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ABSTRACT 
 
This paper presents an approach to LiDAR point clouds segmentation for building roofs. Normal vectors determined 
from the original LiDAR point clouds are used as a homogeneous criterion representing planar roof planes. 
Segmentation is then performed iteratively by minimizing an energy function formulated as a multiphase level set 
framework. With multiphase level set formulation, up to n disjoint sub-regions can be segmented at a time by log2n 
level set functions. After convergence, each sub-region represented in 2D grid space shows the spatial extent of data 
points with the most similar normal vectors. Boundaries between different sub-regions correspond to roof ridges and 
those are represented as the union set of zero level sets of level set functions. In the final step, coplanar planes are 
separated into roof primitives by analyzing connectivity information. The main advantages of the proposed approach 
are 1) spatial extent of segmented roof planes is delineated in 2D grid space, and 2) this spatial extent provides more 
efficient way for determining topological relations among the segmented roof planes. To demonstrate our approach, 
segmentation results of a few buildings with different complexity are presented.  
 
 

INTRODUCTION 
 

 For the past two decades, 3D building models have been considered as one of the most essential 
components for various applications such as 3D GIS, urban planning and telecommunication. For this reason, many 
researchers have reported different methods to reconstruct 3D building models with different data sources. LiDAR 
(Light Detection And Ranging) is one of data sources used for this purpose. The main advantage of LiDAR is its 
capability to measure elevation at each observed data points with high accuracy, which makes it easier to detect 
buildings. With higher point density up to 10 points/m2, detailed roof structures can also be reconstructed. 
 To reconstruct 3D building models from LiDAR data, a few successive steps have to be applied. First, non-
ground points need to be separated from the original point clouds. This can be done by various methods such as 
morphological filtering (Zhang, Chen et al. 2003), height texture measures (Maas 1999; Bartels and Wei 2006) and 
labeling process (Shan and Sampath 2005). The identified non-ground points are then further refined by removing 
data points which are returned from non-building objects such as tress, cars, side walls of buildings and so on. This 
is accomplished by the first and last return analysis (Alharthy and Bethel 2002), eigen value analysis of covariance 
matrix (Shan and Sampath 2005; Verma, Kumar et al. 2006) and dimensionality learning (Wang and Shan 2009). In 
the subsequent step, building points are segmented into planar roof planes based on a certain similarity property. 
Finding planar roof planes is a key step toward 3D reconstruction of building models. This is usually accomplished 
through segmentation process. Fundamentally, there exist two different approaches. The 1st approach is to resample 
the original point clouds into grid data (Alharthy and Bethel 2002; Forlani, Nardinocchi et al. 2006). Then, various 
image processing algorithms are applied to this gridded data. The main advantage of this method is that it can reduce 
the complexity of the problem and increase the overall performance (Dorninger and Nothegger 2007). The main 
defect is that some artifacts may be induced during the resampling process, which leads to loss of the original data 
accuracy. The 2nd approach is to segment original point clouds directly. Therefore, original data accuracy can be 
maintained, but processing algorithm is more complex and it requires more processing time. The other difficulty in 
the 2nd approach is that it is not always easy to determine the topological relations among the segmented point 
clouds. To segment point clouds into planar roof planes, region growing, 3D Hough-transform and RANSAC 
(Random Sample Consensus) methods are generally applied. In the final step, polyhedral building models are 
reconstructed based on the topological relations among the segmented roof planes. To determine topological 
relations, roof topology graph (Verma, Kumar et al. 2006) and adjacent matrix (Sampath and Shan 2008) are 



ASPRS 2010 Annual Conference 
San Diego, California ���� April 26-30, 2010 

 

proposed. This paper mainly focuses on point clouds segmentation for building roofs. Our approach is based on the 
region based segmentation with multiphase level set theory. As the initial results of segmentation, segmented point 
clouds and the spatial extent of each segment are determined. Connectivity is then easily determined from the spatial 
extent of each segment. 
 
 

PRINCIPLES 
 

Multiphase Level Set Method 
 The original level set method is proposed by (Osher and Sethian 1988) as a numerical technique for 
tracking interfaces and shapes. The main idea is to embed a moving interface into a higher dimensional function, i.e. 
level set function. This method turns out to be very useful to represent shapes that change topology, e.g. breaking 
and merging as shown in figure 1. 
 

       
 

Figure 1. Topological changes represented by level set. 
 

 In computer vision, this level set method has been widely used for image segmentation and boundary 
detection problem. Let Ω  be open and bounded subset in 2

ℝ and a curve C  be the boundary of an open set ,ω ∈ Ω  

i.e.  C ω= ∂  as shown in figure 2(left). In the level set, a curve C  is represented implicitly as the zero level set of 
one higher continuous function : .φ Ω → ℝ  The function φ  is called level set function. Therefore, Ω  is divided into 

two disjoint sub-regions based of the different of ,φ  i.e. 0 and 0 φ φ> < as shown in figure 2. 

