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Abstract—This paper presents a solution framework for the seg-
mentation and reconstruction of polyhedral building roofs from
aerial LIght Detection And Ranging (lidar) point clouds. The eige-
nanalysis is first carried out for each roof point of a building within
its Voronoi neighborhood. Such analysis not only yields the surface
normal for each lidar point but also separates the lidar points
into planar and nonplanar ones. In the second step, the surface
normals of all planar points are clustered with the fuzzy k-means
method. To optimize this clustering process, a potential-based
approach is used to estimate the number of clusters, while con-
sidering both geometry and topology for the cluster similarity.
The final step of segmentation separates the parallel and coplanar
segments based on their distances and connectivity, respectively.
Building reconstruction starts with forming an adjacency matrix
that represents the connectivity of the segmented planar segments.
A roof interior vertex is determined by intersecting all planar
segments that meet at one point, whereas constraints in the form
of vertical walls or boundary are applied to determine the vertices
on the building outline. Finally, an extended boundary regular-
ization approach is developed based on multiple parallel and
perpendicular line pairs to achieve topologically consistent and
geometrically correct building models. This paper describes the
detail principles and implementation steps for the aforementioned
solution framework. Results of a number of buildings with diverse
roof complexities are presented and evaluated.

Index Terms—Building extraction, clustering, LIght Detection
And Ranging (lidar), reconstruction, segmentation.

I. INTRODUCTION

UILDINGS are an indispensible component for a 3-D

geospatial information system. LIght Detection And
Ranging (lidar) technology provides dense accurate georefer-
enced 3-D point clouds over reflective objects, from which
building models can be derived. Although available auxiliary
data such as building plan maps can assist this process [1], they
may not always be available or up to date. Therefore, using
lidar data alone have attracted most of the efforts in building
extraction. Among the reported studies, polyhedral building is
a quite common assumption, i.e., the building has only planar
roofs, based on which various model detection methods in
pattern recognition can be adopted for building extraction.
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Methodologically, building extraction involves a more funda-
mental and broader concept called segmentation. It refers to the
task of dividing a given data set into nonoverlap homogenous
regions that constitute the entire data set [2]. Classical segmen-
tation process is data driven and falls into two categories, both
originated and primarily used in image processing and later
adapted to range data processing. The first employs the region
growing technique, while the other delineates regions by detect-
ing edges in the data set. Region growing approaches start with
a selected seed point, calculate its properties, and compare them
with adjacent points based on certain connectivity measure to
form the region. Edge-based methods determine the edges in
the data set and connect them to form regions. These edges may
be step edges that represent a jump in the range data or ridges
at two different surfaces. Segmentation is attempted by closing
the detected edges.

Both edge-based and region growing methods have been
used for range data segmentation, with the latter being more
popular. Reference [3] determines edges using local surface
curvature properties to detect zero crossings. The region defined
by edges is then refined by using quadric patches. Reference [4]
uses a local convex hull approach to detect edges to segment
the building boundary and roof planes. A common shortcoming
of the edge-based methods is that it is susceptible to outliers
and incomplete edges that do not form explicit segments. As
an early study on region growing methods for range data
segmentation, [5] divides a scan line into line segments and
use adjacent segments, three at a time, as a seed for the
subsequent region growing algorithm. Recently, region growing
methods are applied to building extraction [6]-[10]. As a typical
implementation of region growing methods, [11] detects planes
in small neighborhoods in the point clouds and use a connected
component analysis to extend these planes. It makes use of the
concept of roof topology, including adjacency and connectivity,
to constrain a building to a combination of basic building
models. This approach is certainly more efficient than fitting
models directly to the data, as it is easier to detect models
from planes other than directly from points. However, several
constraints have to be applied to account for the structural
variety of buildings, such as overhangs and roof structures on
top of each other. Reference [12] combines surface modeling
with an iterative procedure for seed point identification. The
seed points are initially selected by using a local planar fit on
the points. The region is expanded by fitting points that give a
smaller residual error than the noise determined for such a fit. A
combination of edge and region growing algorithm attempts to
take advantage of the strengths of both methods, while avoiding
the pitfalls. Reference [13] divides the data set into 3-D grids
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in an octree representation. The grids are created based on the
surface normal at each point. As the grid size becomes smaller,
the indication is that these grids are located near edges, and are
removed from the octree. The region growing technique then
uses the adjacency of the grids to coalesce based on the surface
normals. Reference [14] presents an approach to segmenting
and modeling point cloud generated from computer-aided de-
sign models. In this case, instead of an octree, a mesh is used for
adjacent points. Edges detected using curvature are removed,
and the remaining mesh elements are grouped together by
using a region growing algorithm such that the regions do not
include the border mesh elements. Despite different versions of
implementations, a common complaint against region growing
is that it usually fails when transitions between two regions are
smooth and the parameters needed to stop the region growing
are difficult to determine. In addition, problematic is the process
of identifying noise-free seed regions.

