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Abstract

This paper discusses the calibration and assessment of

a cellular automata model for urban growth modeling.

A number of transition rules are introduced in the cellular
automata model to consider the most influential urbaniza-
tion factors, such as land-cover maps obtained from satellite
images and population density from the census. The transi-
tion rules are calibrated both spatially and temporally to
ensure the modeling accuracy. Spatially, each township
(about 6 miles X 6 miles) in the study area is used as a
calibration unit such that the spatial variability of the urban
growth process can be taken into account. The temporal
calibration is performed by using a sequence of remote
sensing images from which the land-cover information at
different years is extracted. As for the assessment, fitness
(for urban level match) and two types of modeling errors
(for urban pattern match) are introduced as the evaluation
criteria. The study shows that the use of images reduces the
need for a large number of input data. Evaluation on the
rule variogram reveals that the transition rule values are
correlated spatially and vary with the urbanization level.
The paper reports the study outcome over the city of Indi-
anapolis, Indiana for the past three decades using Landsat
images and the population data.

Introduction

Remarkable progress has been achieved in urban dynamic
modeling to understand the urban growth process (Meaille
and Wald, 1990; Batty and Xie, 1994a and 1994b). Some
urbanization models focus more on the physical aspects of
the urban growth process (Wilson, 1978), while others on
social factors (Jacobs, 1961). An example of the physical
models is the land-use transition model of Alonso and Muth
in landscape economics (Wilson, 1978). Social models
simulate the urbanization process according to the difference
between individuals’ intentions and their behavior (Clarke
et al., 1997; Portugali et al., 1997). According to Clarke et al.
(1997), urban growth models can be designed either for a
specific geographical location such as BASS II which models
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the urbanization process for the San Francisco Bay area
only (Landis, 1992), or as general models such as human-
induced land transformations (HILT) where its growth rules
are designed to be general enough to consider different city
structures.

Yang and Lo (2003) classify the urban dynamic models
into three categories: “cellular automata-based models” such
as Clarke et al. (1997); “probability-based models” such as
Veldkamp and Fresco (1996); and “GIS weighted models” like
the Pijanowski et al. (1997) model. The “cellular automata-
based models” are becoming popular in recent literature
mainly because of their ability to model and visualize spatial
complex phenomena (Takeyama and Couclelis, 1997). Urban
“cellular automata models” perform better as compared to the
conventional mathematical models (Batty and Xie, 1994a) and
simplify the simulation of complex systems (Wolfram, 1986;
Waldrop, 1992). The fact that the urban process is entirely
local in nature also makes the cellular automata a preferred
choice (Clarke and Gaydos, 1998).

Many urban cellular automata models are reported. The
model of White and Engelen (1992a and 1992b) involves
reduction of space to square grids, based on which a set of
initial conditions is defined. The transition rules are imple-
mented recursively until the reference data are matched by
the modeling results. Cellular automata has been used by
Batty and Xie (1994a) to model the urban growth of Cardiff of
Wales, and Savannah of Georgia. Later, Batty et al. (1999)
develop a model that tests many hypothetical urban simula-
tions to evaluate the different model structures. Based on
the previous work (von Neumann, 1966; Hagerstrand, 1967;
Tobler, 1979; Wolfram, 1994), Clarke et al. (1997) propose the
SLEUTH model, which is able to modify the parameter settings
when the growth rate exceeds or drops below a critical value.
Clarke and Gaydos (1998) use SLEUTH to model the urban
growth in the San Francisco Bay Area and Washington D.C./
Baltimore, Maryland corridor. Yang and Lo (2003) use the
SLEUTH model to simulate the future urban growth in Atlanta,
Georgia with different growth scenarios. Wu (2002) develops
a stochastic cellular automata model to simulate rural-to-
urban land conversions in the city of Guangzhou, China.