 

       
 
Figure 2. (Left) Implicit representation of a curve ,C  (right) level set function defined as a signed distance function. 
 
(Osher and Sethian 1988) formulates the propagation of the evolving curve C as a PDE (Partial Differential 
Equation). 
 

 0

( , , )
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∂
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where t  is evolving time, 0 ( , )x yφ is the initial level set function at 0t =  and F is speed for curve propagation. 

Therefore, the propagation of a curve in 2
ℝ  is described by level set function φ  in 3

ℝ and the curve C  always 

remains as the zero level set of .φ   
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 To apply level set method for image segmentation, the evolving curve needs to be stopped at the object 
boundary. For this purpose, two different approaches have been proposed. First, edge-stopping function is multiplied 
to the right side of equation (1). Edge-stopping function is defined as a nonnegative monotonically decreasing 
function such that it makes equation (1) vanish at the object boundary which has strong edge, i.e. high gradient. 
However, this approach may not work if the given image is very noisy or boundaries to be detected does not show 
high gradient. To overcome these defects, region based level set segmentation is proposed by (Chan and Vese 2001). 
In this approach, curve propagation is halted by energy minimization criterion rather than edge-stopping function. 
(Chan and Vese 2001) proposed the following equation as an energy function to be minimized. 
 

 2 2
1 0 1 2 0 2( ) ( ) | | | |

C Cin out

inE Length C Area C u c dxdy u c dxdyµ ν λ λ= ⋅ + ⋅ + − + −∫ ∫  (2) 

 
where C  is a curve, 0u is an input image, 1 20,  0,   and µ ν λ λ≥ ≥  are fixed parameters, 1 2 and c c  are average 

intensity values inside and outside the curve C . The energy function of equation (2) is then minimized when the 
curve C  lies on the object boundary because the last two fitting terms vanish. To rewrite equation (2) using level set, 
the Heaviside function ( )H z and delta function ( )zδ  are defined as equation (3). 

 
1 0
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 (3) 

 
If we assume that level set function φ  has (+) and (-) values inside and outside the curve ,C  i.e. figure 2(right) 

corresponds to this case, length and area term in equation (2) can be rewritten as follows. 
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In the same way, the last two fitting terms of equation (2) can also be rewritten using the level set function .φ  

Combining equation (2)-(4), equation (2) is rewritten as a function of φ as equation (5). 
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 (5) 

 
 One level set function can only segment the given image 0u  into two sub-regions. To segment more sub-

regions, multiphase level set method can be applied (Vese and Chan 2002). Allowing overlapping between level set 
functions, n  disjoint sub-regions can be represented by 2log n  level set functions as shown in figure 3. Each sub-

region is then represented by different signs of level set functions. For example, sub-region R01 shown in figure 
3(left) is defined by the following condition: 1 20 and 0φ φ< > . 
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Figure 3. (Left) Four regions by two level set functions, (Right) eight regions by three level set functions. 
 

 Another extension of level set method is multichannel level set (Chan, Sandberg et al. 2000). This method 
allows more than one data layers to be involved for segmentation process. This can be used when the input image 

0u  consists of multichannel data such as RGB or multispectral image. In the same manner as getting equation (5), 

energy function E  can be formulated. For example, the energy function with two level set functions and three 
channels is then formulated as follows. 
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where 3m =  is the number of channels, 0,iu  is the i-th channel of the input image 0u  and 11, 10, 01, 00,, , ,i i i ic c c c  are 

average intensity values of the i-th channel of four regions. The last two terms are length regularization terms for the 
two level set functions. The energy function E  of equation (6) should be minimized to find object boundary 
correctly. To minimize this function, corresponding Euler-Lagrange equation for each level set function is derived. 
Parameterizing the descent direction by an artificial time 0,t ≥  the evolving equation can be derived. For example, 

evolving equation of 1( , , )x y tφ  is represented as follows. 
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where div  is divergence operator. Equation (7) is then solved iteratively by applying the finite difference technique 
in the discrete domain. 
  
 

SEGMENTATION 
   
 To find planar roof planes, we applied multiphase and multichannel level set segmentation. We aim to 
combine advantages from two different approaches presented in introduction, i.e. we do not resample the original 
point clouds and spatial extent of the segmented points is reflected in 2D grid space, which is represented as sub-
regions of multiphase level set formulation. For this purpose, normal vectors determined from the original points 
clouds are used as a homogeneity criterion representing planar roof planes. The segmentation process is then to 
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divide 2D grid space enclosing all building points into disjoint sub-regions such that each one corresponds to one or 
a group of planar roof planes. We provide a detailed algorithm with two level set functions and three channels. In 
the end of this section, separation of coplanar planes into roof primitives is also discussed. 
 
