
Abstract
This paper discusses the use of genetic algorithms to enhance
the efficiency of transition rule calibration in cellular
automata urban growth modeling. The cellular automata
model is designed as a function of multitemporal satellite
imagery and population density. Transition rules in the model
identify the required neighborhood urbanization level for a test
pixel to develop to urban. Calibration of the model is initially
performed by exhaustive search, where the entire solution
space is examined to find the best set of rule values. This
method is computationally extensive and needs to consider all
possible combinations for the transition rules. The rise in the
number of variables will exponentially increase the time
required for running and calibrating the model. This study
introduces genetic algorithms as an effective solution to the
calibration problem. It is shown that the genetic algorithms
are able to produce modeling results close to the ones
obtained from the exhaustive search in a time effective
manner. Optimal rule values can be reached within the early
generations of genetic algorithms. It is expected that genetic
algorithms will significantly benefit urban modeling problems
with larger set of input data and bigger solution spaces.

Introduction
Calibration in cellular automata urban growth modeling is to
find the best combination of transition rule values such that
the modeled urban phenomena can match the real one. Only
through calibration can the cellular automata model produce
an urban level and urban pattern close enough to reality.
Calibration is critical in validating the performance of a
designed cellular automata model (Batty and Xie, 1994a and
1994b; Batty et al., 1999; Landis and Zhang, 1998) and
remains to be a challenge. It has been neglected until recent
efforts to develop cellular automata as a reliable process for
urban development simulation (Wu, 2002). It is shown 
(Li and Yeh, 2002; Wu, 2002) that urban cellular automata
models are sensitive to transition rules and their parameter
values. The practical difficulty in calibrating cellular
automata rules is due to the large search space and its
exponential rise when more variables and larger variable
ranges are involved in the transition rules.

A number of cellular automata calibration methods
have been developed for urban growth modeling. They
achieved various levels of success and efficiency. The
structure of a calibration algorithm is mainly dependent on
the design of the cellular automata model. Reviewing the
existing calibration schemes shows various calibration styles.
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Statistical, visual, and artificial intelligence tools (e.g., neural
networks) have been used for calibration. Clarke et al. 
(1997 and 1998) calibrated the SLEUTH model by using
visual and statistical tests to find the best values for the five
growth parameters. Such tests were repeated for each
parameter set in coarse, fine, and final phases. This calibra-
tion process took extended CPU time to reach the most
appropriate parameter set in the search space (Yang and Lo,
2003). Wu and Webster (1998) defined the cellular automata
transition rules using the multi-criteria evaluation (MCE)
method. The objective of calibration in their model was to
find the best weight factors for the input variables to match
the real urban growth. Neural networks were used by Li
and Yeh (2002) to calibrate the cellular automata model.
A training set representing different combinations of parame-
ter values and their corresponding modeling output were
used to train the network to reproduce the desired urban
pattern. The calibration in Wu (2002) estimated the probabil-
ity of a particular state transition occurring at a location
through a function of the development factors to balance the
development probability, threshold, and allowed land
consumption to reproduce the urban growth pattern.

One of the recent studies in cellular automata model
calibration is based on genetic algorithms. Genetic algorithms
use the biological principles to direct the search towards
regions (sub-space) of the solution space with likely improve-
ment (Goldberg, 1989). Initial efforts tried to attach genetic
algorithms to cellular automata urban model design for
performance improvement. Colonna et al. (1998) modeled the
changes in land-use for Rome, Italy through using genetic
algorithms to produce a new set of rules for the cellular
automata model. Genetic algorithms were used to find the
optimal set of possibilities of land-use planning for Provo,
Utah (Balling et al., 1999). Wong et al. (2001) used genetic
algorithms for the primordial Lowry model in an attempt to
choose the parameters of household and employment distribu-
tion for Hong Kong. A recent study tried to formalize genetic
algorithms as a calibration tool for the SLEUTH model
(Goldstein, 2003). The calibration results of the genetic
algorithms were compared with the traditional, exhaustive
search method through designing a comparison measure
(metric of fit) as the product of three spatial metrics: the
number of urban pixels, the number of urban clusters, and the
Lee-Sallee index (Lee and Salle, 1970). This work was a good
start towards formalizing the calibration process in cellular
automata modeling; however, further improvements are
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needed to make it more robust. The objective function
definition is one of the points that need enhancement since
the metric fit did not show how accurately the genetic
algorithms can reproduce the same real urban pattern. Further-
more, the selection step in genetic algorithm did not give
higher priority to strings with better objective values. A rank
selection step may produce better results if applied since this
will give strings with a higher fit a better chance for selection.

