
Abstract
This study presents an adaptive solution to topographic
feature extraction from digital terrain model. First, a slope
map is produced by the proposed slope estimator that
combines the well-known D8 and finite difference methods.
In the second step, the Laplacian of Gaussian (LOG) opera-
tor with multiple thresholds is applied to the resultant
slope map to determine edge pixels that have local maxi-
mum curvature and maximum connectivity. The third step
adopts the original and robust marching square algorithms
to trace the topographic features. Modification is made to
selectively introduce shoulder points according to the local
topographic complexity. In comparison to the existing
algorithms, the performance of the proposed adaptive
marching square algorithm is evaluated in terms of preci-
sion and resolution of the extracted features. Digital terrain
models over three locations in Antarctica are used for
this study. It is shown overall reducing 75 percent of the
shoulder points from the robust algorithm will cause
24 percent precision drop in the adaptive method.

Introduction
Recent advances in geospatial data collection technology
enable rapid, accurate, and effective acquisition of geographic
information. Much of such information is taken the form of
digital terrain model (DTM) at its early stage, which needs
further processing for a variety of reasons. First, DTM is a
regular representation of the reality at a constant resolution
not adaptive to the complexity of the real world. The data
format may be either too dense for simple terrain or too
sparse for complex terrain. Secondly, such data format is not
“intelligent,” i.e., they do not directly support geospatial
query and analysis. Finding interesting objects or features in
DTM is not possible without semantically encoding the DTM.
DTM can also not be directly used for object-based geospatial
analysis such as dimension calculation and buffering. Finally,
comparing with object-based or vector data, the volume of
DTM is often overwhelming so that certain simplification and
abstraction towards the imbedded objects are needed.

Determining interest geospatial objects from DTM is called
feature extraction in general. Topographical features can be
understood as distinct structure elements, such as a summit or
pothole, or in linear form such as a valley or ridge. Cliffs,
ditches, pit, dams may also be regarded as topographic fea-
tures, depending on the fields of applications (Moore et al.,
1991). According to Florinsky (1998), interest topographic
features can be determined with DTM by using either primary
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or compound topographic attributes. Primary attributes are
specific geometric properties of the topographic surface calcu-
lated directly from DTM, such as slope, aspect, and curvature.
Compound attributes are estimates of the spatial distribution
of specific, biologically significant physical environmental
parameters in the landscape, such as incoming solar radiation,
soil wetness, watershed, quarry, and drainage network.

Considerable studies have been done on extracting
topographic features from DTM. Early work included Mark
(1984) and O’Callaghan and Mark (1984) for drainage net-
work extraction, Band (1986) for watershed derivation,
Jenson and Domingue (1988) for topographic structure
elements, and Tarboton (1997) for flow direction and
upslope areas. Miliaresis and Argialas (1999) applied a
region-growing segmentation algorithm to find basin and
mountain region with predefined thresholds. Being aware of
the difficulty of topographic feature extraction solely from
DTM, especially in flat regions, rivers, and lake network
maps (Turcotte et al., 2001), environmental characteristics
(Vogt et al., 2003), and satellite images (Argialas and
Tzotsos, 2006) were also used to assist this process. The
same study was recently extended to DTM collected from
light detection and ranging (lidar) technology for breakline
detection (Brügelmann, 2000; Briese, 2004; Brzank et al.,
2005), fiducial surface modeling in coastal area (Brock et al.,
2001), river corridor topography (Cobby et al., 2001; Bowen
and Waltermire, 2002), coastal elevation changes (Woolard
and Colby, 2002), and local desert topography transforma-
tion due to vegetation transitions (Rango et al., 2000).
Moreover, high-resolution Interferometric Synthetic Aperture
Radar (IFSAR) DTM was also used by Hooper et al. (2003)
to determine fault scarps, and by Guthrie and Simental
(2003) to derive topographic features. It is noticed that most
such studies involve much domain-specific knowledge and
hence may not be directly useful for applications different
than they originally intended for. As a matter of fact, many
topographic features, regardless their domain-specific back-
ground, have common characteristics, and their extraction
methods should therefore share certain common basis and
properties. Based on this consideration, our interest concen-
trates on one type of generic topographic features whose
boundary can be defined based on slope as one primary
topographic attribute.