Instead of data-driven segmentation methods, model-driven
segmentation methods are often used when the mathemati-
cal expression of the objects to be extracted is known. This
is closely related to the model detection theory in pattern
recognition and machine learning. One of the popular model
recognition methods is the Hough transform [15]. It can be used
to determine roof plane parameters [16]. The common practice
is to define a plane using three parameters {0, ¢, p}, where p
is the distance of the plane to the coordinate system origin, and
cos 0, cos i are the directional cosines of the plane. The process
consists of discretizing the values of 6, ¢ between 0° and 90°,
and 0° and 360°, respectively, and then evaluating the values of
p for the point clouds. The triplet {6, ¢, p}, each representing a
unique plane, is analyzed for recurring counts. The triplets that
reach certain number of counts are regarded as possible planes.
However, this process results in spurious planes when process-
ing lidar point clouds. Most of the implementations therefore
use additional constraints. Reference [17] combines the process
with building ground plans to eliminate some spurious planes
and then project the remaining planes onto 2-D axial planes
to further investigate and eliminate possible spurious planes.
Reference [18] tests the ratio between the plane area and its
number of points to discard spurious planes.

Another popular method for extracting models from a data
set is the RANdom SAmple Consensus (RANSAC) approach
[19]. It randomly and iteratively samples the least number
of data points necessary to determine the model parameters.
The derived parameters are then tested against the rest of the
data set. The process stops when a sufficient number of data
points from the rest of the data set fit with the parameters. At
this time, the parameters are reestimated with the new set of
data points. The RANSAC method needs to be applied to the
entire data set and generates only one set of parameters when
the process is finished [20]. Therefore, to extract polyhedral
building roofs with multiple planes, the process has to be used
iteratively and in a subtractive manner. This means that the
points that have been shown to belong to a particular plane
are excluded from the next RANSAC iteration. The RANSAC
process has been used to estimate polyhedral building models,
although it can lead to false planes, particularly when being
used without any additional constraints and when the data set
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is noisy. Although it is an iterative process, [21] suggests it
is faster than the Hough transform. It improves the RANSAC
plane segmentation process by having a limit on the minimum
number of points for a plane segment and the standard deviation
in the final fitted plane. Reference [10] uses a combination
of region growing process and RANSAC to determine roof
planar segments. The data (in raster form) are used to estimate
the slopes at all pixels and the pixels with similar slopes are
grouped together. A RANSAC process is used to determine
the points within each group that belong to a single plane.
Determining the slopes in a noisy data set or near regions of
ambiguity such as breaklines and step edges, vertical walls,
trees, chimneys, etc., is a difficult process. The process of
grouping pixels of similar slopes may not be simple because
of the presence of these outliers, and the groups may turn out
to have a larger than optimal “tail.” The RANSAC process may
alleviate the issue, but since it is used to determine different
planes from a single grouping, it can result in some spurious
planes.