Calibration of cellular automata models is essential to
achieve an accurate modeling outcome. However, it has
been ignored until recent efforts were made to develop
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cellular automata as a reliable procedure for urban devel-
opment simulation (Wu, 2002). Calibration is meant to
determine the optimal values for the parameters in the
transition rules such that the modeled urban growth
closely matches the actual urban growth. The difficulty of
the calibration is partially due to the complexity of the
urban development process (Batty et al., 1999). Clarke et
al. (1997) use visual tests to establish the ranges of the
parameters and provide their initial values. About a dozen
of statistical measures are calculated for certain features to
check the match between the actual data and the modeling
results. Such visual and statistical tests are repeated for
each parameter set. Wu and Webster (1998) use multi-
criteria evaluation (MCE) to identify the parameter values
for their cellular automata model, whereas neural networks
(NN) are used by Li and Yeh (2001). The fact that most
urban cellular automata models need a large number of
data input variables is not free of risk. Many uncertainties
show up in the simulation output. These can result from
the uncertainty in the input data, uncertainty propagation
through the model, and the uncertainty of the model itself
in term of to what degree the model represents the reality.
Previous research shows that urban modeling is very
sensitive to the errors of the input data (Li and Yeh, 2003).
Therefore, it is beneficial to minimize the need for large
input data to reduce the modeling uncertainty and redun-
dancy of the input variables.

This paper is focused on two important aspects in
urban cellular automata modeling: calibration and assess-
ment. First, our cellular automata model is designed
to reduce the amount of input data. For this purpose a
historical set of satellite imagery is used as an alterna-
tive to cadastral maps as being used in literature. We
believe that building the model over the imagery directly is
more realistic as compared to cadastral maps. The imagery
is a rich source of information including land-cover, urban
extent, and growth constrains (e.g., water resources). This
will reduce the need of having different sets of input data
layers. In addition, uncertainty of urban modeling that
usually rises from having multiple input data layers (and
hence variable precisions) will be reduced. Other data
that are not included in the imagery (such as population
density) can be used as extra input layers. Secondly, most
cellular automata models assume that one set of transition
rules will fit the whole study area. As a matter of fact,
some regions in a study area may have different urbaniza-
tion behavior than others. Based on this understanding,
we argue that the calibration should be carried out both
spatially and temporally. The spatial calibration takes into
account the spatial variability in urban process. In this
study, the study area is divided into townships, each of
which forms a calibration unit. The transition rules are
calibrated to find the best values that fit the urban dynam-
ics for each township. The temporal calibration is based
on multitemporal imagery and allows the transition rule
values to change over time to meet the variable urban
pattern in time. Finally, modeling results are assessed
with three quality measures, one for urban count and two
for modeling errors. Calibrated rules should be able to
reproduce both the same urban count and the same urban
pattern as the reality. The rule values that produce urban
count close to real imagery with minimum modeling errors
are selected. The approach is implemented first on a
synthetic city to study the effect of growth factors on
urban process and then expanded to model the historical
urban growth of Indianapolis, Indiana over the last three
decades.
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Principles of Cellular Automata

Cellular automata is originally introduced by Ulam and von
Neumann in 1940s as a framework to study the behavior

of complex systems (von Neumann, 1966). It is commonly
defined as a dynamical discrete system in space and time that
operates on a uniform grid under certain rules. It consists of
four components: pixels, their states (such as land-use classes),
neighborhood (square, circle, etc.), and transition rules. Cel-
lular automata computation is iterative, with the future state of
a pixel being determined based on the current pixel’s state,
neighborhood, and transition rules. Based on the work of
Codd (1968), Sipper (1997) provides a formal definition of two
dimensional (2D) cellular automata. Let I represents a set of
integers, a cellular space associated with the set I X I can be
defined. The neighborhood function for pixel « is:

gla)={la+td,a+8, ...t ,a+8,) (1)

where 8,(i = 1 . . . n) represents the index of the neighbor-
hood pixels. Figure 1 shows an example of a 2D cellular
automata grid system, where I = 5 represents the total space
of pixels in a grid of 5 X 5 = 25 pixels. As an example,

the state of pixel « is urban and it is surrounded by eight
neighbors §; (i = 1 . . . 8) in a 3 X 3 square neighborhood.
The neighborhood of pixel a can be generally represented
as a city-block metric 7

7(a, B) = |x, — x5|+ |va — ¥ (2)

given that a« = (x,, y,) and B = (x;, ¥5). The function 7(a, B)
defines the set of pixels B around pixel «a such that {B e IxI}.
As an example, x, — x3 = = 1 in the x-direction and y, — yp
= =*1 in the y-direction specify a 3 X 3 square neighborhood
for pixel a. The neighborhood states h' («) are defined as:

h'(a) = (v (a), vVi(@+8y),........ ,vi(a+6,) (3)

where (v! (o), vi (@ +81), . ....... , Vi(a + §,)) are the
states of pixel a and its neighborhood pixels at time t. The
selected neighborhood kernel in Figure 1 for the center pixel
has states hf(a) = [water, road, urban, water, urban, urban,
road, road, urban] (in row-first order).