This paper will present an adaptive approach to
topographic feature extraction from DTM. The topographic
features to be extracted can be segmented into regions whose
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boundary is an equal-slope contour and whose interior is
above a certain slope threshold. Our objectives are to detect
and locate these features, trace their boundaries, and repre-
sent them to a desired fidelity. Such a process should be
implemented in an automated manner and evaluated in terms
of performance. The proposed approach is mostly based on
the techniques in image processing and computer graphics. In
this paper, we will first describe the feature model introduced
in this study. The proposed method starts with the calcula-
tion of a slope map, for which a modified slope estimator
combining the properties of D8 method (O’Callaghan and
Mark, 1984), and the finite difference method (Fleming and
Hoffer, 1979) is introduced to achieve satisfactory results. The
second step determines the slope contour value (threshold)
for the feature boundary such that it passes the most number
of pixels where local maximum curvatures occur. For this
purpose, we first apply the Laplacian of Gaussian (LOG)
operator (Marr and Hildreth, 1980) by means of multiple
thresholding to the slope map to select the edge pixels that
can yield maximum connectivity. The slope that corresponds
to as many as possible selected edge pixels will be deter-
mined as the threshold for feature boundary. The third step is
to trace the feature boundary pixels for efficient representa-
tion and storage. Adopted for this purpose is the 2D version
marching cube algorithm (Lorensen and Cline, 1987), which
was originally developed to find iso-surface from 3D data
for volume rendering. Although the robust marching cube
(square) algorithm (Lopes and Brodlie, 2003) can achieve sub
pixel line segments by adding an auxiliary point (called
shoulder point) in each DTM cell (pixel), such shoulder points
may not be needed at all places due to the spatial variation of
the feature boundary complexity. We propose an adaptive
marching square algorithm, which selectively adds a shoulder
point at places where complex topography occurs. In this
way, the amount of shoulder points can be reduced while
the extracted feature boundary retains essentially the same
or very similar precision. The proposed approach is tested
by using three DTM data sets over Antarctica and evaluated
in comparison with both the original and robust marching
square algorithms in terms of resolution and precision.

Methodology
The section will first describe the introduced feature
models, and then depict the three sequential steps of the
proposed approach: slope calculation, boundary determina-
tion, and boundary tracing.

Feature Model
A proper description on the feature is necessary for its
extraction. In our study, a feature is defined as a region
that consists of interior and boundary. The feature bound-
ary has a constant slope whereas the feature interior is
above certain slope threshold. As shown in Figure 1,

features can be formed by a single edge or a combination
of edges in the lateral profile. An edge (thicker line) is
bounded by two edge (structure) points (dark dots) that
have (local) maximum curvatures (slope change). As
pointed out by Morris (1996), a set of points for which one
of the principal curvatures has an extremal value can
be extracted by the third derivative. They appear as the
hinge lines of folds (Ramsay, 1967) and are regarded being
significant to a topographic surface (Koenderink, 1990).
Thus, we apply the LOG (second derivative) to the slope
map (first derivative) derived from the DTM, find the zero-
crossings of the LOG as the edge pixels, and connect them
as the feature boundary. Figure 2 illustrates the extracted
edge lines from a DTM and its slope map in comparison to
the extracted edges as a region.

It should be noted that our feature model has some
distinctions in comparison with traditional models. It
considers not only features formed by a simple edge but by
compound edges such as a valley, mount, and plateau (see
Figure 1). A feature, in general, is treated as a region with
interior and boundary. The feature interior is a collection of
pixels whose slopes are over certain threshold, whereas the
feature boundary has a constant slope and forms a polygon
that can take into account the interior and exterior of a feature.

Slope Calculation
Slope calculation is the first step towards detecting and
tracing feature boundaries. Most popular slope calculation
methods use a 3 � 3 neighborhood (Figure 3) around the
interest pixel. The D8 method (O’Callaghan and Mark, 1984),
also known as the steepest descent, defines the slope as the
maximum drop from the central pixel to its eight nearest
neighbors. Fleming and Hoffer (1979) proposed the finite
difference method that considers the elevation changes in both
horizontal and vertical directions. Horn (1981) used a similar
method, however, assigning a weight to a neighboring pixel
based on its distance to the central pixel. Another type of
slope calculation methods is based on a polynomial surface.
Evans (1980) fitted a six-parameter quadratic equation using a
linear regression model, whereas Zevenbergen and Thorne
(1987) used a nine-parameter partial quartic equation to model
the surface. Slopes are obtained from the analytical derivatives
of the surface. Jones (1998) made a rather comprehensive
study on the performance of slope estimators and concluded
that the finite difference is the best among the eight evaluated
methods, whereas D8 seems to give more realistic results at
break lines. In our study, the slope calculation is based on the
D8 and finite difference methods due to their popularity,
simplicity, and mutual complementary properties, which
allow us to make certain modification.