Classification or clustering techniques can also be used for
segmentation of lidar points. Such techniques look for pat-
terns in the data set. In case of building reconstruction, the
patterns are homogenous surfaces, such as planes, separated
by breaklines. A feature vector is defined to characterize the
object to be extracted as uniquely as possible. In case of planar
surfaces, the feature vector at each lidar point can consist
of the surface normal and location of the point [22]. The
normal vector can be generated by selecting a neighborhood
around a selected location and fitting a plane based on the
least squares criterion. References [23]-[26] demonstrate the
use of clustering techniques for building extraction. Reference
[23] uses a slope adaptive neighborhood to generate the feature
vectors. Reference [24] clusters feature vectors by generating
a tangential plane (normal vectors) and a height difference
measure. The choice of neighborhood assumes importance for
generating the tangential planes as they may be affected by
the presence of noise and outliers. In [25] and [26], the data
set is divided into patches, each of which is evaluated with
respect to its planarity. The determined planar patches are then
clustered into roof planar segments based on their normals
and connectivity. Reference [27] generates the Gaussian sphere
formed by the unit normal vectors of all data points and then
determine the clusters of the normal vectors using a mean shift
clustering process. Different types of clusters are identified on
the Gaussian sphere, including pointlike, curvelike, and arealike
clusters. Regions are then segmented based on priorities for the
clusters, with pointlike (planar) clusters receiving the highest
priority. The disadvantage of this technique is that the assump-
tion on the number of segments is rather subjective, and the
clustering process is susceptible to noise, which includes both
sensor noise and model bias.

It should be noted that lidar data will invariably contain
returns from regions that may not be planar, for instance from
parts of trees, arches, chimneys, etc. This is in addition to
the sensor and other kinds of noise present in the measure-
ments. Such returns represent biases from the assumption of
planarity and hence need to be removed from the segmentation
process. The segmentation algorithms described above do not
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necessarily take into account the diversity of the spatial nature
of the lidar data sets.

This paper presents a solution framework for building roof
extraction. It tries to minimize the shortcomings of the afore-
mentioned segmentation algorithms. We first apply eigenanaly-
sis to every lidar point to determine its planarity. Nonplanar
points, such as trees, roof edges, and arches are excluded
from the subsequent clustering to warrant a robust solution.
This avoids the general pitfalls of most region growing and
clustering processes, while taking advantage of the edge-based
approach. It should be noted this strategy is also consistent with
the human vision process, in which objects are mostly perceived
based on their edges and boundary [28]. In the next step, the
fuzzy k-means approach is adopted to cluster the planar points
into roof segments based on their surface normals. As a measure
of cluster similarity, the distance criterion in this process con-
siders both geometry (the Euclidean distance in feature space)
and topology (the planarity of the points). This method also
allows for a determination of the number of planar segments
of a building by using a potential-based iterative clustering
process. The final roof reconstruction explicitly determines the
location and connectivity of roof boundary, ridges, and vertices
based on the segmented planes.

In the remaining content of this paper, Section II discusses
neighborhood selection, surface normal calculation, and break-
line detection. Section III describes a potential-based fuzzy k-
means clustering technique to determine the lidar points that
belong to the same class. A density-based connectivity analysis
allows for further separation of the coplanar segments. The
properties and performance of the clustering process are dis-
cussed and evaluated in Section I'V. In Section V, the topologic
relations among the planar segments are represented by an
adjacency matrix, which is used to determine roof ridges, edges,
and vertices of the building model for final reconstruction.
Results of segmentation and reconstruction for buildings with a
variety of complexities are presented and evaluated. Section VI
presents the final discussion and conclusion on the techniques
presented in this paper.

II. SURFACE NORMAL VECTORS

One of the representations of a surface is the envelope of its
tangential planes [29]. Since the surface normal vectors define
these tangential planes, surface normal determination becomes
one of the first steps in surface reconstruction. This section will
address the neighborhood selection and dimensionality analysis
for such purpose.

A. Neighborhood Selection

Let P represent the subset of lidar points that belong to the
roof of a single building. To estimate the surface normal at a
point p € P, a set of neighborhood points of p needs to be
chosen. A large neighborhood may result in the loss of the local
characteristic of the surface, while a small one will lead to an
insufficient number of points for reliable surface determination.
Therefore, it is critical to select a proper neighborhood. Refer-
ence [30] discusses the normal vector estimation for a smooth
surface from discretely sampled points, and suggests using the
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Fig. 1. Voronoi neighbors (square dots) of the circled dot. The Voronoi cells
are shown in lines and the cross (+) dots are other lidar points in the point
cloud. The two axes are in meters.

Voronoi neighborhood V), of the point p. It is justified that the
Voronoi meshing creates a unique set of neighbors for each
point and the Voronoi meshing process does not depend on the
point density. An example of such Voronoi neighborhood for
a lidar point is shown in Fig. 1, where the Voronoi neighbor-
hood of the circled point is shown by the squared dots. This
paper will use the Voronoi neighborhood V), for surface normal
calculation.

