bands and then a J-image is generated. 
With this J-image, image corresponding to a building is 
segmented by JSEG. From this segmentation result, building 
roof compositional polygons are segmented. Finally, 
segmentation result is refined by removing small segments and 
merging over-segmented ones. As the final result, building roof 
wireframes are reconstructed.  
 
3.1 Color Space Conversion and Anisotropic Diffusion 

Color space conversion. Several color spaces are currently 
used. The most common one for digital imagery is the RGB 
space, which represents color by its red, green and blue 
components. However, the RGB space does not show similarity 
with human visual system for color perception. In other saying, 
the differences among colors perceived by human visual system 
as being of the same entity are not mirrored by similar distances 
between the points representing those colors in RGB space. 
This problem can be solved by a uniform color space, e.g., the 
most widely used one is CIE L* a*b* space. Briefly, CIE L* a*b* 
space has three major properties: separation of achromatic 
information from chromatic information, uniform color space, 
and similarity to human visual system. Due to these properties, 
this study chooses CIE L* a*b* colors converted from original 
RGB image for image segmentation. In CIE L* a*b* space, L* 
represents the luminance component, while a* and b* represent 
color components. The Euclidean distance EΔ  between two 
colors, (L1* a1*b1*) and (L2* a2*b2*) in CIE L* a*b* space is 
defined as 
 

ΔE = (L1
* −L2

* )2 + (a1
* −a2

*)2 + (b1
* −b2

*)2 .  (1) 
 

It is approximately equivalent to the perceptual difference 
between two colors in human visual system. Based on this 
uniformity, color image segmentation can be performed by 
integrating information extracted from each of the three bands. 
In this study, the original RGB image is converted into CIE L* 

a*b* image as shown in Figure 1 and the entire processing for 
building extraction is performed in CIE L* a*b* space.   

Anisotropic diffusion. After color space conversion, 
anisotropic diffusion is applied into image to decrease noise and 
enhance color information. This is necessary since most real 
images are noisy and have corrupted data. Anisotropic diffusion 
is a popular technique for smoothing images while preserving 
the edges. In addition, color texture sometimes causes 
erroneous results although color texture provides an important 
cue for image segmentation. This undesired influence of color 
texture can be considerably reduced by anisotropic diffusion. 
Koenderink (1984) pointed out the solution of the heat 
conduction equation of image I  given by equation (2)  
 
 

It (x, y, t) = ΔI(x, y, t)  (2) 
 

is equivalent to the Gaussian smoothing function when the 
original image is used as the initial condition, where x  and  
denote image coordinates and 

y
Δ  does Laplacian, and t is time. 

Based on this, Perona and Malik (1990) proposed the 
anisotropic diffusion to restrain the diffusing not across the 
boundary. They perform this selective smoothing based on the 
observation that the magnitude of the first derivative of the 
image in equation (3) can be used as the conduction coefficient.  
 

∇I = ∂I ∂x( )2 + ∂I ∂y( )2                           (3) 
 

As a result of combining equation (2) and equation (3), the 
edge-preserving diffusion is formulated as equation (4) where 

 
�g(⋅)  is a nonnegative monotonically decreasing function 

with 1)0( =g� , and di  is divergence. v
 

  It(x,y,t) = div  �g  ∇I(x,y,t)  ( )∇I(x,y,t)( ) (4) 

 
Equation (4) blurred original image inversely proportional to 
the magnitudue of first derivative of the image. Hence, in the 
result iamge low frequency region is more diffused while high 
frequency region is less diffused. As a result of this anisotopic 
diffusion, we can reduce the undesired noise with preserving 
feature boundary edges. In this study, the anisotropic diffusion 
of each band is separately performed by solving equation (4) 
with the level set method. The bottom row of Figure 1 shows an 
example of color space conversion and anisotropic diffusion. 
 

 
Figure 1. Color space conversion from RGB space to CIE L* 

a*b* space and the anisotropic diffusion [top: original RGB 
image (red, green, blue); middle: converted CIE L* a*b* image 
(L*, a* and b*); bottom: diffused image (L*, a* and b*)] 
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Figure 2. J-images computed with local window [upper: K-
means clustering result in CIE a* b* domain with 10 clusters, J-
image generated from K-means clustering result with 10 
clusters; lower: J-1image from K-means clustering result with 
15 clusters and 20 clusters] 
 