Slope by D8 method (SD8) and slope by finite difference
method (SFD) are calculated respectively by Equations 1
and 2, where zi is the elevation at the cell i (see Figure 3), x
and y are horizontal coordinates of the DTM, and h is the
DTM cell size:

(1)

. (2)

According to some previous studies (Wilson and Gallant,
2000), the direction in which the elevation difference is
calculated by the D8 method may not necessarily be at the
steepest descent. Moreover, the location of the estimated slope
by the D8 method is assigned to the neighborhood center
rather than to the geometric center of the two involved cells as
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Figure 1. (a) edge and feature; feature with simple
edge, and ((b) and (c)) features with compound edges.
The dots are the boundary location. The thicker line is
interior, the finer line is exterior.
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it should be. This causes a shift of the detected edge boundary
from its correct location. On the contrary, the most reliable
slopes can be obtained from the finite difference method
(Wilson and Gallant, 2000). Analytically, the smoothness of
the finite difference method is due to its larger horizontal
distance being possibly two times the one in the D8 method.
To demonstrate the above evaluation, the two slope estimators
are applied to a DTM of Antarctica containing significant break

lines and the results are shown in Figure 4. It is seen that the
break lines on the slope map by D8 are wider and more
significant than the one from the finite difference.

Based on the above analysis, an ideal slope estimator
should be able to compensate the shortcomings of the above
two methods and keep their good properties. Therefore, we
introduce a weighted average of the two methods, i.e.,:

(3)

where the weight factor w is chosen as:

(4)

and the partials are calculated by:

(5)

The subscripts c and d are for the cardinal and diagonal
directions, respectively. In this way, the modified slope is
within the range of the finite difference (min) and the D8
(max). It can be shown that wmax � 1/2 and w ≤ (1 � w), i.e.,
the weighting strategy is in favor of the finite difference
method other than the D8 method. For isotropic topography
the slopes in the diagonal and cardinal directions are equal,
i.e., ; thus, w � 01(0z/0xd)2 � (0z/0yd)2 � 1(0z/0xc)2 � (0z/0yc)2
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Figure 2. Edge detection: (a) hyperbolic slope surface, (b) DTM, (c) slope map, (d) LOG of DTM, (e) LOG
of slope map, and (f) feature with simple edge (white).

Figure 3. A 3 � 3 DTM neighborhood.
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and S � SFD, which means that the finite difference method
takes effect. Similarly, for anisotropic topography, the
difference between the cardinal slope 
and the diagonal slope makes the D8
slope contribute to the final slope. As the result of this, the
slope of Equation 3 simultaneously amplifies the finite
difference and restrains the D8 outcomes. As shown in
Figure 4, the slope map from the weighted average slope
estimator has more details than the finite difference method
and is smoother or less noisy than the D8 method.

Boundary Determination
As addressed above, feature boundary can be defined as a
contour of constant slope. The key to determining the
boundary is then to determine such critical slope value or
threshold. For this purpose, our feature model requires
that the feature boundary passes as many edge pixels as
possible that have local maximum curvatures (Wang and
Bai, 2003). The well-known LOG operator is applied to the
slope map to determine edges. The LOG operator is com-
posed of a Gaussian filter for smoothing and a Laplacian
filter for the second-order derivative. The Gaussian filter is
primarily used to smooth the slope map because the
subsequent high-order derivative operation tends to cause
noise manifestation (Florinsky, 2002). With proper thresh-
olding, the zero-crossing of LOG will yield the edge pixels.

1(0z/0xd)2 � (0z/0yd)2

1(0z/0xc)2 � (0z/0yc)2

Unlike the previous work that needs prior-knowledge in
the binary decision algorithm (Gomes-Pereira and Wicher-
son, 1999) and in the hysteresis algorithm (Sui, 2002), we
intend to automate this process by taking into account the
edge connectivity.