It should be noted that the characteristics of the aerial lidar
data and the object of this paper (building roof) allow for using
2-D Voronoi polygons to define the neighborhoods. Except
regions near the vertical walls of a building, the point cloud can
be approximated by a 2-D surface. There are, if any, only a few
lidar returns from the vertical sections of a building, which are
usually insignificant comparing to the returns from the building
roof. As will be discussed in the next section, normal vectors
for such points, i.e., points that lie in the neighborhood of more
than two planes, will be discarded for robust clustering.

B. Planar and Nonplanar Points

A point p € P can be locally described as lying on a 0-D,
1-D, 2-D, or 3-D manifold. A point p is described as 0-D if it is
isolated, i.e., it does not have any neighbors. Examples of such
points could be returns from a small chimney, a part of a tree, or
simply a noisy return. The neighborhood of a 1-D point should
all be on a straight line. A point p is described as 2-D if it lies
locally on a planar surface, or 3-D if it lies near roof edges, roof
ridges, curved roof surface, or trees. In Fig. 2, the bright points,
mostly at the ridges, are considered as 3-D, whereas the dark
ones are considered as 2-D.

The normals of 0-D, 1-D, or 3-D points are either nonexistent
(0-D) or ambiguous (1-D, 3-D). Therefore, they should be de-
tected and excluded from the subsequent clustering operation.
A dimensionality analysis can help identify such points. A 2-D
point needs a linear combination of two mutually orthogonal
vectors (also called basis vectors). Similarly, a 3-D point needs
three mutually orthogonal basis vectors. Suppose the Voronoi
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Fig. 2. (Dark dots) Two-dimensional (planar) points and (bright crosses) 3-D
(nonplanar) points.

neighborhood V,, consists of a set of m,, points {X; (i =
1,...,my)}. Let X be their mean vector, then the covariance
matrix Xxx is calculated as

mp

Sxx :Z(Xi ~-X)(X; —X)T. (1)

i=1

For this covariance matrix ¥Xxx, its eigenvalues Aj, Ao,
A3(A1 < Ao < A3) and their corresponding eigenvectors A,
A5, A3 can be determined. The eigenvalues imply the dimen-
sionality of the lidar point p, while the eigenvectors represent
the basis vectors of the neighborhood. If the dimensionality
is two, i.e., if the vicinity of the point p lies on only one
plane, there would exist only two nonzero eigenvalues. If the
dimensionality of the point is three, all three eigenvalues will
be nonzero. For a single isolated lidar point, there will be no
neighborhood defined. It should be noted the aforementioned
principle is similar to the principle component analysis or
transform approach widely used in image processing [2] and
machine learning [31].

Since lidar data sets have certain inherent noise associated
with them, and taking into consideration factors such as surface
roughness, it is not reasonable to expect a zero eigenvalue,
even for a planar neighborhood. Therefore, if the normalized
eigenvalue, which describes the local flattening at the lidar point

A=XM/(A1+ A2+ A3) 2

is less than a threshold ey, then the neighborhood can be hy-
pothesized to be planar. The bright dots in Fig. 2 are determined
to be points that satisfy the condition \ > ey, where ey is
taken as 0.005 in this paper (see Section I'V-A for discussion).
Fig. 3(a) shows the distribution of the normals calculated for
every lidar point of the same building. As can be noticed,
the distribution is noisy with many randomly scattered nor-
mal vectors. Fig. 3(b) shows the distribution of the normals
from only differentiable regions without including the breakline
points. Such regions correspond to the dark points in Fig. 2.
It is noticed that the distribution is less noisy, and the clusters
of normals become apparent. This supports the statement that
the breakline points should be detected and excluded from the
subsequent clustering operation. The same building is shown in
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Fig. 3. Distribution of the surface normals of the building in Fig. 2. (a) For
all points. (b) Without breakline points. The three coordinate axes are normal
vector components.

Fig. 5(a) and (b), while its detected breakline points and planar
points are shown in Fig. 5(c) and (d), respectively.

III. ROOF SEGMENTATION

Having detected and (temporarily) excluded the nonplanar
points from consideration, we are left with the planar points.
This section will cluster them into individual roof segments
based on their normals determined in the previous section.