3.2 Building Boundary Delineation using Active Contour 

J-image generation. Image segmentation is based on the local 
homogeneity of an image, which can be measured by the so-
called J-image (Deng et al., 1999). As the prerequisite of J-
image computation, we first apply the k-means clustering to the 
anisotropic diffused image for color quantization. The measure 
J is then computed based on this class-map as described below. 
Let Z  be the set of all N  data points in the class-map, 
z = (x, y), z ∈ Z .  is the mean as equation (5) and the mean 

 of the 
m

mi Ni  data points of class Zi is defined as equation (6) 
when Z  is classified into C  clusters as Zi,   i =1,2,",C . 
 

m =
1
N

z
z∈Z
∑     (5) 

 

mi =
1
Ni

z
z∈Z i

∑     (6) 

 
Based on these means, the total distance , the distances  
within each class and the distances  between different 
classes are determined as below 

TS WS

BS

 
ST = z − m

z∈Z
∑ 2    (7) 

SW = Si
i=1

C

∑ = z − mi
z∈Z i

∑ 2

i=1

C

∑            (8) 

WTB SSS −=     (9) 
 

Finally, the measure J is defined as equation (10).  
 

W

WT

W

B

S
SS

S
SJ −

==   (10) 

 
The above J value is calculated for each pixel using local 
window over the entire image. When an image consists of 
several homogeneous color regions, the color classes from 
previous clustering are more separated from each other and the 
value of J becomes larger. In contrast, the value of J becomes 
smaller when all color classes are more uniformly distributed 

over the image. The J-image shows higher values around the 
region boundaries. Figure 2 shows the clustering result (upper 
left) and J-images which describe the likelihood of a pixel being 
at the region boundary. In this study, we use the J-image 
produced from the segmentation result by K-means with 10 
clusters. Beside that, Figure 2 presents two more J-images, 
computed from the k-means clustering using the different 
cluster numbers of 15 and 20. Visually, these J-images don’t 
show significant differences. From this, we can expect that 
segmentation using the J-image is not sensitive to the cluster 
number K unlike the case that K-means is directly used for 
segmentation. 

 
Edge flow computation. In this study, image segmentation is 
performed using the active contour, which is deformed towards 
the edges with high probability to be the segment boundaries by 
edge flow. Originally, Ma and Majunath (2000) suggested a 
general framework, named “edge flow”, which allows 
considering different types of image attribute together for image 
segmentation. The general form of edge flow vector F at image 
location  with an orientation s θ  is defined as equation (11) 
 

)),(),,(),,((),( πθθθθ += sPsPsEFsF     (11) 
 

Where ( , )sE θ  is the edge energy at location s  along the 
orientationθ  and ( , )P s θ  represents the probability of finding 
the image boundary when the corresponding flow at location s  
flows in the directionθ , and ),( πθ +sP  does the opposite in 
the direction πθ + . The first component is used to measure the 
energy of local image information change and the remaining 
two components represent the probability of flow direction. 
These three components are computed as below. The smoothed 
image  is obtained from the original image  
using the Gaussian kernel with a variance . The 
prediction error 

),( yxIσ ),( yxI
),( yxGσ

2σ
( , )Err s θ  at ( , )x y  is defined as equation (12) 

to estimate the probability of finding the nearest boundary in 
two possible flow directions: the forward and the backward, 
where d  is the prediction distance normalized to the scaleσ . 
 

Err(s,θ) = Iσ (x + d cosθ, y + d sinθ)− Iσ (x, y)      (12) 

 
A larger prediction error ( , )Err s q  in a certain direction implies 
a higher probability of finding a boundary in that direction. For 
that reason, the probabilities of edge flow direction are assigned 
in proportion to their corresponding prediction errors. An edge 
likelihood ( , )P s θ  using relative error is defined as equation (13) 
and the probable edge direction is then estimated as equation 
(14). 
 

P(s,θ) = Err(s,θ)
Err(s,θ) + Err(s,θ + π )

     (13) 

 

∫
+

−

=
2/

2/

')',(arg'
πθ

πθθ
θθθ dsPxma              (14) 

 
The edge flow energy ( , )E s θ  at scale σ  is defined to be the 
magnitude of the gradient of the smoothed image  
along the orientation 

),( yxIσ
θ  as equation (15) when , and 

 respectively represents the unit vector in the gradient 
direction. 

),( yxs =
n
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E(s,θ ) = ∂
∂n

Iσ (x, y) = I (x, y)∗ ∂
∂n

Gσ (x, y)

= I (x, y)∗GDσ ,θ (x, y)

        (15) 

 
Here,  represents the first derivative of the Gaussian 
along the x-axis so that  is the first derivative of 
the Gaussian along orientation

( , )GD x yσ

, ( , )GD x yσ θ

θ  and computed as equation (16). 
 