The feature boundary should be both connected and
rigid to the effect of thresholding. Hence, only pixels that
have both significantly small LOG returns and significantly
large connectivity will be selected as edge pixels. To auto-
matically determine these significant values, we produce a
series of edge images through changing the LOG threshold.
The connectivity C for each edge image is calculated with
the following formula in a way similar to the maximum
sub-boundary length in the sub-boundary statistics (Oden
et al., 1993):

(6)

where n is the number of edge pixels with at least two
neighbors in the 3 � 3 neighborhood, and N is the total
number of pixels in the edge image. Figure 5 presents
some of the edge images produced under different LOG
thresholds TLoG, while Figure 6 illustrates the relationship
between the LOG threshold TLoG and the connectivity C for
these edge images. The LOG threshold that generates the
maximum connectivity will then be selected to produce

C �
n
N
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Figure 4. Slopes calculated with different methods: (a) finite difference, (b) D8, and (c) weighted
average.

Figure 5. Edge images obtained under different LOG thresholds TLoG: (a) TLoG � 0.005, (b) TLoG � 0.01,
and (c) TLoG � 0.02.
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Figure 8. First, pixels in a grid data set are classified into
two types, true (inside feature) or false (outside feature),
depending on if the cell value (such as slope in this study)
is above or below the threshold. In Figure 8, the dark and
light dots are for the true and false pixels, respectively,
connecting the four adjacent pixels forms a square. The
gray area within a square represents the feature interior,
while the straight line defines the feature boundary. Since
each pixel in a square only has two states (true or false),
there are in total 24 � 16 possible configurations for each
square. Considering the duplication under rotation, there
are only six distinct cases as shown in Figure 8. The
original marching square method determines the contour
location with a linear interpolation along the edges of the
square. As an example, the location of point P off from
point A along the edge AB (see Figure 9) is determined by
(assume the cell size is one unit):
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Figure 6. LOG threshold versus connectivity of edges.

the final edge image. In this example, the final determined
LOG threshold is TLoG � 0.01, which leads to a connectiv-
ity of 94 percent.

Once the final edge image is obtained, the next step is to
determine the slope threshold or the slope contour value for
the feature boundary. To consider the location offset (Wang
and Bai, 2003) of the edges detected by the LOG operator, the
slope of an edge pixel is taken as the average of its two
neighboring edge pixels. Finally, the slope histogram over
the edge image is used to determine the slope threshold
statistically. The slope that yields the largest number of edge
pixels is chosen as the slope threshold. In Figure 7, the
slopes are normalized from 0 to 1 and the chosen normalized
slope threshold is 0.4.

Boundary Tracing
Upon the successful determination of the slope threshold
for the feature boundary, the interest topographic feature
can be traced. For this purpose, we adopt and modify the
marching square algorithm (Lorensen and Cline, 1987).
Technically, a bilinear interpolation should be assumed
within each DTM cell. However, due to the heavy comput-
ing cost for rendering a hyperbola contour, a straight line
segment is used instead in the marching square algorithm,
whose main idea is outlined below and illustrated in

Figure 8. Distinct cases for marching square algorithm
(dark dot: inside feature cell; light dot: outside feature
cell; shaded area: feature interior).

Figure 7. Slope threshold selection on the slope
histogram over the edge image.

Figure 9. Original and robust marching square
methods.
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(7)

where SA and SB are slopes at A and B, and ST is the slope
threshold determined from the previous step. Similarly, the
location of Q can be determined by a linear interpolation
along the edge AD. The straight line PQ is used as the contour
line in the original marching square method. It should be
noted that the straight line PQ is an approximation to the
hyperbola determined by the bilinear interpolation using the
four pixel values. Therefore, the curvature of the contour line
is ignored in the original matching square method, which may
not sufficiently reflect complex topography.

The improvement to the original marching square
algorithm leads to the so-called robust marching square
algorithm proposed by Lopes and Brodlie (1998 and 2003).
It is developed to extract more accurate iso-surface (contour)
and to resolve the ambiguity in the original marching cube
algorithm pointed out by Nielson and Hamann (1991). As
shown in Figure 9, the robust algorithm adds one point S,
which is on the hyperbola and at the maximum distance
from the straight line PQ. The newly added point S is called
shoulder point, which reduces the gap between the original
straight line and the hyperbola. The straight line PQ will
then be replaced by the two straight line segments PS and
SQ. Although adding the shoulder point can yield a better
fidelity to represent the hyperbola contour, we argue that it
is not always needed since not every hyperbola will have
sufficient curvature to make a significant difference from a
straight line.