A. Clustering Methods

Several types of clustering methods are available [31]-[33].
The hierarchical methods build a cluster hierarchy or a tree of
clusters known as a dendrogram. Every cluster node contains
child clusters, while sibling clusters partition the node of
their common parent. The hierarchical algorithms can be
agglomerative or divisive. The agglomerative algorithms are
a bottom-up method that begins with the assumption that each
data point (in feature space, also called feature vector, such
as the normal vector in this paper) is a separate cluster and
then merges some data points into one cluster based on a
distance threshold. The process continues until the distance
between clusters is larger than the given threshold. The divisive
algorithms are a top-down method, which starts with a single
cluster containing all data points and then successively splits
the resulting clusters until the predefined number of clusters &
is reached. The partitioning methods iteratively relocate data
points among various clusters until they achieve the greatest
distinction. The popular k-means algorithm and its variations
belong to this category. They produce k different clusters of the
greatest possible distinction [31] (see also the next section). The
partition may also be formed using an objective function that
leads to what are called decision boundaries. As an extension of
the traditional partitioning method, the model-based methods
assume that the data are generated from a mixture of probability
distributions with each component corresponding to a different
cluster. The goal of the clustering algorithm is then to maximize
the overall probability or likelihood of the data [31], [33]. The
density-based methods mostly work in the original data space
[32], where the data are separated into different spatial regions.
They are particularly useful when the shape and size of the
clusters are random. These methods calculate the density at
each data point and use a connectivity criterion to categorize
all the “connected” data points with a similar density. Finally,
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it should be noted that all clustering methods work in a feature
space, which can simply be the Cartesian coordinates (i, y, 2)
(simply called segmentation in most applications) or the
intensity values of multiple bands (image classification). The
clustering algorithms group the data points close to each other
and separate the data points far from each other. The definition
of “close” and “far” depends on a distance measure, such as
the Euclidean distance (in feature space) or its variations.

B. Fuzzy k-Means Algorithm

This paper will use the fuzzy k-means algorithm [31], [33]
to determine the clusters. In this method, a data point does not
belong to only one cluster entirely. Instead, it can belong to any
of the clusters at certain degree of belonging. The degree of
belonging depends on the distance of a data point to a cluster
center, such that the data point gets a higher weight for a close
cluster center than for a far cluster center. The algorithm is
similar to the statistically inclined expectation maximization
(EM) algorithm [31]. Instead of using the probability densities
that specify the degree to which a data point belongs to a cluster,
the inverse distance measure is used in the fuzzy k-means
algorithm. The algorithm works in the following manner.

1) Choose the approximate values for the number of clusters

and the cluster centers.

2) Each data point (normal vector) is assigned a weight
toward every cluster, depending on the distance of the
data point to the cluster center.

3) A weighed mean is obtained for the location of each
cluster center

Ci = i (wiN;) /Zm:wﬂ (3)
i=1 i=1
where

N; = (ny ny nz)lT )

4) Each data point is assigned to its closest cluster center.

In the aforementioned equations, N is the normal vector of
the 7th lidar point, i.e., the eigenvector corresponding to the
minimum eigenvalue; w; is the weight of the ith data point
toward the jth cluster; m is the total number of data points;
and C7 is the jth cluster center. The weights are also updated
in iterations, depending on the distance between a data point
and the newly calculated cluster centers. The steps 2, 3 and 4
are repeated until the cluster centers converge.

As a modification to the aforementioned fuzzy k-means
approach, we introduce topologic information into the cluster-
ing. We argue that the clustering should depend not only on
the distances to the cluster centers but also on the topologic
properties, i.e., the dimensionality of the lidar points, such that
a nonplanar data point should get a smaller weight toward the
cluster center. Hence, in addition to the geometric Euclidean
distances, we use 1/ as the topologic weight component to
each data point. Thus, the combined weight or probability that
a feature vector N; belongs to the cluster center C7 is

wf:P(NieCj)cx(W’> /||Ni—Cj||. 5)
1 i
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It should be noted that both the ratio [(A; + A2 + A3)/A1]i
and the distance ||N; — C7|| are normalized to lie between zero
and one, respectively, and the combined weight [(A; + A2 +
A3)/A1]i/||N; — C7|| is also normalized to lie between zero
and one. This technique of adjusting the traditional inverse dis-
tance weights to the data values reduces the effects of outliers
to the fuzzy k-means (also called fuzzy c-means) classification,
is therefore termed as robust fuzzy c-means method [34], [35].