Normal Vector Calculation 
 To define any planer plane in 3,ℝ  normal vector and distance from the coordinate origin are enough. 
Therefore, as the 1st step of segmentation, normal vector of each data point is to be estimated. Let P  be the building 
points and T

( ) ( ) ( )( , , )i x i y i z in n n=N  be the normal vector of the ith data point i .∈p P iN  is usually determined from 

its neighboring points by local plane fitting. In this research, we used TIN (Triangular Irregular Network) structure 
to define the neighborhood of i .p iN  is then determined by averaging normal vectors of triangles incident to ip  as 

in equation (8). 
 

 
1

1
j

n

i T
jn =

= ∑N N  (8) 

 
where iN  is normal vector at ip , n  is the number of triangles incident to ip , and 

jTN is the normal vector of the jth 

neighboring triangle. If the distance between ip  and one of two points of jT  is larger than two times the LiDAR 

ground spacing, normal vector of jT  is not included for the calculation of .iN  If there are less than three triangles 

satisfying this condition, ip  is excluded for the subsequent process. Considering this is likely to produce more 

accurate normal vector in case ip  lies on the step edges or building boundaries as shown in figure 4. 

 

        
 

Figure 4. (Left) Points on the step edgs,  (right) on the building boundary. 
 
 Once normal vectors of P  are estimated, we analyzed the planarity of each data point. This can be 
achieved by PCA (Principal Component Analysis) or dimensionality analysis (Verma, Kumar et al. 2006; Sampath 
and Shan 2008). In this research, we analyzed the mean angle difference between iN and 

jTN using the following 

equation. 
 

 
1

1
Mean Angle Difference

j

n

i T
jn =

= ∑ iN N  (9) 

 
where (i ) denotes the inner product of two vectors. If MAD of ip is less than 15o, it is considered as a planar point. 

Otherwise the given point is excluded, i.e. non-planar point. One example of this process is shown in figure 5. 
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Figure 5. (Left) Plot of planr points (black dots) and non-planar points (red dots),  (middle) plot of the unit normal 

vectors of all points, (right) plot of the unit normal vectors of planar points. 
 
Formulation   
 Let P be planar points and T( )x y z= n ,n ,nN  be their normal vectors. We use(1), (2) and (3)N N N  to 

denote a vector consists of  and x y zn ,n n components respectively. For the purpose of illustration, building points 

shown in figure 6(left) is used. First, we specify 2D grid space Ω  with size M by N enclosing .P The grid size 
depends on the average point density. One data point per cell is preferred. Two initial level set functions 

1 2 and φ φ are then determined as a signed distance function with the same size as .Ω  Building boundary points are 

also determined by -shapeα algorithm (Edelsbrunner, Kirkpatrick et al. 1983). Mask grid mΩ  is then defined using 

building boundary points, which is used to ignore any operation performed outside the building. 
 

     
 

Figure 6. (Left) Building points, (middle) planar points, (right) Ω  overlaid with boundary points (red dots). 
 

 To determine the energy function to be minimized, we follow the similar form presented in equation (6). 
The main difference is that four fitting terms are estimated from a set of normal vectors rather than an image. 
Therefore, the energy function can be formulated as equation (10). 
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where ( )iN  is a vector consists of the ith channel of ,N 11 10 01 00( ), ( ), ( ) and ( )i i i iN N N N  are mean values of the ith 

channels of N for four sub-regions. Square bracket [ ]Ω  represents M by N grid, i.e. the same dimension as Ω  

determined from a set of points inside the square bracket. Mean normal vectors of four regions are determined from 
data points whose horizontal locations are within the corresponding sub-regions. For example, 10N  is calculated as 

follows. 
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where k  is the number of points in sub-region R10 and 1 1( ( , )) and ( ( , ))i ix y x yφ φp p denote the evaluations of two 

level set functions at data point ( , ).i x yp  In the same manner as getting equation (7), we can derive evolving 

equations for 1 2 and .φ φ  By applying the finite difference technique in the discrete domain, final evolving equation 

for 1φ  is formulated as follows. 
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where 1

1 1 and n nφ φ + are the approximations of 1φ at time ( )  and ( 1) .n t n t+△ △ 1 1( ) and ( )n nHε φ δ φ
ε

are regularized 

versions of the Heaviside and delta function. We refer the reader to (Rudin, Osher et al. 1992; Chan and Vese 2001; 
Vese and Chan 2002) for the regularization of the Heaviside, delta function and more detailed numerical algorithm. 
For the fixed parameters, we used the followings: 2

1 2 1 40.01 ,  0.01 255  and ~ 1.t µ µ λ λ= = = × =△ The evolving 

equation (12) is then iteratively minimized with initial level set functions. The following is a summary for these 
processes. 
  