Based on the above analysis, this study proposes an
adaptive marching square algorithm to optimize the number
of shoulder points needed to represent a contour. The
selection of the shoulder point is based on the difference
between the original marching square algorithm and the
hyperbola. Several steps are involved in determining and
selecting a shoulder point. The first step is to determine the
two intersections P and Q of the hyperbola with the two
sides of the marching square. Their coordinates can be
calculated using the linear interpolation listed in Equation 7.
The second step is to determine the shoulder point S in the
robust approach. According to (Lopes and Brodlie, 1998),
the location of S can be determined by

(8)

where:

(9)

The third step is local generalization, i.e., deciding if
the shoulder point should be kept for the contour. This
will be evaluated by the area of the discrepancy triangle
PQS or equivalently the curvature of the hyperbola shown

f �
XQ YQ � XP YP

XQ � XP

e �
YP � YQ

XQ � XP

d � SA � ST

c � SA � SB � SC � SD

b � SD � SA

a � SB � SA

YS � eXS � f

XS �
1(a � be � cf )2 � 4ce(bf � d )

2ce

XQ � 0;  YQ �
ST � SA

SC � SA

XP �
ST � SA

SB � SA
;  YP � 0

in Figure 9. Only when it is significantly large is necessary
adding a shoulder point. In this way, we can reduce the
number of shoulder points for contouring while retaining
the required resolution. Shoulder points with a discrepancy
triangle larger than a given threshold T� will be used in
the adaptive approach, while the others will be discarded.
Because of this selective capability, the proposed approach
is able to optimize the data size for contour representation
at a desired fidelity.

Tests and Evaluation
Test Overview
Tests are designed to examine the capabilities and perform-
ance of the proposed adaptive feature extraction approach.
Three DTM data sets: Arena Valley, Cape Royds, and Moun-
tain Erebus in Antarctica were used for the tests. The data
were collected by airborne lidar, processed and delivered by
the U.S. Geological Survey (USGS) as a raster DTM at a resolu-
tion of 2-meters. The down-sampled 4- and 8-meter DTM is
used in this study, while the original 2-meter DTM is used for
evaluation purpose only. The DTM data sets are shown in
Figure 10 and their properties are listed in Table 1.

The test results are shown in Table 1 and Figure 11. As
described above, the LOG operator is applied to the slope
map to detect edge pixels while taking into account their
connectivity. The final slope threshold is determined by
using the histogram of slopes over the edge pixels. Table 1
also lists the LOG threshold values, the edge connectivity,
and the slope thresholds for contouring. Shoulder points
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Figure 10. Shaded relief images of Arena Valley (a),
Cape Royds (b), and (c) Mt. Erebus areas in Antarctica.
The rectangles show the subsets used in this study.
The maps were from http://imsdemo.cr.usgs.gov/
website/antarctica/
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TABLE 1. PROPERTIES OF THE ANTARCTIC DTM DATA SETS AND TEST RESULTS

Arena Valley Cape Royd Mt. Erebus

Full Cell size (m) 2 � 2 2 � 2 2 � 2
resolution Dimension 2021 � 8001 2001 � 3501 4501 � 5001

Subset used Cell size (m) 4 � 4 8 � 8 8 � 8
Dimension 601 � 681 185 � 162 780 � 774

LOG threshold 0.010 0.002 0.040

Boundary Connectivity(%) 99.4 95.9 87.7
determination Slope threshold

(normalized) 0.404 0.360 0.625

Original Distance error 0.58 0.64 0.89
method (pixel)

Robust # shoulder points 141 602 229
method Distance error 

(pixel) 0.28 0.52 0.37

Adaptive # shoulder points 35 151 58
method Distance error 
(T� � 0.025) (pixel) 0.37 0.53 0.53

Figure 11. (a) shaded relief images, (b) slope maps (brighter pixels for higher slope), and
(c) extracted features.
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with discrepancy triangle larger than T� � 0.025 (given the
area of one pixel is unit) are selected in the adaptive march-
ing square approach. The distance errors (see next section
for details) of the original, robust, and adaptive methods are
also listed in Table 1. Shown on the top row of Figure 11
are the shaded relief images of the study areas, while the
middle row is the slope maps of the test sites calculated
with the weighted average slope estimator. The bottom row
of Figure 11 presents the extracted topographic features. The
feature boundary defined by the slope threshold is shown as
lines in the inset maps for clarity, whereas the grayed areas
in the main maps are the feature interior where the slopes
are above the slope threshold.

