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ABSTRACT

This paper presents an approach to LIDAR pointdscsegmentation for building roofs. Normal vecibesermined
from the original LIDAR point clouds are used ash@amogeneous criterion representing planar roof ggdan
Segmentation is then performed iteratively by miming an energy function formulated as a multiphkesel set
framework. With multiphase level set formulatiom, 1o n disjoint sub-regions can be segmented at a timedpn
level set functions. After convergence, each sujiererepresented in 2D grid space shows the spatieht of data
points with the most similar normal vectors. Bounekbetween different sub-regions correspond ¢é nidges and
those are represented as the union set of zerbdetgeof level set functions. In the final stepplanar planes are
separated into roof primitives by analyzing conivitgtinformation. The main advantages of the prega approach
are 1) spatial extent of segmented roof planeslisehted in 2D grid space, and 2) this spatiatrxprovides more
efficient way for determining topological relatioamong the segmented roof planes. To demonstratappuoach,
segmentation results of a few buildings with diéfier complexity are presented.

INTRODUCTION

For the past two decades, 3D building models hiagen considered as one of the most essential
components for various applications such as 3D Gillgan planning and telecommunication. For thisoeamany
researchers have reported different methods tanstieet 3D building models with different data stes. LIDAR
(Light DetectionAnd Ranging) is one of data sources used for this perpbee main advantage of LIDAR is its
capability to measure elevation at each observéal paints with high accuracy, which makes it easiedetect
buildings. With higher point density up to 10 psimnt’, detailed roof structures can also be reconstiucte

To reconstruct 3D building models from LIDAR dasafew successive steps have to be applied. Rost,
ground points need to be separated from the otigiamt clouds. This can be done by various meth&ash as
morphological filtering (Zhang, Chen et al. 20082jght texture measures (Maas 1999; Bartels and28/@6) and
labeling process (Shan and Sampath 2005). Theifiégenhon-ground points are then further refinedrbgnoving
data points which are returned from non-buildingeots such as tress, cars, side walls of buildargs so on. This
is accomplished by the first and last return analflharthy and Bethel 2002), eigen value analypdisovariance
matrix (Shan and Sampath 2005; Verma, Kumar é0fl6) and dimensionality learning (Wang and Sha®d20n
the subsequent step, building points are segmentedolanar roof planes based on a certain sinylgroperty.
Finding planar roof planes is a key step towardr8&bnstruction of building models. This is usuatcomplished
through segmentation process. Fundamentally, #nwst two different approaches. Th& dpproach is to resample
the original point clouds into grid data (Alharthgd Bethel 2002; Forlani, Nardinocchi et al. 2008)en, various
image processing algorithms are applied to thidgdgrdl data. The main advantage of this method isttban reduce
the complexity of the problem and increase the all/grerformance (Dorninger and Nothegger 2007). Tizn
defect is that some artifacts may be induced dutiegresampling process, which leads to loss obtiginal data
accuracy. The ™ approach is to segment original point clouds diyed herefore, original data accuracy can be
maintained, but processing algorithm is more cormpled it requires more processing time. The otlifficdlty in
the 2“ approach is that it is not always easy to deteentive topological relations among the segmentedt poi
clouds. To segment point clouds into planar ro@npk, region growing, 3D Hough-transform and RANSAC
(Random Sample Consensus) methods are generalliedppm the final step, polyhedral building modelse
reconstructed based on the topological relationsngmhe segmented roof planes. To determine topmbg
relations, roof topology graph (Verma, Kumar et 2006) and adjacent matrix (Sampath and Shan 2868)
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proposed. This paper mainly focuses on point claggdsnentation for building roofs. Our approachasdal on the
region based segmentation with multiphase levettemiry. As the initial results of segmentatiorgreented point
clouds and the spatial extent of each segmentedegrdined. Connectivity is then easily determineanfthe spatial

extent of each segment.

PRINCIPLES

Multiphase L evel Set M ethod
The original level set method is proposed by (Osired Sethian 1988) as a numerical technique for

tracking interfaces and shapes. The main ideaésnioed a moving interface into a higher dimensifuwmadtion, i.e.
level set function. This method turns out to beyvweseful to represent shapes that change topolagy,breaking
and merging as shown in figure 1.

== | O O

Figure 1. Topological changes represented by level set.

In computer vision, this level set method has begdely used for image segmentation and boundary
detection problem. Lef2 be open and bounded subsefihand a curveC be the boundary of an open set (2,
i.e. C=0w as shown in figure 2(left). In the level set, aveuC is represented implicitly as the zero level set of
one higher continuous functiof: 2 — R. The function¢ is called level set function. Therefor®, is divided into

two disjoint sub-regions based of the differentggfi.e. ¢ > 0 and¢ < Oas shown in figure 2.