Finally, the relationship between the state of pixel a at
time (¢ + 1) and its neighborhood states at time ¢ can be
expressed as:

viti(a) = f(h'(a)) (4)

R | wlw|R|U
R|R|wWiUujfu
U|R]|]R|R]|U

U w w U U

U: Urban - W: Water - R: Road

Figure 1. An example of 2D
cellular automata.
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where f(h'(«)) is the transition function that represents the
cellular automata transition rules defined on « and its
neighborhood. Typically, the transition function flh'(«)) uses
IF ... THEN rules over hf(a) to identify the future state of «
at time (¢t + 1).

Modeling of a Synthetic City

This section implements the cellular automata principle to a
synthetic city to study the effect of modeling parameters on
the urban growth process. It mimics the reality through
introducing complex structures for an urban system. Figure 2
presents an image of 200 X 200 pixels used as the input

to the cellular automata algorithm. Six classes are defined:
road, river, lake, pollution source, urban, and non-urban
(other).

The design of the cellular automata model needs to
reflect the effect of the land-use on the urban growth
process. Transportation systems encourage and drive the
urban development. For example, commercial centers
should have access to road network for customer’s visit
and goods delivery. Therefore, the cellular automata rules
related to roads should encourage urban development for
pixels near roads. River and lake pixels should be con-
strained such that no urban growth is allowed on these
locations to conserve water resources. On the other hand,
lakes are considered as one of the attractive factors for
urban development especially residential and recreational
types, so the corresponding rule needs to show such effect
on urban development. The pollution sources are included
as one of the constraints for urban development due to
their effect on the degradation of ecological system. The
designed cellular automata rules should prevent urban

Figure 2. Cellular automata urban growth modeling for a
synthetic city: (a) Step O, (b) Step 25, (c¢) Step 50, and
(d) Step 60.
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growth in such locations. Based on the above considera-
tions, the following rules are used

® IF a test pixel is urban, river, road, lake or pollution source,
THEN no change.

® IF a test pixel is non-urban AND there is no pollution pixel
in its neighborhood, then four cases are defined:

1. IF three or more of the neighborhood pixels are urban,
THEN change the test pixel to urban.

2. IF one or more of the neighborhood pixels are road AND
one or more are urban, THEN change the test pixel to
urban.

3. IF one or more of the neighborhood pixels are lake AND
one or more are urban, THEN change the text pixel to
urban.

4. ELSE keep non-urban.

The above cellular automata rules first check the growth
constraint to preserve certain land-cover classes (e.g., water),
then test the possibility of urban development for non-urban
pixels based on the urbanization level in the neighborhood.
Figure 2 shows the modeled urban growth results after 0, 25,
50, and 60 growth steps with a 3 X 3 neighborhood. The
effect of the road on driving the urban development is clear
where the growth rate is higher near the road and its pattern
follows the road’s direction. Higher growth rate towards the
lakes is also noticeable. The restriction on growth in loca-
tions close to pollution sources succeeds in decreasing the
urban development rate and creates “buffered” zones around
such places. Finally, the growth constraint on water pixels
succeeds as well in conserving the water resources in future
urban growth. The above study demonstrates that urban
growth can be modeled by properly defining the transition
rules.

Modeling of Indianapolis City

This section applies the cellular automata approach to a real
city. The study area, transition rules, and evaluation criteria
will be discussed.

Study Area and Data

Indianapolis, Indiana is selected for the study. Indianapolis
is located in Marion County at latitude 39° 44’ N and
longitude of 86° 17" W as shown in Figure 3. It has experi-
enced recognizable accelerated growth in population and
urban infrastructure over the last few decades. It grows
from a small part of Marion County in early 1970s to cover
the entire county and parts of the neighboring counties

in 2003. The necessity arises to model the urban growth
over time for sustainable planning and distribution of
infrastructure services.