GDσ ,θ (x, y) = GDσ (x ', y ')      (16) 
 

where   x '
y '
⎡

⎣
⎢

⎤

⎦
⎥ =

cosθ sinθ
−sinθ cosθ
⎡

⎣
⎢

⎤

⎦
⎥

x
y
⎡

⎣
⎢
⎤

⎦
⎥

 
Once the flow direction and the edge energy are determined, the 
“edge flow” field is computed as the vector sum given by  
 

 

G
F(s) = [E(s,θ ')cosθ ' E(s,θ ')sinθ ']T dθ '

θ −π /2

θ +π /2

∫ .       (17) 

 
Once this vector field is produced, the edge flow vectors in the 
field are propagated towards the edges. This edge flow is 
respectively computed for L*, a* and b* bands to obtain three 
edge likelihoods PL*(s,θ), Pa*(s,θ) and Pb*(s,θ), and three edge 
energies EL*(s,θ) , Ea*(s,θ) , and Eb*(s,θ) . The total edge 
likelihood PT (s,θ)  and total edge energy ET (s,θ)  can be 
computed with equation (18) and (19), respectively 
 

( ) 3),(),(),(),( *** θθθθ sPsPsPsP baLT ++=          (18) 
 

ET (s,θ) = EL*(s,θ)2 + Ea*(s,θ)2 + Eb*(s,θ)2 .         (19) 
 

The edge flow from three color-bands is achieved using the 
total edge likelihood ( , )TP s θ  and total edge energy ( , )TE s θ . 
 
Active contour by level set method: We briefly introduce the 
active contour before details for image segmentation. Osher and 
Sethian (1988) suggest level set method to describe the 
boundary evolution. The development of numerical schemes 
based on it allows us to handle the topological change of the 
propagating curve automatically. They represent a curve as a 
level set of a given function so that the intersection between this 
function and the coordinate plane yields the curve. Again, the 
zero level set }0),,(|),{()( ==Γ tyxyxt φ of a time-varying 
surface function ),,( tyxφ , gives the position of boundary at 
time t . Sethian (1990) suggested curve evolution equation as 
 

0|| =∇+ φφ Ft . given )0,( =txφ  (20) 
 
In the level set method, the contour curve is evolving by three 
simultaneous motions through the evolution equation and these 
three motions are determined by each speed function as  
 

F = Fp + Fc + Fa
.   (21) 

 

pF  denotes expanding speed with a constant speed  in the 

normal direction ( ),  moving speed proportional to 

curvature  when 

0
F

0
FFp = cF

k ε  is coefficient ( ), and kFc ε−= Fa  the 

speed for moving passively by underlying velocity field 

  
G

U (x,y,t) ⋅
G
N  when   

G
N =∇φ / |∇φ |  ( NtyxUFa

GG
⋅= ),,( ). By 

plugging this speed function and rearranging the terms the level 
set equation can be written as  
 

 φt + F0 |∇φ | +
r

U(x, y,t) ⋅∇φ = −εk |∇φ | . (22) 
 

The first term after the time derivative on the left is concerned 
with the propagation expansion speed. This should be 
approximated through the entropy satisfying schemes. The 
second term is done with the advection speed. Simple upwind 
scheme can approximate it through checking the appropriate 
direction. The third term is curvature speed. This term is like a 
non-linear heat equation and information propagates in both 
directions. Hence, an appropriate approach is to use the central 
difference approximation. 
 
Active contour based image segmentation. This section will 
explain the image segmentation using active contour based on 
the J-image and edge flow. We use the edge flow vector field as 
the external force to enforce the initial contour move towards 
edges and the measure J as the stopping function instead of the 
traditional gradient edge penalty function. The initial contour 
required for active contour is manually achieved under the 
assumption that approximate foot prints of the buildings can be 
retrieved from the segmentation result using DSM or multi-
spectral images as aforementioned. The contour curve evolution 
suggested can be formulated  

 

  Ct = (
G
S ⋅

G
N )

G
N + k

�
J 

G
N − F0J

G
N                          (23) 

 
where   

G
S  is the edge flow vector field and   . The 

stopping function 

G
N =∇φ / |∇φ |

  
�
J  is computed from the J-image as equation 

(24) through normalization  
 

  

� 
J (x, y) = 1

(1+ J(x, y))2
                              (24) 

 
Accordingly we achieve the level set formulation of the edge 
flow driven active contour as equation (25) 
 

0||),(
|| 0 =∇⋅−∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⋅∇− φφ
φ
φφ SyxJFt

G�    (25) 

 