Our work is focused on improving cellular automata
calibration efficiency through genetic algorithms. The cellular
automata model is designed as a function of multitemporal
satellite imagery and population density. The transition rules
identify the required neighborhood urbanization level for a
test pixel to develop while satisfying the imposed con-
straints. To consider the spatial variation in urban dynamics,
the entire study area is divided into townships of a semi-grid
(see Figure 1). The same transition rules are applied to all
townships, however, each of them is calibrated separately to
determine its optimal rule values. The objective of this study
is to use genetic algorithms to optimize the search method
for best transition rule values. The proposed calibration
approach consists of the following steps. First, an initial
population of solutions (rule values) are randomly generated
and encoded to binary (solution) strings. The cellular
automata model is then run for all those initial solutions. In
the next step, ground truth, if available, is used to rank the
initial solutions based on a predefined objective function.
The third step is producing the next generation of solutions
by using genetic operations, such as elitism, rank selection,
crossover, and mutation. Finally, the cellular automata are
run again for the newly generated solutions. The above
procedure is repeated for a maximum number of iterations
(called generation) or until a required minimum objective
function value is achieved. The paper will start with a brief
introduction to cellular automata and the objective function

used for quality evaluation. Genetic algorithms are then
described under the scope of transition rule calibration.
Modeling results and properties of the genetic algorithms are
evaluated based on the study over Indianapolis city, Indiana.

Cellular Automata for Urban Growth Modeling
Cellular automata was originally introduced by Ulam and
von Neumann in the 1940s to study the behavior of complex
systems (von Neumann, 1966). It can be regarded as a
dynamic discrete system in space and time that operates on
a uniform grid (such as an image) being controlled by a
predefined set of transition rules. It consists of cells or
pixels, their states (such as land-cover classes), neighbor-
hoods (e.g., square), and transition rules. The future state
of a pixel in cellular automata is dependent on its current
state, neighborhood states, and transition rules. Iterative
local interaction between pixels within the neighborhood
will finally produce the global urban pattern.

According to the early work (Alkheder and Shan, 2006)
a cellular automata urban growth model is designed as a
function of two types of data: historical satellite imagery
and population density. A set of satellite images over
Indianapolis, Indiana from the period of 1982 to 2003 are
classified according to Anderson et al. (1976) system to
produce a set of historical land-cover images. Seven classes
are identified in the images, namely: water, road, residential,
commercial, forest, pasture, and row crops, with commercial
and residential classes representing the urban class of
interest. Besides these images, the cellular automata model
uses population density as another input. An exponential
function of the distance between a census tract centroid and
the overall city centroid is used to represent the population
density. Based on the census tract maps of year 1990 and
2000, the model is used to calculate the population density

Figure 1. City of Indianapolis and township map, Indiana: (a) Indianapolis (US Census
Bureau), and (b) Township map. A color version of this figure is available at the ASPRS

website: www.asprs.org.
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for each pixel throughout the years from 1982 to 2003.
Figure 1 shows the map and image of Indianapolis and its
townships of a semi grid system overlaid atop.