Two types of data are used as input to the cellular
automata model: land-use data (thematic imagery) and
population density. The historical satellite images of
1973 (MSS, 4 bands), 1982, 1987, 1992, and 2003 (TM,

7 bands) in UTM NAD83 projection were collected over the
study area. Images are classified using the Anderson et al.
(1976) classification system to produce five land-use

maps containing seven classes, namely water, road, resi-
dential, commercial, forest, pasture, and row crops. Com-
mercial and residential classes represent urban class of
interest in this study. All classified images were resampled
to 60 m resolution as input to the cellular automata
model.

In addition to the images, the 1990 and 2000 population
census tract maps (see Figure 4, population per tract) are
also used. To prepare the population density grids as the
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Figure 3. City of Indianapolis and
township map, Indiana: (a) Indianapolis
(source: U.S. Census Bureau), and

(b) Township map.

input to cellular automata, the following procedure is used
for both years (1990 and 2000). The area of each census tract
is computed and used to produce the tract population
density by dividing its population by its area. The centroid
of every census tract and the overall city centroid for the
study area are computed, and the distance from each census
tract centroid to the city centroid is determined. Population
densities for census tracts within certain distance range are
averaged to reduce the variability in data. An exponential
function is fitted representing population density as a
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function of distance from the city center for both 1990 and
2000, separately:

POPULATION — DENSITY = A- g~ B-DISTANCE), (5)

Parameters A and B for 1990 and 2000 are used to calculate
their yearly change rates. The updated parameters (A and B
values that vary year by year) are used to calculate the
population density grids for each year from 1973 to 2003,
where the population density for each pixel at a given year
is calculated according to its distance from the city centroid
using Equation 5. These population density grids are used as
another input to the cellular automata.

Transition Rules

The implementation of the cellular automata consists of
defining the transition rules, calibrating them, and evaluat-
ing the modeling results for prediction purpose. Cellular
automata transition rules are designed as a function of land-
use, growth constraints, and population density. A 3 X 3
neighborhood is used to minimize the number of input
variables to the model. The rules identify the urban level in
the neighborhood needed for a test pixel to urbanize, and
take into account no growth constraints for certain land-
cover classes. The effect of the closeness to urban area and
infrastructure is also considered in the rule definition. The
following rules are defined:

1. IF a test pixel is water, road or urban (residential or commer-
cial), THEN no change to the test pixel.

2. IF a test pixel is non urban (forest, pasture or row crop),
THEN:

® [F its population density is equal or greater than a thresh-
old (P;) AND the number of neighborhood residential pixels
is equal or greater than a threshold (R;), THEN change the
test pixel to residential.

® [F its population density is equal or greater than a thresh-
old (P;) AND the number of neighborhood commercial
pixels is equal or greater than a threshold (C;), THEN
change the test pixel to commercial.

® ELSE keep non urban.

Evaluation Criteria and Rule Calibration
Evaluation and calibration are performed township by
township. A township map is a semi-grid as shown atop
the image in Figure 3. There are a total of 24 townships in
the area. Dividing the study area into townships will take
into consideration the effect of site specific features (spatial
calibration) in each township on urban growth. The same
cellular automata transition rules are defined for all town-
ships; however, different townships may have different
rule values. Spatial calibration is to find the optimal tran-
sition rule values (R,C,P); for each township. For this pur-
pose, cellular automata is run for all possible combinations
(R,C,P); in the search space. The search space for both R;
and C; is respectively from 0 to 8 (the possible neighbor-
hood size of 3 X 3 kernel) with integer increment of 1.
The search space for P; ranges from 0 to 3 with increment
of 0.1. For each township, the cellular automata runs for
a total of 2511 (9 X 9 X 31) combinations.

An evaluation scheme with three measures is designed
for each township:

1. Fitness measure: this is the ratio of modeled urban pixel
count to the ground truth count:

Modeled urban count
Fi %) = X 100.
itness (%) Ground truth urban count 0o (6)

2. Type I modeling error: this is used to identify the urban
class modeling mistakes. It counts the pixels that are urban
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Figure 4. Population and census tracts for (a) 1990, and (b) 2000.

in the ground truth image but non-urban in the modeled
image.

Type I count
Type I1(%) = m X 100. (7)

3. Type II modeling error: this is used to identify the non-
urban class modeling mistakes. Type II error counts the
pixels that are non-urban in real but urban in the modeled
image.