C. Cluster Centers and the Number of Clusters

The fuzzy k-means algorithm requires the number of clusters
and their approximate locations to start the computation. In our
case, this essentially means knowing the number of distinct
planar directions and their approximate directions, neither of
which is realistic. This section describes a method to determine
the number of clusters and estimate their initial centers.

The potential-based clustering is introduced in [36]. “Poten-
tial” can be understood as the likelihood for a data point to be a
cluster center. It first divides the feature space into grids and the
potential of each grid is computed based on the distance from
the grid center to the data points. A grid with many data points
nearby will have a high potential, and the grid with the highest
potential is chosen as the first cluster center. After that, the
potential of the nearby grids is reduced based on their distance
to the cluster center. This is to make sure that two grids that
are close together do not become different clusters. The next
cluster center is then chosen from the remaining grids with the
highest potential. Reference [37] further develops this concept
by using the actual data points instead of the grids as the cluster
centers. The potential in [37] is analogous to the concept of
energy potential, except that it is exponentially proportional to
the inverse squared distance, with a fixed maximum distance
representing the sphere of influence. The potential of a data
point N; is calculated as

- 4
pz‘:Zexp{—ﬂlle—Nﬂ} (6)
=1 a

where m is the number of data points and r, is a positive con-
stant. The constant r, defines a neighborhood, outside which
the data points have little influence on the potential. As is shown
in the aforementioned equation, the potential of a data point is
dependent on its distances to all data points. A data point with
many neighboring data points will have a high potential value.

The aforementioned potential concept is used to determine
the cluster centers for the k-means clustering. The first cluster
center is chosen as the data point that has the greatest potential
(i.e., the maximum value of p; for all 7). To reduce the possi-
bility of the next cluster center being close to the first cluster
center, the potential for every data point is then reduced as a
function of its distance to the first cluster center

* 4 %2
Pi_new = Di_old — P1 * €XD {—r2 [N; — N7l } @)
b
where p; new and p; gq are, respectively, the new and old

potentials of the data point ¢, Nj and pj are, respectively, the
selected first cluster center and its potential. For this reason, this
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Fig. 4. Likelihood versus the number of clusters. The elbow point (5) is
selected as the number of clusters. The plot is for the building in Fig. 2.

methodology is also called subtractive clustering. Reference
[37] recommended a ratio of 1.5 between 7}, and r,, such that
the data points near the first cluster center will have greatly
reduced potentials, and therefore will unlikely be selected as
the next cluster center. The selection of the ratio depends on
how close we want the clusters to be. In terms of building roof
segmentation, the ratio determines how a roof segment can be
directionally close to the other. Once the potentials of all the
data points are updated based on (7), the data point with the
current largest potential will be selected as the second cluster
center. As in the process described by [37], the aforementioned
process of acquiring new clusters stops when the cumulative
potential in (7) reaches a threshold that is below 10% of the
first potential.

It is clear that the value of the radius r, is critical to the
clustering results. A smaller r, will yield a higher number of
clusters and vice versa. Since we are operating in feature space,
it is difficult to design a reasonable value for r,. To overcome
this problem, the method described in [37] is iteratively imple-
mented. Starting from a small radius and increasing it gradually,
fewer and fewer cluster centers will be obtained. The cluster
centers generated for each r, are used as the input to the fuzzy
k-means clustering algorithm. We choose the initial value of r,
to be the mean value of the least 10% of the distances between
data points.

At the end of the clustering, a likelihood estimate for each
cluster is produced to measure the compactness of the cluster.
Since a small value of r, produces more clusters than a large
value of r,, we can plot the likelihood estimates versus the
number of clusters (instead of 7,), as shown in Fig. 4. We
define the likelihood estimates as the average distance from
the cluster center to the data points. Considering a case of k
clusters, the mean distance of data points from their respective
cluster centers is calculated as

b=l / md (®)
=1
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where dg is the distance of a data point ¢ in cluster j to its
respective cluster center, mJ is the number of data points in
the jth cluster, d’ is the mean distance of the jth cluster. The
likelihood value for one clustering run is then defined as

k
d= Zdj/k. 9)
j=1

As shown in Fig. 4, the likelihood falls sharply onto a place,
after which the decrease becomes stable. The “elbow joint” is
considered to be a good estimate on the number of clusters in
the data set [31], [38]. At the end of this process, we know:
1) the number of clusters; 2) the cluster centers; and 3) the
mapping of each data point to a cluster. Fig. 5(e) shows the
clustering result at this stage.