The transition rules for the cellular automata urban
growth model are designed using the above input to identify
the urbanization conditions needed in the 3 � 3 neighbor-
hood for a test pixel to become urban. Growth constraints
for certain land-cover classes are considered as well. These
transition rules are summarized as follows:

1. IF the test pixel is water, road OR urban (residential or
commercial) THEN no change.

2. IF the test pixel is non-urban (forest, pasture or row crops)
THEN it becomes urban if:

• Its population density is equal or greater than Pi AND its
neighboring residential pixel count is equal or greater than
Ri; or,

• Its population density is equal or greater than Pi AND its
neighboring commercial pixel count is equal or greater
than Ci.

where Pi is the population density threshold (0 to 3 range with
0.1 increment), and Ri and Ci are thresholds to residential and
commercial rule (0 to 8 range with integer increment of 1 for a
3 � 3 neighborhood), respectively. There are a total of 2,511
(9 � 9 � 31) combinations of possible rule values. To consider
the spatial variability of urban development, the study area is
divided into 24 township grids, with each being approximately
9.6 km � 9.6 km. Although the same set of rules is applied to
all townships, each township is calibrated separately and had
its own rule values (R,C,P). The objective of calibration is to
determine the values for the above rule thresholds such that
the transition rules can best model the urbanization behavior.

To select the best rule values, certain criteria must be
introduced. In this study, we use fitness and total error as
evaluation measures. Fitness is the ratio of the modeled urban
pixel count to the ground truth urban count. It measures how
the modeled urbanization level fits the reality.

(1)

The total error represents the overall number of erroneous
(mismatched) pixels with respect to the total number of
pixels (total count):

(2)

The combination of the above two measures is used as the
objective function � in the genetic algorithms for calibration:

(3)

The rule values that lead to the minimum objective
function will be selected as the best calibration outcome.
Minimum objective function represents the rule values that
produce the modeling results with fitness close to 100 (urban
level close to reality) and small total modeling errors (urban
pattern close to reality). Calibration based on exhaustive
search examines the entire solution space (2,511 possible
combinations for each township), whereas genetic algorithms
only search part of the entire solution space, both with the
objective to find the best rule combination (R,C,P).

Genetic Algorithms for Calibration
Genetic algorithms were first introduced by Holland (1975)
as a method of mimicking meiosis in cellular reproduction to

� � Abs (Fitness � 100%) � Total Error.

�E % � Total error % �
Total error count

Total count
�100.

�
Modeled urban count

Ground truth urban count
 � 100.

F % � Fitness %

solve complex problems. The strength of genetic algorithms
over other traditional search methods is their ability to
effectively find global optima in the solution space. The
performance of the genetic algorithms depends on the design
of genetic operations, including string encoding, selection,
crossover, and mutation. Genetic algorithms start with a set
of initial solutions, which are usually generated randomly.
Each solution set is called a population. A series of genetic
operations are then applied to the solution population to
create the next solution generation. Such a process continues
for a number of times (generation), among which the one
with the minimum objective function will be chosen as the
final solution. This section will first describe the genetic
operations in detail as pertinent to the cellular automata, and
then present their implementation in urban modeling.

Encoding and Initial Population
Genetic algorithms usually do not directly handle the
parameter values, but their encoding. This is the first step
towards applying the genetic algorithms. This study adopts
the common binary encoding technique. Each combination
of (R,C,P)i represents one solution string. Ri and Ci are in the
possible range of [0 to 8] integer values and have a binary
coding range of [0000 to 1000]. Pi continuously ranges
between 0 and 3, and is scaled to 0 to 30 as an integer for
encoding purpose, which corresponds to the binary encod-
ing range of [00000 to 11110]. An example of a rule string
(5, 7, 1.0) is encoded as a binary string [0101011101010], in
which the first four digits are for Ri, the second four digits
for Ci, and the last five digits for Pi. The underlined part in
the string is for Ci and meant to separate the three rule
values for better legibility. Each string, either in its original
form or encoded binary form corresponds to one rule
combination. For initial population, a number of such
solution strings are created randomly and encoded to binary
strings. In this study, the size of each population is 30, 
i.e., there are 30 solutions in each population.

Rank Selection and Elitism
Once the initial population is prepared, the cellular
automata model is run for each string in the population
until a year with ground truth (calibration year). The
modeling results are then evaluated in terms of the objective
function defined in the previous section. The rank selection
and elitism operations are first used to select the strings for
the next generation. For rank selection, all strings are
ordered based on their objective functions in ascending
order (from minimum to maximum). The string with the
lowest objective function is given a rank of 30, the second
29, etc., until the last string, which will receive a rank of
1. The selection probability (pi) for each string is then
calculated based on the ratio between the string rank
ri and the sum of all of the ranks:

(4)

Multiplying the selection probability with the 
population size (30 strings) will identify how many copies
each string is expected to contribute to the next generation.
For example, a string with a selection probability of 0.06
will contribute 1.8 (30 � 0.06), rounded up to two strings in
the next population.