Type II count
Type I (%) = —————— X 100. 8
vpe I (%) Non urban count ®)

The total error AE (%) based on the urban and non-
urban counts (total township pixels count) represents the
overall modeling error:

Type I count + Type II count
Total count

AE(%) = X 100. (9)

Fitness measure is introduced to indicate how a spe-
cific (R,C,P); combination succeeds in reproducing the
same real urban level within a township. A rule combina-
tion is said to overestimate the township urbanization
level if the fitness is more than 100 percent, while a
fitness less than 100 percent means underestimation of
the urbanization level. Type I and Type II errors represent
the pixel by pixel difference between the simulation
results and ground truth. It also provides a strict measure
for the mismatch between the simulated and actual urban
patterns. Such errors need to be minimized for accurate
modeling. Among all the rule value combinations, the
one with minimum total error and with fitness value
closest to 100 percent (within *10 percent) is selected
as the best.

The cellular automata modeling starts running from
1973 to 1982, which is the first ground truth image used for
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calibration. The best rule combination is selected based on
the above evaluation criteria. In the next step, temporal
calibration is implemented through recalibrating the cellular
automata rules with the 1987 ground truth image. The same
procedure is repeated in 1987 to find the best set of rule
values for each township to reproduce the growth pattern
in 1987. The objective of recalibration in 1987 is to take
the temporal urban dynamics change into consideration in
the calibration process. By doing so, the transition rules
can be exposed to the changes in urban growth pattern
over time and hence can be adapted to such dynamics.

The next step is to evaluate the prediction capability of
the cellular automata modeling without calibration at the
destination year. The set of calibrated rules for all townships
that best model the ground truth in 1987 are used to predict
the future growth in 1992. The prediction in 1992 represents
short term prediction of five years. The predicted image in
1992 is evaluated based on the three evaluation measures.
The next prediction is performed in 2003 for a long term
period of 11 years starting from 1992 using the best rules
after the calibration in 1992. Table 1 shows the modeling
results at the calibrated years (1982 and 1987), while Table 2
shows those for the year 1992 and 2003 prediction results.
The calibrated images (1982 and 1987) and predicted images
(1992 and 2003) are shown in Figures 5 to 8, respectively.

Assessment and Discussion

The above results will be assessed in this section to under-
stand the properties of the cellular automata modeling. It
will start with an overall quality evaluation, followed by an
evaluation on the distribution and correlation of transition
rule values based on their variograms.

Quality of the Modeling

The results presented in Table 1 and 2 are a summary of the
evaluation measures: fitness, Type I, Type II, and total errors
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TaBLE 1. 1982 AND 1987 CALIBRATION RESULTS