D. Separation of Parallel and Coplanar Planes

At the end of the aforementioned clustering process, we have
the directions of all the roof planes, described by their normal
vectors N = (ny,n,,n.)". Each cluster actually describes a
family of parallel planes with the equation n,x + n,y +n.z —
p = 0. The value of p can be used to further segment the
parallel planes. This is accomplished by plugging the lidar point
coordinates of the same cluster into this equation. Lidar points
that yield similar (within £1.5 m) p values are regarded to
belonging to the same planar segment.

In the next step, we can attribute the initially detected non-
planar points (breakline points) back to their respective planes.
Each breakline point is tested against every plane equation
Nz T + nyy +n,z — p = 0. The plane that returns the mini-
mum disclosure that is within a certain threshold (2.0 m) will
be assigned to the lidar point being tested. The lidar points that
do not belong to any plane are regarded as trees or ground and
discarded from further processing.

Finally, a building roof can have two or more planar segments
that are mathematically the same, but spatially separated. Such
coplanar segments can be separated in the original data space
based on the concept of density clustering and connectivity
analysis [32]. The corresponding threshold in this paper is
chosen as two times the lidar data ground spacing.

Fig. 5 shows the series of steps that have been discussed
above for the example building shown in Fig. 2. The data set
has a ground spacing about 1.1 m over the Purdue campus at
West Lafayette, IN.

From left to right in the top row of Fig. 5, they are the build-
ing aerial image (from Google Earth, (a), and lidar points atop
the triangulated irregular network (TIN) model (b). The second
row displays the separated breakline points (c) and the planar
points (d). It is clear that most breakline points are detected
correctly. Returns from nonplanar points, such as small roof at-
tachments are also well detected as breakline points. However, a
closer look suggests that the separation is not always perfect as
there exists “overremoval” of planar points. This usually should
not be a concern because of the large number of redundant
lidar points on the roof. Moreover, the mistakenly detected
breakline points will be back-projected to the planar roofs
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Fig. 5. Clustering and segmentation of roof lidar points. (a) Image (from
Google Earth). (b) Lidar points. (¢) Breakline points. (d) Planar points.
(e) Clustered points. (f) Planar segments.

after clustering. The opposite situation, “underremoval,” occurs
when real breakline points are not correctly detected. This takes
place at relatively flat or smoothed roof ridges or edges where
breaklines are wide and form a small flat region. Both mistakes
may potentially cause inaccurate determination of roof plane
boundaries in the subsequent steps. In this example, we have
five clustered directional planes (e) shown with different colors.
After separating parallel planes based on their distance from
the coordinate origin, and separating coplanar segments based
on density connectivity, we obtain the final segmented results,
where the lidar points are segmented into 12 individual planar
segments as color coded in (f).
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IV. DISCUSSION AND EVALUATION
A. Discussion

The selection of the neighborhood affects the calculation of
the normals and hence the segmentation results. The Voronoi
neighborhood is a natural selection since it does not need to
specify how many lidar points to be selected and fully depends
on the geometry of the data set. Unless the lidar point under
consideration is at the edge of a building, at least five well-
distributed neighboring points are likely to be included. This
can provide a good estimation on the surface normals. As the
current lidar systems can collect data in a resolution up to
several or tens of points per square meter, essentially most roof
planes can be segmented. Similar to many other neighborhood-
based methods, however, some Voronoi neighbors of an interest
point at the building or segment boundary can be far away.
Including such points can lead to an incorrect normal estimate.
Hence, neighboring points beyond a threshold of three times
the lidar data ground spacing are excluded from normal vector
calculation.