Q-w:¢<0

C=0w

Figure 2. (Left) Implicit representation of a curvg, (right) level set function defined as a signedatise function.

(Osher and Sethian 1988) formulates the propagaifothe evolving curveC as a PDE (Partial Differential
Equation).

0d(X, y,t .
SND _E 176 ] with 6 6y 000 € ¥) &)
wheret is evolving time,¢,(X,y)is the initial level set function d@t=0 and F is speed for curve propagation.
Therefore, the propagation of a curveR] is described by level set functian in R®and the curveC always
remains as the zero level setaf
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To apply level set method for image segmentatibe,evolving curve needs to be stopped at the bbjec

boundary. For this purpose, two different approadieve been proposed. First, edge-stopping funidiomultiplied
to the right side of equation (1). Edge-stoppingction is defined as a nonnegative monotonicallgreiasing
function such that it makes equation (1) vanishhat object boundary which has strong edge, i.eh kgigadient.
However, this approach may not work if the giverag®a is very noisy or boundaries to be detected doeshow
high gradient. To overcome these defects, regisedéevel set segmentation is proposed by (Chaivasd 2001).
In this approach, curve propagation is halted bgrgy minimization criterion rather than edge-stogpfunction.
(Chan and Vese 2001) proposed the following eqoat®an energy function to be minimized.

E = 11 Length(C) + v Area(C,,) +>\1f lu,—c, P dxdy+/\2f lu,—c, | dxdy )

Cout

where C is a curve,u, is an input imageu >0, v > 0, A, and\, are fixed parameters; andc, are average

intensity values inside and outside the cu@/e The energy function of equation (2) is then miaied when the
curve C lies on the object boundary because the last ittwodf terms vanish. To rewrite equation (2) usiegel set,
the Heaviside functiorH (z) and delta functior(z) are defined as equation (3).

1 ifz>0 iy d
H(z)—{0 ifZ<()}.«S(z)—H (@)= H@) ®3)

If we assume that level set functignhas (+) and (-) values inside and outside thee@yi.e. figure 2(right)
corresponds to this case, length and area teriguat®n (2) can be rewritten as follows.
Area(C,,) = [ H(g(x, y))dxdy
Length(C) = [ | OH (¢(x, y)) | dxdy 4)
= [ 3(@x ) D@, y) |dxdy

In the same way, the last two fitting terms of dtua(2) can also be rewritten using the level fetction ¢.
Combining equation (2)-(4), equation (2) is reveritias a function op as equation (5).

E=pnf 8606 Y)) I VH 6 (x,y)) lcbdly
+v [ Ho(x y)dedy
), f Jug—c, F H @(x,y))dxdy
2, [ Uy —c, F (1= H @(x y) )by

®)

One level set function can only segment the gimeage u, into two sub-regions. To segment more sub-
regions, multiphase level set method can be apflfede and Chan 2002). Allowing overlapping betwiesel set
functions, n disjoint sub-regions can be representeddmy n level set functions as shown in figure 3. Each-sub
region is then represented by different signs w@élleset functions. For example, sub-region R0O1 shawfigure
3(left) is defined by the following conditior, < 0 and¢, > C.
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Figure 3. (Left) Four regions by two level set functionsjdR) eight regions by three level set functions.

Another extension of level set method is multiahelrievel set (Chan, Sandberg et al. 2000). Thihatk
allows more than one data layers to be involvedsémmentation process. This can be used when pl iimage
u, consists of multichannel data such as RGB or spétitral image. In the same manner as getting iequéd),

energy functionE can be formulated. For example, the energy functiith two level set functions and three
channels is then formulated as follows.

E= %L{}ilum —Cyy F}H @ )H (@ ,)dxdy
2, 331~ FlH 6 )0—H © by

#2551, o P A= H 6 )M Jocy ®)

m=3

+A, 0 % |Ug; — Cooj F1d—H @)1~ H @,))xdy

i=1

+iy- [ [VH @) Iy -+, [ [VH @)

where m= 3 is the number of channels,,; is the i-th channel of the input image andc,;,C,,,Cy; ,Coq are

average intensity values of the i-th channel of fegions. The last two terms are length reguléionaerms for the
two level set functions. The energy functi@ of equation (6) should be minimized to find objéxundary
correctly. To minimize this function, correspondiBgler-Lagrange equation for each level set fumcigoderived.
Parameterizing the descent direction by an arifitme t > 0, the evolving equation can be derived. For example,

evolving equation of, (x, y,t) is represented as follows.

O _
ot

6( { - div

|V, | ] {3;{/\| Ug; —Coy|* =l UOLC11,|2}}H(¢)1
9 )
_{EZ Ao by =G 1A o —Cog Zlb tH ¢,)

where div is divergence operator. Equation (7) is then sbiteratively by applying the finite difference tetque
in the discrete domain.