H
=" 1982 1987
e
§ Rules Type I Type II Total Rules Type I Type II Total error
K (R,CP)i Fitness (%) Error (%) Error (%) Error AE (%) | (R,CP)i Fitness (%) Error (%) Error (%) AE (%)
1 5,4,0 91.4 64.7 16.6 26.7 5,6,0.2 148.8 56.9 17.5 22.6
2 0,0,0.1 96.9 60.5 17.7 26.8 8,5,0.3 110.0 52 16.8 23
3 4,4,0 94.9 40.1 21.8 27.3 7,8,0 97.5 40.1 20.6 26.1
4 0,0,0.1 99.0 39.7 20 25.4 6,8,0.1 99.5 43.2 19.1 25.2
5 3,2,0.2 93.5 55.8 19.2 28.2 7,5,0.8 113.8 45.3 18.3 23.6
6 3,3,0.3 91.0 50.4 19.2 27.5 6,8,0.5 99.6 43.6 18.9 25.1
7 3,6,0.3 88.3 41.1 24.3 30.3 4,8,0.6 96.5 36.6 26.1 30
8 5,4,0 87.9 43.9 17.4 24.4 7,8,0 102.6 49.5 19.7 26.8
9 4,8,0.2 91.4 50.1 17.7 27 5,3,1.8 88.7 32.8 22.5 26.3
10 4,4,0.4 90.5 26.6 30.5 28.4 4,4,2.2 96.9 16.4 36.2 24.1
11 4,2,0.5 92.2 24.7 33.7 28.8 5,3,1.5 98.5 15.2 38.6 24
12 3,2,0.5 89.2 50.9 17.7 26.1 4,4,0.8 96.4 47.4 23 30.2
13 3,7,2.6 91.3 22.8 25 23.9 4,5,2.9 97.6 17.1 34 24.9
14 5,2,2.3 90.1 14.8 30.9 19.4 5,3,3 97.4 8.4 48.4 17.3
15 4,1,2.8 100.5 2.4 57.9 11.5 4,4,0 99.6 1.9 63.8 10.2
16 3,1,1.5 92.4 24.5 24.7 24.6 6,4,3 93.6 24.3 24.7 24.5
17 4,2,2 90.7 17.3 30.2 22.8 5,5,3 96.7 17.3 36.1 25.4
18 1,0,0 99.8 0 76.4 8.8 6,4,0 96.0 3.2 58.7 10.5
19 4,4,2.8 93.0 10.1 45.6 17.6 7,5,0 99.2 7.9 42.8 16.5
20 4,7,0.4 90.2 40.2 23.4 29.5 8,7,1.8 97.2 38.4 24.3 29.1
21 3,6,1.7 90.3 34.3 24.7 28.4 8,8,2.9 118.8 27.9 25.2 26
22 3,8,3 104.0 19.8 39.2 28.9 6,8,3 96.3 21.1 31.8 26.1
23 3,2,2.9 94.2 23.7 30.5 27 8,8,0 105.0 18.4 28 23.7
24 4,7,0 90.3 47.4 26.4 33.4 8,8,0 125.6 45.4 26 30.9
Avg. 93.0 33.6 28.8 25.1 103.0 29.6 30.1 23.8
using the available ground truth in year 1982, 1987, 1992, 24 percent to 25 percent are achieved for most of the
and 2003. They present the evaluation results at a given calibrated and predicted years. The images of the modeling
calibrated or predicted year for each township according to results in Figure 5 through 8 demonstrate that an overall
its best calibrated rule set. As is shown, good fitness values urban structure very close to what the city achieved in

(close to 100 percent) and total average errors in the range of reality.

TABLE 2. 1992 AND 2003 PREDICTION RESULTS

=
o 1992 2003
=
§ Type I Type II Total error Type I Type II Total error
S Fitness (%) Error (%) Error (%) AE (%) Fitness (%) Error (%) Error (%) AE (%)
1 102.4 77.6 11.4 19.9 117.1 79.6 12 19.5
2 116.7 67.6 15.6 24.1 81.7 70.6 13.5 24.7
3 86.2 55.8 20.1 32.2 97.6 42.6 25.6 32.4
4 98.5 57.3 19.4 29.4 95.6 51.8 23.4 32.7
5 95.0 64 15.5 26.1 105.0 50.4 18.2 26.1
6 82.8 55.8 16.2 28.7 99.4 33.8 34.9 34.4
7 94.2 40.5 28.2 34.1 116.1 19.9 56.3 34.2
8 91.3 61.7 18.9 30.3 131.3 24.3 46.2 36.2
9 139.4 26.8 42.3 35.5 93.4 24.7 23.6 24.1
10 119.8 8.7 55.3 21.8 93.5 12.8 41.3 18.2
11 111.1 9.9 58.2 20.5 109.7 2.8 64 13.2
12 101.6 41.5 30.4 35.4 102.4 20.3 43.3 28.6
13 105.5 17.6 35.5 23.3 112.9 4.9 57.3 18.9
14 110.4 5.5 59.6 13.2 103.4 3.9 57.7 11.9
15 111.4 0.9 68.3 5.6 100.8 1.1 61.4 5.9
16 116.1 24.9 30.4 27.8 79.1 29.2 20.4 25.9
17 91.5 23.9 32.5 26.2 117.7 4.9 64.3 18.8
18 106.0 5.4 52.1 8.7 105.6 0.6 78.5 9.0
19 100.6 12.9 39 17.6 106.4 3.2 74.5 14.3
20 107.6 43 22.6 29.3 71.1 43 16.4 29.1
21 75.7 47.7 13.9 27.6 117.3 34.3 37.3 36.1
22 101.9 24.1 28.1 25.8 95.6 20.3 36.7 25.6
23 76.7 36.1 17.1 28.6 104.0 14.1 59.3 25.4
24 103.2 59.5 20 29.8 79.2 53.5 20.5 32.3
Avg. 101.9 36.2 31.3 25.1 101.5 26.9 41.1 24.1

1544 December 2008 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Figure 5. (a) real, and (b) calibrated images for 1982. A color version of this paper is available
at the ASPRS website: www.asprs.org.