Extracted Features
The selected three DTM data sets contain a variety of topo-
graphic features. According to the definition of the Scientific
Committee on Antarctic Research (SCAR), topographic
features may take three classes of shapes: linear shape, blob
shape, and donut shape (http://aadc-maps.aad.gov.au/
aadc/ftc/). The features within the same class category have
the same morphological structures with different sizes and
surface materials and with similar shape and appearance.
The linear features include canyon, gorge, ravine, and
valley; blob shape features consist of knob, knoll, and peak.
Examples of donut shape features are cirque, crater, butte,
and plateau. As shown in the top row of Figure 11, the
selected test area Arena Valley has a big valley as the linear
shape feature. Cape Royds has a number of mounts as the
blob shape feature, and Mountain Erebus has a few craters
as the donut shape feature. Such a selection of the test areas
encompasses all types of feature categories defined by
the SCAR.

Evaluation Measure
To evaluate the feature extraction results, the reference
is taken as the results from the original marching square
algorithm applied to the full-resolution 2-meter DTM. Results
from the original, adaptive and robust marching square
algorithms applied to the down-sampled lower resolution
DTM are compared with respect to the reference. As shown
in Figure 12, the evaluation is based on the distance
between the extracted boundary and the reference boundary
(Perez and Vidal, 1994). For each point in the extracted
boundary, its distance to the closest reference boundary is
calculated. The average of all such distances over all

extracted boundary points calculated by Equation 10 is then
used to measure the overall precision:

(10)

where E is the average distance error, di is the distance from
an extracted boundary point to the closest reference bound-
ary, and N is the number of points in the extracted boundary.

Performance Evaluation
The precision of the adaptive marching square method varies
with the number of selected shoulder points. Figure 13 plots
such relation over the three data sets. All tests are carried
out at the down-sampled resolutions. The vertical axis is the
ratio between the average distance errors from the adaptive
(Ea) and original (Eo) methods. The relative data size in the
horizontal axis is the number of points in the adaptive
algorithm relative to the number of points in the original
algorithm. The relative data size 1 corresponds to the original
method, which is equivalent to no shoulder point being
selected in the adaptive method. The relative data size 2 is
the robust method in which all shoulder points are included.
This is because the number of shoulder points in the robust
approach is the same as the number of points in the original
marching square method if the feature boundary is treated
as a polygon.

Figure 13 shows that the error decreases with the
increasing number of shoulder points in a non-linear way.
For areas with relatively simple (small curvature) topogra-
phy, such as Arena Valley and Mount Erebus sites, the error
drops more rapidly than in an area with complicated features
(Cape Royd), when more shoulder points are included in the
adaptive method. This is because the shoulder points in
complicated topography tend to have errors with similar
magnitudes. Therefore, including more shoulder points in
the adaptive method can only slowly improve its precision.
On the other hand, errors of shoulder points in areas with
simple topography are unlikely evenly distributed. Including
shoulder points in a descending order of their discrepancy
triangle size can therefore considerably improve the precision
of the original method. To be specific, for Arena Valley and
Mount Erebus, Figure 13 shows that their errors drop by
40 percent (from 1 to about 0.6) after 30 percent (relative
data size 1.3) of the shoulder points are added to the original
method. Adding more shoulder points may further increase

E �
1
N
g

N

i�1
di
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Figure 12. Evaluation measure of
the extracted feature. The solid line
is the reference boundary and the
dot line is the extracted boundary.

Figure 13. Errors of the extracted features versus the
number of shoulder points in the adaptive method.
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the precision, however, at a slower rate. For Cape Royd,
adding the first 10 percent shoulder points reduces the error
of the extracted features by about �15 percent, however, the
inclusion of additional shoulder points can only slowly
improve the precision by several percent.