According to elitism selection, the best six strings out of
30 in terms of their objective functions are copied directly to
the next generation. This step is performed to retain good
strings of the current generation. The remaining 24 strings in
the next generation are selected by using rank selection from
the current 30 strings based on their selection probability.

pi �
ri

� r
.
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As is stated above, during this process some strings may be
repeated more than once, and some will simply not be
selected due to their low selection probability.

Crossover and Mutation
Crossover and mutation are applied to the selected 30
strings from the above step. Crossover mimics the natural
process in biology where good strings from parents meet to
produce offspring that are expected to be the same or better
quality than their parents. Crossover occurs with two strings
and yields two new strings. As an example, Table 1 shows a
list of six strings which randomly form three crossover
pairs. A single crossover point is used as the crossover pivot
for each string pair. Under the crossover operation, bits after
the fourth (k � 4, counting from 1) bit in the two strings are
interchanged, and a new set of six strings are formed as the
result of this operation.

The last stage in finalizing the new population (after
crossover) is the mutation operation. Mutation produces
more diverse structure types and prevents the solution from
local minima. In this study, mutation is performed on (R,C)i
parameters over the best six strings in the population. This
process is done through random addition of �1 or �1 to
these parameters as shown in Table 2 as an example.

Table 3 uses a population of six strings as an example to
demonstrate the operation of genetic algorithms for transition
rule calibration. After the initial population is prepared
(column 1), the strings are encoded to binary (column 2). The
cellular automata runs for all six strings to evaluate their
objective functions (column 3). Strings are ranked (column 4)
based on their objective functions or the selection probability
(column 5). The expected count (column 6) contributing to
the next generation is determined. Elitism (the best two
strings in this example) and rank selection (strings with
higher rank are selected to fill the remaining four spots in
the population) are used to produce an intermediate new
generation (column 7). At the end, crossover between the
selected three pairs with k � 4 single point crossover 
(column 8) and mutation (through addition of �1 and �1 to
the first and second best strings, respectively, column 9) are
introduced to produce the final new generation (column 10).

Calibration
Calibration of transition rules is carried out through repeat-
ing the above genetic operations. Once a new population is
obtained, the next step is to run the cellular automata model
with the newly generated population and evaluate their

objective functions. The genetic operations are applied
to the newly created 30 strings based on their objective
functions to produce a new generation of 30 strings, among
which the rule producing the minimum objective function is
selected. The above process repeats for 20 times or yields 20
generations. This will result in selecting the rule combina-
tion with the minimum objective function out of all the
generations as the optimal solution. It should be noted that
such process is carried out for each township, and every
township gets its own best rule values.

This approach is used to model the historical urban
growth of Indianapolis as an effective alternative to the
exhaustive search. Starting from a set of initial solution
population for each township, the process runs for 20
generations to find the best set of rules for each township,
which are then used to model the urban growth between
specific time epochs. Through the designed model, urban
growth modeling is simulated from 1982 to 1987, where
calibration is performed using genetic algorithms to find the
best rule values. The best rules in 1987 are used to predict
1992 for a short term prediction of five years. Another
calibration is carried out in 1992 to predict the urban
growth in 2003 for an interval of 11 years. Finally, after
calibration in 2003 the best rule values are used for future
prediction in year 2010.

Evaluation of Calibration Results
Table 4 compares the computation time taken by the exhaus-
tive search and genetic algorithms. The CPU time for genetic
algorithms is far less than that for the exhaustive search. On
a computer of Pentium-4 CPU with 3.4 GHZ and 2.00 GB RAM,
genetic algorithms takes an average of about 6.5 hours, while
about 27 hours is needed for the exhaustive search. Such
computation efficiency is due to the reduction in the search
space in genetic algorithms. In our implementation, only 600
(20 generations � 30 solutions per generation) out of all the
2,511 possible solutions needs to be searched, which yields
about one-fourth the computation time of the exhaustive
search.