SEGMENTATION

To find planar roof planes, we applied multiphasel multichannel level set segmentation. We aim to
combine advantages from two different approachesgmted in introduction, i.e. we do not resampéedtiginal
point clouds and spatial extent of the segmentédtpds reflected in 2D grid space, which is repréed as sub-
regions of multiphase level set formulation. Fas thurpose, normal vectors determined from theimaigpoints
clouds are used as a homogeneity criterion reptiegeplanar roof planes. The segmentation procgegben to
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divide 2D grid space enclosing all building poiit® disjoint sub-regions such that each one cpoeds to one or
a group of planar roof planes. We provide a dedagligorithm with two level set functions and thdennels. In
the end of this section, separation of coplanamgsanto roof primitives is also discussed.

Normal Vector Calculation

To define any planer plane iR®, normal vector and distance from the coordinatginrare enough.
Therefore, as the™lstep of segmentation, normal vector of each daitat 5 to be estimated. Lé® be the building
points andN; = (n,;), Ny, Z(,)) be the normal vector of th¥ data pointp € P. N, is usually determined from

its neighboring points by local plane fitting. Inig research, we used TIN (Triangular Irregularvidek) structure
to define the neighborhood qf. N, is then determined by averaging normal vectorsiangles incident top, as

in equation (8).
N, (8)

where N; is normal vector ap,, n is the number of triangles incident {§, and N, is the normal vector of thé'j
neighboring triangle. If the distance betwepnand one of two points of, is larger than two times the LIDAR
ground spacing, normal vector ®f is not included for the calculation &f,. If there are less than three triangles

satisfying this conditionp. is excluded for the subsequent process. Consglehis is likely to produce more
accurate normal vector in cage lies on the step edges or building boundariehaws in figure 4.
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Figure 4. (Left) Points on the step edgs, (right) on thiding boundary.

Once normal vectors oP are estimated, we analyzed the planarity of eaafa goint. This can be
achieved by PCA (Principal Component Analysis) nehsionality analysis (Verma, Kumar et al. 200&8n®ath
and Shan 2008). In this research, we analyzed #wnmngle difference betwed and NTJ using the following

equation.

Mean Angle Difference- lz Ne N, (9)

i=1

where () denotes the inner product of two vectors. If MAD p, is less than 1% it is considered as a planar point.
Otherwise the given point is excluded, i.e. nomplapoint. One example of this process is showfigure 5.
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Figureb. (Left) Plot of planr points (black dots) and ndasar points (red dots), (middle) plot of the umitmal
vectors of all points, (right) plot of the unit maal vectors of planar points.

Formulation
Let P be planar points andN = (nx,ny,nz)T be their normal vectors. We ubH1),N (2) andN (3 to
denote a vector consists of,n, andn,components respectively. For the purpose of ilagin, building points

shown in figure 6(left) is used. First, we spec# grid space? with size M by N enclosing®. The grid size
depends on the average point density. One datat p&n cell is preferred. Two initial level set fiions
¢, andg, are then determined as a signed distance functitntihe same size &. Building boundary points are

also determined by-shapealgorithm (Edelsbrunner, Kirkpatrick et al. 198B)ask grid €2, is then defined using
building boundary points, which is used to ignong aperation performed outside the building.
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Figure 6. (Left) Building points, (middle) planar pointsight) 2 overlaid with boundary points (red dots).

To determine the energy function to be minimized, follow the similar form presented in equatioi. (6
The main difference is that four fitting terms astimated from a set of normal vectors rather tharimage.
Therefore, the energy function can be formulatedcastion (10).

E—%Ei[ INO-N,OF ] }H 6 )H 6 Xy

)

e, %i[ INO-N,O)F | }H (1)@ H ¢ ,)xxdy
], %[ ING-NGOF | }(1—H(¢1»H (@ )dxdy (10)
] INO-NgOF | }(1H 6O H 6, )iy

oy [ [VH @) Iy -+, [ [VH @ ;) ey

where N (i) is a vector consists of th8 ¢hannel ofN, N, (i), N,(i),N ,,@() andN ., { ) are mean values of th8 i
channels ofN for four sub-regions. Square brackdf, represents M by N grid, i.e. the same dimensiof2as
determined from a set of points inside the squaaeket. Mean normal vectors of four regions aremeined from

data points whose horizontal locations are withie torresponding sub-regions. For examp_lg, is calculated as
follows.

NIOZ%i N, ,satisfyingforall ¢, o Xy )> Oand, f x(y, ¥ 0 (1)
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wherek is the number of points in sub-region R10 andp. (x,y)) andy, (@ & y ))denote the evaluations of two
level set functions at data poim(x,y). In the same manner as getting equation (7), wedsaive evolving
equations forp, and¢, By applying the finite difference technique in tiliscrete domain, final evolving equation
for ¢, is formulated as follows.