 
Figure 3. Building boundary extraction using active contour 
(upper: Initial boundary, boundary evolution result with 21x21 
window; lower; result with 11x11 window, result with 3x3 
window as final building extraction) 
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This active contour is applied to extract the building with multi-
scale approach. As aforementioned, the J-image generation and 
edge-flow computation need a local window. We start active 
contour evolution with the coarsest J-image and edge-flow 
generated by the largest window. After that, the evolution is 
repeated with a finer J-image and edge-flow generated by a 
smaller window using the previous results as initial. It is 
iterated until evolution is finished in the finest resolution. 
Figure 3 shows extracted individual building boundaries by this 
multi-scale approach using active contour. On the other hand, 
Figure 4 presents the building extraction when multiple 
buildings belong to one initial contour. It shows that the 
proposed active contour can handle the topological change 
during the evolution. One initial building boundary is divided to 
three boundaries respectively for three buildings. 
 

 
Figure 4. Boundary extraction of multiple buildings [upper: 
Initial boundary (yellow), lower: boundary evolution (red) and 
extracted boundaries (yellow)]  
 
3.3 Building Roof Polygon Extraction 

J-image regeneration. After determine the building boundary, 
the extracted building region is reclassified by k-means 
clustering with all three bands, L*, a* and b* and then a J-image 
is generated from this reclassification result. Figure 5 presents 
an example of classification result and the J-image based on it. 
 

     
Figure 5.  K-means clustering result and the J-image 

 
JSEG for roof polygon segmentation. JSEG is an automatic 
color image segmentation algorithm proposed by Deng et al. 
(1999). JSEG consists of two steps: J-image generation and 
region growing segmentation. This paper performs JSEG 
segmentation to extract the building roof polygons by simply 
applying watershed segmentation algorithm (Beucher, 1991) 
into the J-image. In topography the concepts of watershed and 
catchment basin are well known. As mentioned before, the J-
image is a gray scale image containing high values around the 
regions expected to be boundaries. Hence the J-image may be 
interpreted as a topographic surface where the image gray-
levels represent elevations. Thus, edges of roof polygons 
correspond to high watersheds and low-gradient region interiors 
correspond to catchment basins. After this segmentation, we 
perform the refinement by merging and removing segments 
according to the following criteria. 

1. A segment entirely surrounded by another segment is 
merged into the surrounding segment. 

2. A segment that is adjacent to background and smaller than 
5% of the extracted building region, is removed. 

3. The segment adjacent to several segments and smaller 
than 5% of the extracted building region is merged to the 

closest segment in terms of the Euclidean distance in CIE 
L* a*b* space as equation (1) 

The first criterion aims at removing small objects such as 
chimney or window, which are not directly related with the 
structure frames of building. The purpose of second criteria is to 
remove the small object adjacent to the main building, for 
instance air duct, isles, or gate roof. The last criterion attempts 
to reduce the over segmentation errors due to shade or shadow. 
The final roof segmentation results and roof wireframe from 
segmentation result are shown in Figure 6. 
 

 
Figure 6. Extracted roof compositional polygons and the 
reconstructed roof wireframe 
 
 

4. IMPLEMENTATION AND RESULTS 

The data used to examine the proposed framework is an aerial 
color image of West Lafayette city cropped from Indiana state-
wide photography dataset taken in 2005. The image resolution 
is 15.24 cm. Figure 7 shows the results of several examples. 
Left images are the original input images and right images show 
resultant wireframes superimposed on building images. Note 
that even the building boundary is noisy, the proposed edge-
flow driven active contour approach successfully locates the 
correct building boundary. Also it yields reliable wireframes of 
building roofs. However, the determined roof compositional 
polygons are incomplete in some cases. The last result in figure 
7 shows over-delineation of building roof due to over-
segmentation and loses several details because of under-
segmentation.    
 

 
Figure 7. Building extraction results [left: building images; right: 
extracted roof wireframes] 
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5. CONCLUSIONS 

In this paper, we present a framework to extract buildings from 
high resolution color imagery. The boundary of a building is 
delineated by active contour algorithm based on the level set 
method. For this active contour, the edge flow vector field as 
external force to enforce contour move towards the edges and 
the J-image as stopping function instead of the traditional 
gradient edge penalty function. This shows reliable extraction 
performance through implementation. Also, the JSEG algorithm 
is applied to segment the building roof polygons for producing 
building roof wireframes. The framework demonstrates good 
and satisfactory results in some cases but the result is not 
consistent. Because the performance of proposed method 
depends on the intensity and color information in the image, 
adjacent roof facades which have the same reflectance values 
due to the same incident angles to the sunlight can not be 
separated. This also leads to the need of additional information 
such as DSM to be incorporated to the proposed algorithm. 
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