Figure 2 shows the best objective functions at different
generations for some selected townships that are spatially
close to or away from the city center in order to cover
different urban growth behaviors. As is shown, the objective
function reaches its minimum at early stage (within the first
ten generations) of the computation for some townships.
However, some townships behave differently. The variability

TABLE 1. CROSSOVER OF STRINGS (CROSSOVER POINT K � 4)

String # Input Strings Crossover Pairs After Crossover

1 0111011100001 1, 3 0101011100001
2 0111100001100 0111000101111
3 0101000101111 2, 4 0111100001100
4 0111100000110 0111100000110
5 1000100010011 5, 6 0111100010011
6 0111011101010 1000011101010

TABLE 2. MUTATION OF STRINGS

Rule Value String After 
String # Input String Rule Value Mutation Value After Mutation Mutation

1 0111011100001 (7,7,1) �1,�1 (8,8,1) 1000100000001
2 0111100001100 (7,8,12) �1,�1 (8,7,12) 1000011101100
3 0101000101111 (5,1,15) �1,�1 (6,2,15) 0110001001111
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in the objective functions is related to the genetic operators,
such as crossover and mutation, which update the string
structures for better solutions. For some townships (e.g.,
township 1, 14, 19) the change pattern stabilizes after a
certain generation; while for other townships, it continues
to fluctuate over time throughout the searching process 
(e.g., township 7, 16, 24). This fact is clearer if we let the
model run for more generations as shown in Figure 3, where
the best objective functions for the selected townships 
(7, 9, 20) fluctuate considerably over the first 50 generations.
The results demonstrate that the variation of the objective
function occurs within and beyond the maximum iteration
threshold we used (i.e., 20). This property can be mainly
attributed to the mutation operation. The best six strings that
are copied directly through elitism operation are exposed to
considerable structure redesign through mutation, which
produces new strings with rather different objective func-
tions. This is important and essential to allow the calibration
process to explore new possible solutions and reach the best
solution at an early generation. The above behavior suggests
that the objective function usually does not change smoothly
over the generations, and the best solution can be achieved
multiple times at different generations. This warrants the
optimal results within a certain number of generations (e.g.,
20 in this study) without searching the entire solution space.

Figure 4 further demonstrates the change of the two
components (fitness and total error) in the objective func-
tion. The best rule corresponding to the minimum objective
function is achieved that balances the fitness (presented in

the left y-axis) and total error (presented in the right y-axis).
Illustrated are two examples for townships 11 and 21 at two
calibration years, where the minimum objective function
corresponds to a fitness close to 100 and a small total error.

This section examines the difference between the
modeling results obtained from the genetic algorithms
and exhaustive search. The quality, including fitness and
total error are compared for the two calibration methods.
The numerical results for the calibration years (1987 and
1992) are shown in Table 5, and for the prediction years
(1992 and 2003) in Table 6. Figure 5 and 6 present the
corresponding graphics. The dF and d �E columns in
Table 5 and 6 are respectively the fitness difference and
total error difference between the two calibration methods
(genetic algorithms minus exhaustive search). As is shown
in Table 5 and 6, the average of the fitness differences
between the two calibration methods are respectively �0.9
percent (1987) and �1.7 percent (1992) for calibration, and
�4.4 percent (1992) and �8.2 percent (2003) for prediction;
while the standard deviations are respectively 4.8 percent
(1987) and 6.3 percent (1992) for calibration, and 7.2
percent (1992) and 13 percent (2003) for prediction. The
same quantities for the total error differences are: average
�1.6 percent (1987) and 0.7 percent (1992) for calibration,
and 0.8 percent and 0.9 percent for prediction; standard
deviation 5.6 percent (1987) and 3.7 percent (1992) for
calibration, and 3.8 percent (1992) and 3.1 percent (2003)
for prediction. These small numbers suggest that genetic
algorithms can essentially produce the same level of total
errors (maximum magnitude 1.6 percent difference) as the
exhaustive search, whereas the fitness is more sensitive (up
to 13 percent difference) to the calibration methods. This is
because the fitness measure depends on the level of urban
development: the same amount of modeling error will cause
a smaller fitness offset in a well developed township than
in an underdeveloped township (see Equation 1). Moreover,
the fitness difference between the two calibration methods
is accumulated in proportion to the prediction period. As is
shown in Table 6, for a prediction over 11 years (1992 to
2003) its fitness difference is about 2 times the one over
five years (1987 to 1992).