- Determine 2D grid Ω  enclosing all building points with size M by N based on the average point 
density. 

- Determine building boundary points and specify mask grid .mΩ  

- Initialize two level set functions 
0 01 2 and φ φ using a signed distance function. 

- Repeat the followings until convergence or a given number of iterations. 
� Compute 1 21 2( ), ), ( ) a( )(nd .n n nnH Hε ε δφδ φφ φ

ε ε
  

� Compute 1 1 2 2/ | |) and / |( |).(n n n nφ φ φ φ  

� Compute mean normal vectors of four regions. 
� Update new approximation 1

1
nφ +  using equation (12). 

� Check convergence. 
 
In figure 7, intermediate plots of segmentation process are presented. Point clouds of four sub-regions are shown in 
different colors. The changes of spatial extent for four sub-regions are also presented in figure 8. The union of two 
zero level sets of level set functions are also shown in figure 8(right) as white lines. 
 

     
 

Figure 7. Plots of segmented point clouds: (Left) 1th iteration, (middle) 4th iteration, (right) 8th iteration. 
 

     
 



ASPRS 2010 Annual Conference 
San Diego, California ���� April 26-30, 2010 

 

Figure 8. Spatial extent of four sub-regions: (Left) 1th iteration, (middle) 4th iteration, (right) 8th iteration. 
 

 As we can see from figure 7 and 8, the iteration process converges to the global minimum at the 8th 
iteration step. The initial 2D grid space Ω  is divided into four sub-regions, each of which represents a group of 
planar roof planes with the most similar normal vectors. In figure 9, we present each sub-region ( )iΩ  separately. 

This representation is from the definition of sub-regions with multiphase level set formulation. For example, sub-
region R11 is represented by (1) 1 2{ ( , ) : ( ) ( )}.x y H Hε εφ φΩ  It can be seen that each sub-region consists of a few 

coplanar planes, which are a group of planes with the same normal vectors, but are spatially separated. Separating 
these coplanar planes into roof primitives is preferred to determine the topological relations and reconstruct 3D roof 
model. To separate these planes, we applied a four-connectivity analysis (Haralick and Shapiro 1992) to each sub-
region shown in figure 9. In figure 10, the final results after plane separation are presented. Each separated sub-
region is represented with different colors and each one matches well with one roof primitive. The separated point 
clouds are also shown in figure 10(right). Two more segmentation results with different buildings are also presented 
in figure 11. 
 

    
 

Figure 9. Representation of four sub-regions: (From left to right) (1) (2) (3) (4)R11,  R10,  R01,  R00.Ω = Ω = Ω = Ω =  

 

       
 

Figure 10. Final separation results: (Left) Separated sub-regions ( )iΩ and (right) separated point clouds. 

 
Initial Results 
 In this paper, we applied two level set functions to segment four sub-regions. As the results, segmented 
point clouds for roof primitives and their spatial extent in 2D grid space are derived. In this process, we need to 
discuss how to determine the number of level set functions. Theoretically, any number of level set functions can be 
used and formulating corresponding energy function is straightforward with some complexity. For example, 
building data shown in the 1st row of figure 11 consists of five groups of planar roof planes. The segmentation result 
shown is derived by applying three level set functions, i.e. up to eight sub-regions can be segmented. The problem 
may arise when we apply only two level set functions to this data. Intuitively, we can guess some of sub-regions 
may consist of roof planes, which have different normal vectors. This problem may be resolved by applying 
recursive segmentation. Once all sub-regions are separated, we can determine if each separated sub-region consist of 
one roof primitive. If not, further segmentation is applied to the corresponding separated sub-region with proper 
feature vector. 
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Figure 11. More segmentation results. 
 
 

CONCLUSIONS 

 We presented a new approach to point clouds segmentation. To keep the original data accuracy, normal 
vectors determined from the original point clouds are used as input feature vectors. Segmentation is then performed 
iteratively by minimizing the energy function formulated as multiphase level set framework. Once the iteration 
process converges to the global minimum, each sub-region represents either one roof primitive or a group of roof 
planes with the same normal vectors. Roof primitives are then easily separated by analyzing the connectivity of each 
segment. To demonstrate our approach, two and three level set functions are tested with different building data 
points. In the future research, complete algorithm for reconstructing 3D roof models based on the results presented 
in this paper will be exploited. Recursive segmentation algorithm and more intensive tests with different data set 
will be carried out. 
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