Figure 6. (a) real, and (b) calibrated images for 1987. A color version of this paper is available
at the ASPRS website: www.asprs.org.




Figure 7. (a) real, and (b) predicted images for 1992 (from 1987). A color version of this
paper is available at the ASPRS website: www.asprs.org.

Figure 8. (a) real, and (b) predicted images for 2003 (from 1992). A color version of this
paper is available at the ASPRS website: www.asprs.org.




As discussed earlier, the modeling errors represented
by the total error are used as one criterion for the best rule
selection. Minimizing such errors is important in cellular
automata modeling to achieve urban pattern close to the
ground truth. Since each error type represents the modeling
quality for the class it is associated with (Type I for urban and
Type I for non urban), there should be certain relationship
between each class dominancy level in the township and the
corresponding error. Figure 9 shows the modeling errors in
percentages for the calibrated year 1987 and the predicted year
1992. It is seen that the prediction modeling errors are slightly
higher than the calibration errors. Also, the figure shows the
corresponding class count associated with each error type.
Type I error is more dominant in remote townships where the
urban level is low, while Type II dominates the townships
close to the city where the non urban count is small. This
is related to the fact that each error type is evaluated with
reference to the class it represents, thus a large class count
will reduce the relative error value. The total error shows
more spatial stability regardless of the township’s location.
This is clear in Figure 9, where the range of variation for the
total error changes from 10 percent to 30 percent, with an

average of 24 percent. This is a small variation range if com-
pared to the variation ranges of Type I or II errors that can be
as low as 1 percent and as high as 80 percent. The total error
takes into account the weight of each class referenced to the
total count in the township. For this reason, the total error

is selected as the criterion besides the fitness for rule value
selection in the calibration process. Finally, spatial calibration
plays a major role in matching the pattern between the model-
ing results and the reality. It finds the best set of rules that fits
each township according to its urban level and pattern instead
of using one rule set for the entire study area, which ignores
the local effect of the urban process.

To further examine the compactness between the mod-
eled and real images, Figure 10 shows a comparison using
small windows (20 X 20 pixels) between the ground truth
images in year 1987 and 1992 and their corresponding cali-
brated (1987) and predicted (1992) images. These test win-
dows are distributed all over the images to cover different
parts of the study area. Two remarks can be made based on
Figure 10. First, the urban pixels in the modeling results are
more connected compared to the high discontinuity and
fragmentation in the real city data. This is the result of the

Figure 9. Modeling errors for (a) Calibrated 1987, and (b) Predicted 1992.
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Figure 10. Local compactness of urban pattern in (a) 1987, and (b) 1992. A color version of this paper

cellular automata modeling approach where pixels are
checked in a sequential way through a connected set of
neighborhood. Second, even if a very close urban count is
achieved between the test windows, they may have different
structures. This indicates that, in addition to the urban count
match, there should be other evaluation measures that check
the urban pattern match. This justifies that Type I and II
measures or total error should be used as evaluation criteria.

Distribution of the Transition Rule Values

This section studies the spatial distribution of the calibrated
rule values. Figure 11 shows the final calibrated rule values
((a) residential, (b) commercial, and (c) population density)
for all townships for the calibration years (1982, 1987, and
1992). The residential and commercial rules have smaller
values at townships close to the city center (townships 9 to
17) than other townships away from the city center. As can
be seen in Figure 11, the residential rule values for town-
ships close to the city vary between 3 to 5 while reaching
high values, such as 7 and 8, for remote townships (e.g.,
townships 1 to 6 and 22 to 24 in year 1987 and 1992). The
same observation is also clear for the commercial rules.
Such results suggest that the residential and commercial
rule values are inversely related to the township urbaniza-
tion level. This is also evident in Figure 12, which shows
the relation between rule values and urban count, where
the smaller the urban count associated with each rule (e.g.,
commercial) the larger the rule values. Therefore, more
restricted rules are needed for townships far from the city
compared to the closer ones to produce realistic urban count

1548 December 2008

and pattern. As for the population density rule, there is no
clear pattern as in the residential and commercial rules.