TABLE 3. GENETIC OPERATIONS FOR TRANSITION RULE CALIBRATION

String # (1) (2) (3) (4) (5)
Selection 

Rule Objective probability
(R,C,P)i String function Rank ri pi � ri/�r

1 (7, 7, 10) 0111011101010 0.4465 5 0.238
2 (4, 3, 18) 0100001110010 0.6616 4 0.190
3 (6, 7, 1) 0110011100001 0.6661 3 0.143
4 (6, 1, 11) 0110000101011 1.2553 1 0.048
5 (5, 6, 3) 0101011000011 0.7585 2 0.095
6 (5, 1, 15) 0101000101111 0.4455 6 0.286

New (6) (7) (8) (9) (10)
String#

Expect  After Crossover New String New Rule 
Count After Elitism (2,6), (1,3), (After  (R,C,P)i
6 � pi and Selection (4,5), k � 4 Mutation)

1 1 0101000101111 0111001110010 1000010010010 (8,4,18)
2 1 0111011101010 0100011101010 0011011001010 (3,6,10)
3 1 0101000101111 0101000101111 0101000101111 (5,1,15)
4 0 0101000101111 0101000101111 0101000101111 (5,1,15)
5 1 0111011101010 0101011101010 0101011101010 (5,7,10)
6 2 0100001110010 0111000101111 0111000101111 (7,1,15)

TABLE 4. COMPUTATION TIME OF GENETIC ALGORITHMS

AND EXHAUSTIVE SEARCH

Calibration Interval Genetic algorithms Exhaustive search

1973–1982 7hr 53m 10s 32hr 04m 46s
1982–1987 4hr 33m 30s 17hr 55m 34s
1987–1992 4hr 37m 59s 19hr 08m 40s
1992–2003 9hr 6m 22s 39hr 18m 34s
Average 6hr 32m 45s 27hr 6m 54s
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Finally, the modeling results obtained from genetic
algorithms with reference to the ground truth images are
quantified by the F and �E columns in Table 5 and 6, and
the plots in Figure 5 and 6. Because of the general close
match (small dF and d �E) between the two calibration
methods, modeling outcome from genetic algorithms follows
the same behavior as the one from the exhaustive search
(Alkheder and Shan, 2006), both yielding an average
modeling error of �25 percent. Figure 7 presents the real
cities obtained from image classification and the modeling
results from cellular automata with genetic algorithms.
These results show a close urban pattern match with reality
for both the calibrated and predicted images. This comes as
a result of minimizing the objective function that combines
the fitness discrepancy and total error. It should be noted
that township based spatial calibration contributes in this
regard as well, since it takes into account the spatial

variation in urban dynamics. The small differences between
genetic algorithms and exhaustive search method show the
ability of the proposed calibration algorithm in reproducing
the real urban growth pattern. This encourages adapting the
genetic algorithms as a replacement to the exhaustive search
to save computation efforts while preserving practically the
same modeling quality.

Conclusions
Utilization of the developed cellular automata urban models
needs effective calibration due to the likely large number of
variables involved in the modeling process. Genetic algo-
rithms are proposed as a suitable solution in this study due
to their ability to find an optimal transition rule set through
searching a limited solution space and their flexibility to
accommodate multiple variables in urban modeling.

Figure 2. Best objective function at different generations for selected townships: (a) Township 1, 
(b) Township 7, (c) Township 14, (d) Township 16, (e) Township 19, and (f) Township 24. A color
version of this figure is available at the ASPRS website: www.asprs.org.
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Figure 3. Objective function variation over 50 generations
for year 1987. A color version of this figure is available at
the ASPRS website: www.asprs.org.