=3

Z[M N (@) — Ngy () A, N @) — N, () F]Q}Hg )

ooll—\

n+1 Vd)l
0+ At-6_ (¢
=¢ + (¢){lﬁ[|v¢1] {

whereg andg; ™ are the approximations af;, at time (n)At and o+ Ipt H_(¢) ands (¢)') are regularized

versions of the Heaviside and delta function. Werrthe reader to (Rudin, Osher et al. 1992; Chah\4ese 2001;
Vese and Chan 2002) for the regularization of tlea\kkide, delta function and more detailed numestggorithm.

For the fixed parameters, we used the followings:=0.01, 1, = 1, = 0.0k 255 and, X,= The evolving

equation (12) is then iteratively minimized withtial level set functions. The following is a summdor these
processes.

(12)
o ING) = Ny () F =24 ING)—Noo (i) ] }(1 H. @)}

ooll—\

m=3
i=

- Determine 2D grid2 enclosing all building points with size M by N led@son the average point
density.

- Determine building boundary points and specify mgsdt €.

- Initialize two level set functiong, and¢, using a signed distance function.

- Repeat the followings until convergence or a gimamber of iterations.
* ComputeH_(¢,"),6,(¢/).H.(¢,") and 4, (¢;).
= Compute(s/|¢; |) and(é; /{5 ).
= Compute mean normal vectors of four regions.
» Update new approximation™ using equation (12).
= Check convergence.

In figure 7, intermediate plots of segmentationgess are presented. Point clouds of four sub-regao& shown in

different colors. The changes of spatial extentféar sub-regions are also presented in figuret& tinion of two
zero level sets of level set functions are alsowhim figure 8(right) as white lines.
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Figure 8. Spatial extent of four sub-regions: (Left) iteration, (middle) % iteration, (right) & iteration.

As we can see from figure 7 and 8, the iteratioocess converges to the global minimum at tfe 8
iteration step. The initial 2D grid spa€eis divided into four sub-regions, each of whiclpresents a group of

planar roof planes with the most similar normaltees. In figure 9, we present each sub-redipy separately.

This representation is from the definition of selgions with multiphase level set formulation. Feample, sub-
region R11 is represented BR.,,(x y): H.(¢)H.(¢,)}. It can be seen that each sub-region consists fefva

coplanar planes, which are a group of planes viithsame normal vectors, but are spatially separ&egarating
these coplanar planes into roof primitives is piefé to determine the topological relations andnstruct 3D roof
model. To separate these planes, we applied actourectivity analysis (Haralick and Shapiro 1992ach sub-
region shown in figure 9. In figure 10, the finasults after plane separation are presented. Epdrated sub-
region is represented with different colors andheaige matches well with one roof primitive. The agped point
clouds are also shown in figure 10(right). Two msegmentation results with different buildings al®o presented

in figure 11.
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Figure 9. Representation of four sub-regions: (From lefigat) 2, = R11, ©2,) = R10,Q2, = RO1{2 , = ROl

Figure 10. Final separation results: (Left) Separated sulinrexﬁ(i) and (right) separated point clouds.

Initial Results

In this paper, we applied two level set functid@@assegment four sub-regions. As the results, setgden
point clouds for roof primitives and their spatéitent in 2D grid space are derived. In this precege need to
discuss how to determine the number of level sattfans. Theoretically, any number of level setdlions can be
used and formulating corresponding energy functi®rstraightforward with some complexity. For exaepl
building data shown in the"¥ow of figure 11 consists of five groups of planaof planes. The segmentation result
shown is derived by applying three level set fumtdi i.e. up to eight sub-regions can be segmeiitesl problem
may arise when we apply only two level set fundido this data. Intuitively, we can guess someutregions
may consist of roof planes, which have differentrmal vectors. This problem may be resolved by &apgly
recursive segmentation. Once all sub-regions grarated, we can determine if each separated sutmregnsist of
one roof primitive. If not, further segmentationapplied to the corresponding separated sub-regitm proper
feature vector.
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Figure 11. More segmentation results.

CONCLUSIONS

We presented a new approach to point clouds segtien To keep the original data accuracy, normal
vectors determined from the original point clouds ased as input feature vectors. Segmentatidreis performed
iteratively by minimizing the energy function forfated as multiphase level set framework. Once tbetion
process converges to the global minimum, each sgioin represents either one roof primitive or augrof roof
planes with the same normal vectors. Roof prim#tisee then easily separated by analyzing the ctinitgof each
segment. To demonstrate our approach, two and thkes set functions are tested with different Bimgy data
points. In the future research, complete algorifomreconstructing 3D roof models based on thelteguesented
in this paper will be exploited. Recursive segmamaalgorithm and more intensive tests with didfer data set
will be carried out.
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