Correlation of the Transition Rule Values

This section will evaluate the correlation among the cali-
brated rule values. This is examined by using their variogram
as a function of distance between townships. The variogram
is a tool that quantifies the correlation of the dependent
variable in terms of certain independent variables. For a given
lag distance (h), the variogram is computed as the average
squared difference of values separated approximately by h
(Isaaks and Srivastava, 1989):

S [z(u) — z(u + h)]?

NG o) (0

y(h) =

where y(h) is the variogram value for a specified lag distance
h; z(u) and z(u + h) represent the variables for which the
variogram is being computed at location u and u + h, respec-
tively. N(h) is the total number of pairs separated by h. In our
work, the variogram is used to study the correlation in the
rule values. Our evaluation is done with lag distance (h)
defined as the distance between townships. At each lag
distance, all the townships that have the same lag are listed,
the differences between their residential rule values are iden-
tified and finally the average for the squared differences is
calculated to find the variogram value. Figure 13 plots the
variogram of the residential rule values for all lag distances
among the townships. It is evident that there is a trend and
significant degree of spatial correlation between the residential
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Figure 11. Distribution of rule values over
townships: (a) residential, (b) commercial,
and (c) population density.

rule values as a function of the distance between the town-
ships. The closer the townships, the smaller the variogram
values and hence the higher correlation. For townships far
(> ~30km) from each other, the variogram shows an overall
trend with larger values, which suggests a smaller correlation
between the rule values among such townships.

Conclusions
This work presents a unique methodology for using cellular
automata along with multitemporal imagery for urban growth
modeling. Comparing to the exiting methods, it has the
following distinctions. First, the use of multitemporal imagery
can simplify the definition of the transition rules and limit
the search space for the transition rule calibration. This is
beneficial in reducing the need for large input data and the
possible modeling uncertainty either directly from data or
through error propagation. Besides, the fact that images record
most of the land-cover features required for urban modeling
supports such design philosophy. The availability of medium
resolution satellite images at a minimal cost also makes such
methodology particularly significant.

Calibration of transition rules is necessary to produce
accurate modeling results in terms of urban level and pattern
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Figure 12. Rule values versus urban count
for 1992 calibration year: (a) residential,
(b) commercial, and (c) population.
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referenced to the reality. Spatiotemporal calibration introduced
in this study proves to be efficient in achieving such objective.
The “township-based spatial calibration” as another distinc-
tion of the proposed methodology can take into account the
spatial variability in urban development. This succeeds in
reducing the mismatch between the real and modeled urban
patterns through assigning rule values that best fit the urban-
ization behavior for each township. The temporal calibration
is necessary to refit the model to the urban growth variability
over time, since some growth periods can experience faster or
slower growth rates compared to other periods. The role of the
spatiotemporal calibration in enhancing the modeling results
strongly supports the argument that one set of rules for the
whole study area may not be sufficient to represent the
urbanization spatiotemporal variability.

Assessment methodology is essential for accurate urban
modeling and model calibration. The proposed three quality
measures, fitness (to check close urban count match) and
two modeling errors (for urban pattern match check) prove
to be very helpful in selecting the optimal rules. The total
error, besides fitness, as a selection criterion shows unbiased
evaluation measure that balances each error count with its
corresponding class. Good fitness ensures that a close urban
level be achieved, while minimizing the modeling errors can
produce the realistic spatial urban structure.

The transition rule values present clear correlation or
relationship with their geographical location and urbanization
level. It is found that areas off the city require more restrict
rules to match the lower urban development rate. Townships
that are close spatially or have similar urban development
level will receive similar transition rule values. This property
can be used to estimate or search for the optimal rule values
for spatial units (townships in this case) with similar charac-
teristics, such as urbanization level or geometric location.

As an ongoing study, we are improving the search
method for the best calibrated rule values. Instead of using
the brute force method to search the entire solution space,
genetic algorithm is expected to optimize the search strategy.
Integrating genetic algorithm with cellular automata will
likely make the current calibration process more efficient.

(Note: This work already collected in the PE&RS Special
Issue on Artifical Intelligence in Remote Sensing; readers
may refer to Shan et al., 2008.)
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