A number of experiences are gained in applying genetic
algorithms to the cellular automata modeling. A proper
selection of the initial solution population and other parame-
ters for encoding, crossover, and mutation is necessary. It is
essential that a set of transition rules are encoded as a
binary string such that the genetic operations can be applied.
The design of genetic algorithms objective function to repre-
sent fitness and total error in terms of urban level and pattern
respectively proves to be efficient in directing the search
process towards the optimal solution. Minimizing the objec-
tive function ensures that the selected rules yield satisfactory
urban level and pattern close to reality. Rank selection
in genetic algorithms through favoring solutions with smaller
total error and better fitness succeeds in focusing the search-
ing algorithm towards better solutions. Crossover and
especially mutation operations play an essential role in
approaching the optimal solutions at an early generation of the
computation.

Genetic algorithms can produce the modeling results
virtually as good as the exhaustive search in terms of the
defined objective function. This is demonstrated by cross-
validation between the two methods and with reference
to the ground truth. Larger difference between the two
calibration methods occurs in fitness with an average of
�8.2 percent and standard deviation of 13 percent for the
prediction over a period of 11 years; whereas the
difference in the total error is less than 5.6 percent in
both calibration and prediction.

Spatial and temporal calibrations of the cellular models
are also applied in this study and proved to be necessary
and effective. The township based spatial calibration takes

into account the spatial variation in urbanization, whereas
the temporal change in urban dynamics is considered by
calibration with reference to the historical images over the
period of modeling. It is shown that genetic algorithms can
find the optimal rule set for each township and many
townships can reach their best rules within the first ten
generations.

The computation time is significantly reduced
from more than a day (27 hours) in the exhaustive
search to a few (6.5) hours in genetic algorithms. This
relation is the proportion between the search spaces of
the two methods. It is expected that genetic algorithms
will even more significantly benefit urban modeling
problems that have larger set of input data and bigger
solution spaces.

Figure 4. Fitness, total error, and objective 
function at different generations: (a) Township 11,
1987, and (b) Township 21, 1992. A color version of
this figure is available at the ASPRS website:
www.asprs.org.
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TABLE 5. NUMERICAL RESULTS OF CALIBRATION

1987 1992

Township # Gen# Fitness % Total Error % Gen# Fitness % Total Error %

F dF �E d �E F dF �E d �E

1 1 148.8 �0.02 22.93 0.34 1 101.34 �0.06 20.13 �0.72
2 1 110.0 0.05 23.21 0.21 1 110.27 0 23.66 �9.51
3 1 96.7 �3.24 26.36 �0.02 7 87.46 �13.33 33.05 2.69
4 1 99.2 �0.76 25.42 0.12 2 100.57 0.68 29.73 0.9
5 1 113.4 �0.09 23.84 0.20 19 100.52 0.77 25.78 0.74
6 7 99.3 �0.73 25.1 0.01 1 82.21 �17.59 28.87 1.01
7 20 99.9 0.02 30.78 0.28 11 100.19 1.38 34.94 1.26
8 1 102.2 �0.04 26.81 0.01 19 96.84 �1.38 30.31 �0.68
9 3 100.1 6.79 28 0.68 2 96.22 �3.99 32.23 2.56

10 1 100.3 3.42 27.59 0.59 13 102.60 2.55 21.83 0.13
11 8 101.9 2.05 26.15 0.88 19 100.39 0.41 20.79 0.85
12 8 100.1 0.66 31.38 0.18 15 81.82 �17.95 35.14 1.35
13 11 85.5 �16.48 22.85 �2.64 11 99.97 0.84 24.34 1.01
14 2 86.6 �10.79 18 �1.87 16 100.14 0.02 15.29 0.7
15 1 101.1 1.18 11.78 1.51 9 100.05 0 10.20 0.61
16 18 100.2 1.22 25.93 0.08 1 101.60 0.03 26.78 �0.47
17 2 90.9 �8.39 24.86 �0.61 9 100.17 0.15 27.60 3.26
18 1 98.7 �1.18 10.89 �0.39 1 101.03 0 10.95 �0.22
19 20 100.1 0.92 16.78 0.32 2 100.08 0 16.22 0.74
20 6 99.4 �0.59 29.42 0.02 2 108.07 0.88 29.02 �6.68
21 1 118.8 0.04 26.12 �9.76 14 91.61 �4.16 26.30 4.56
22 18 103.6 2.42 28 2.67 4 98.89 �0.84 26.74 3.84
23 1 105.7 0.69 24 �4.75 8 110.77 11.12 33.97 10.55
24 1 127.2 1.75 31.15 �25.17 1 103.15 0.62 30.04 �1.8