Similar evaluation can be made with reference to the
robust approach in terms of efficient feature representation,
storage, and rendering. For complex topography (Cape Royd),
reducing up to 80 percent of the shoulder points from the
robust approach may only cause a marginal precision loss of
less than 10 percent in the adaptive approach. The use of
adaptive approach is less advantageous for simple topogra-
phy. Reducing 50 percent of the shoulder points from the
robust approach will cause 20 percent precision loss in the
adaptive approach.

The above discussion suggests that the performance of the
adaptive algorithm is dependent on the complexity of the
topography. Selectively adding shoulder points to the original
method can considerably improve the precision for simple
topography area, while reducing shoulder points from the
robust method is very efficient for complex topography in
terms of an optimal balance between precision and resolution.

To gain a general understanding, this section will evaluate
the overall performance of the adaptive method for the three
data sets. Figure 14 shows the average for all three study areas
computed with Equation 10 with relative to the original
marching square method. This table is obtained by selecting
the shoulder points with a discrepancy area larger than 
T� � 0.025. The total efficiency in Figure 14 is the overall
performance index considering both precision and resolution,
and is calculated by:

(11)

where the Eo and Ea are the errors for the original and
adaptive methods, respectively; No and Na are the number of
points in the original and adaptive methods. For the original
method, this total efficiency index is equal to 1, while for the
robust approach the ratio Na/N0 is 2. It is seen that the
adaptive approach can reduce the error of the original method
by 33 percent (0.62 versus 0.92) by using 25 percent of the
shoulder points, while its precision is about 24 percent
(0.62 versus 0.5) lower than the robust approach. The total
efficiency index suggests that the adaptive approach (1.20) is
slightly better than the robust (0.93) and original (1.0) ones,
both of which have about the same overall balance between
precision and resolution.

Conclusions
A new topographic feature extraction approach is pro-
posed and evaluated through this study. Unlike most other
studies, we model topographic features as a region with

Total Efficiency �
Ea

Eo
 
Na

N0

interior and boundary. It is shown that such a model can
be used to represent a broad range of topographic features,
such as valley, mount, and crater. Determining the slope
contour value is the key to localizing the feature bound-
ary. For this objective, the slope contour is required to
pass as many connected edge pixels as possible that have
local maximum curvatures. As the first step towards the
solution, a weighted average of the D8 and finite differ-
ence methods is used to produce the slope map. It com-
pensates the weakness of the two existing methods, and
the outcome slope map is less noisy than the D8 and more
informative than the finite difference. In the second step, a
sequence of LOG operations with multiple thresholds are
applied to the slope map and result in an satisfactory edge
map with maximum connectivity. The slope threshold is
then selected such that the slope contour passes as many
edge pixels as possible. By considering both the connectiv-
ity and the number of edge pixels, this treatment essen-
tially automates the selection of the slope threshold,
which is regarded as one of the most difficult tasks in
feature extraction. The third step, tracing the feature
boundary, is considered as a rendering problem in com-
puter graphics, for which the marching square algorithm
and its robust modification are adopted and enhanced
with adaptive capability. The proposed adaptive approach
can select the necessary shoulder points based on the local
topographic complexity such that a balance between
resolution and precision can be achieved. It is found that
the performance of the adaptive algorithm depends on the
topographic complexity. For complex topography,
adding additional shoulder points will slowly improve the
precision of the original marching square algorithm; which
implies the number of shoulder points in the robust
marching square algorithm can be considerably reduced
without losing much precision. Similar observation is
made for simple topography where adding or removing
shoulder points may have significant effect on the preci-
sion of the extracted features. It is shown overall reducing
75 percent (2.00 versus 1.25) of the shoulder points from
the robust approach will cause 24 percent (0.50 versus
0.62) precision drop in the adaptive method.

Despite the above successful initiative and experience,
future efforts can be made on several related aspects. First,
the performance and capability of the proposed approach can
be further investigated comprehensively for more types of
topography. Its principles need to be formulated and tested
with man-made features such as buildings embedded in a
digital surface model. Investigation is needed to look into the
properties of the proposed slope estimator and present a
quantitative evaluation against other typical slope estimators
such as the ones based on surface modeling. Finally, scale or
resolution remains to be a fundamental issue in the proposed
approach as in many other feature extraction methods. It
would be theoretically interesting to associate the scale space
theory to the developed slope thresholding method. More-
over, the performance of the proposed feature extraction
steps may also be examined for DTM at different resolutions.
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