Avg 103.74 �0.88 24.47 �1.55 99.00 �1.66 25.58 0.70
Sigma 13.12 4.79 5.37 5.58 7.18 6.30 7.09 3.66

Gen#: The generation number that produces the minimum objective function.
F and �E: Fitness and total error in percentage, see Equations 1 and 2.
dF and d �E: %differences with the fitness and total error from exhaustive search.

TABLE 6. NUMERICAL RESULTS OF PREDICTION

Township # 1992 2003

Fitness % Total Error % Fitness % Total Error %

F dF �E d �E F dF �E d �E

1 101.34 �1.06 19.80 �0.07 117.68 1.55 19.76 0.31
2 110.27 �6.4 23.45 �0.22 82.35 0.55 24.99 0.25
3 85.69 �5.97 32.36 0.61 125.86 �3.77 36.87 �2.33
4 97.64 �0.68 29.48 0.21 81.88 �13.81 32.27 �0.38
5 92.26 �0.13 25.89 0.19 105.18 0.11 26.24 0.09
6 82.33 �0.53 28.89 0.44 62.92 �36.48 32.99 �1.37
7 87.45 �13.56 34.66 0.21 84.47 �32.8 32.23 �2.2
8 90.82 0 30.40 0.28 60.43 �19.01 36.86 0.7
9 97.59 �9.81 31.58 �0.18 85.01 �2.94 24.36 0.31

10 113.25 �6.54 24.20 3.04 93.39 4.2 18.24 �0.28
11 111.01 8.13 21.81 2.15 109.12 �0.27 13.25 �0.04
12 89.59 �13.93 36.65 1.79 70.25 �31.91 32.24 3.6
13 87.30 �23.6 26.57 4.29 91.14 �8.33 19.52 1.04
14 97.33 �13.03 16.51 3.75 98.00 �2.09 11.78 0.23
15 113.75 1.52 7.10 1.64 97.61 0 6.50 0
16 103.42 �5.09 27.17 2.83 73.17 �0.01 25.92 0
17 83.56 �13.42 28.60 2.64 98.73 �5.5 19.10 0.82
18 109.63 �4.06 8.11 1.3 99.85 0 8.20 0
19 99.86 �0.76 16.15 �0.7 94.97 �0.03 13.79 0.02
20 110.35 �1.77 29.47 0.99 69.18 0.67 29.13 �0.09
21 75.66 0 27.62 9.99 117.61 �0.48 36.39 13.63
22 114.58 5.93 30.57 9.54 87.11 �0.03 26.05 3.76
23 76.05 �0.64 28.58 0.44 84.81 �19.25 28.36 3.01
24 103.02 �0.13 29.73 0.66 67.67 0 32.69 0.22

Avg 97.24 �4.40 25.64 1.91 89.93 �8.23 24.49 0.89
Sigma 12.13 7.19 7.49 2.76 17.66 12.95 9.13 3.08

F and �E: Fitness and total error in percentage, see Equations 1 and 2.
dF and d �E: %differences with the fitness and total error from the exhaustive search.
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Figure 5. Fitness and total errors from genetic algorithms and exhaustive search for calibration
years (a) 1987, and (b) 1992. A color version of this figure is available at the ASPRS website:
www.asprs.org.

Figure 6. Fitness and total errors from genetic algorithms and exhaustive search for prediction
years (a) 1992, and (b) 2003. A color version of this figure is available at the ASPRS website:
www.asprs.org.
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Figure 7. (a) Real city, classified images: 1987, 1992, 2003, (b) Calibrated images: 1987,
1992, 2003, and (c) Predicted images: 1992, 2003, 2010. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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