The breakline test needs a threshold for the normalized
eigenvalue or local flattening A = A1 /(A1 + A2 + A3). A lidar
point with \ < ex will be considered as a planar point. A
small threshold may result in a planar region being classified
as breaklines, while a large one will result in the opposite.
Our experiments with different buildings found that ex- = 0.005
gives satisfactory results. It can balance the two types of
errors, namely, breakline points being clustered as planar (un-
derremoval) and planar points being categorized as breaklines
(overremoval). A slight bias toward the second type of error,
i.e., a smaller threshold, does not significantly affect the final
results since the high density of lidar data usually provides
sufficient redundancy to determine a plane and the initially
removed breakline points will ultimately be mapped back to
their corresponding planes after clustering.

The aforementioned empirical selection of the threshold e
can also be discussed theoretically. When fitting a plane over
the neighborhood V), of a point p with the least squares method,
it is shown in [39] that the smallest eigenvalue \; is the
sum of the squared distances of the points in V), to the least
squares plane. In addition, the sum of the eigenvalues represents
S (zi —7)% + (yi — Y)? + (2 — 2)%, with m,, being the

number of points in V},. Thus, A can be written as

%(xi —&)? 4+ (yi — 9:)° + (2 — 2)?
A= (10)
(w7 + (4 — 1Y) + (2 —2)°
=1

where (Z;,9;, 2;) represents the least squares plane projection
of point ¢, and (Z,y, Z) is the center of V,,. Consider a 3 X
3 point distribution at a regular spacing A, the sum of the
squared distances to the centroid is 12A2. If the uncertainty
in the position of each lidar point is assumed to be 0.1 m, the
numerator of (10) becomes 9 x 0.01 m?. Let the lidar point
spacing be A = 1.1 m, this ratio turns out to be 0.006.

As many other pattern recognition problems, the clustering
for segmentation is affected by the presence of noise. Fig. 3(a)
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shows a plot of the normal vector values, where each dot is a
feature vector that represents the estimated normal vector at a
lidar point. As shown, the dots are scattered in a rather random
manner without a clear pattern. Directly working with these
data would be very difficult to produce good clustering results.
However, a pattern is apparent in Fig. 3(b) once the breakline
points are excluded. The dots are now located in distinct clus-
ters, indicating that there are only several planes facing different
directions in the building. This justifies our strategy of detecting
the breaklines and removing them from clustering due to their
ambiguity. It is noticed that some dots seem to be slightly away
from the cluster centers, which is most likely caused by lidar
points at the breaklines or other nonplanar features that have
not been completely removed when separating the planar and
the nonplanar regions. The existence of some isolated dots away
from the cluster centers implies that they are likely trees or other
nonplanar points.

The potential-based clustering approach can reduce the effect
of such off-center outliers that are mixed in the data points, and
correctly determine the number and locations of these clusters.
In the elbow-joint graph of Fig. 4 that plots the likelihood
values for different number of clusters, we choose the number
of clusters as five (5) at the place where the distinct change
occurs. This way, the clustering process is able to determine the
number of distinct planes with different normals and the lidar
points of each directional plane.

The segmentation algorithms reviewed in Section I do not
necessarily take into account the diversity of the geospatial
nature of the lidar data sets, such as returns from trees, vertical
walls, chimney, curved structures, and other irregular objects,
in addition to the noise present in the data. Most segmentation
algorithms assume a parametric nature for the data, which is
definitely not the case with lidar data over an urban environ-
ment. We present a way to detect such points to achieve a robust
segmentation. The eigenvalue analysis generates a measure
for the planarity in the neighborhood of a lidar point. Thus,
nonplanar points, such as trees or regions of breaklines at the
intersection of two planes, are initially excluded from the subse-
quent clustering process. This avoids the general pitfalls of most
region growing processes, which do not work well near edges.
The reconstruction process then explicitly determines the loca-
tion and parameters of the edges by using the segmented planes.

The aforementioned clustering process also features several
improvements. It can select the number of clusters and a good
approximation to the cluster centers. Since the fuzzy k-means
algorithm is known to be sensitive to outliers in the data, we
consider the effect of noise and remaining nonplanar normal
vectors by further introducing the concept of topologic weight
and using the least eigenvalue as a weighting factor, which
provides a robust means for estimating planar directions.

It should be noted that the presence of a curved surface (e.g.,
a sport dome) in a building can lead to over segmentation.
In this scenario, the lidar points of a curved surface will be
segmented into more than one planar piece within certain toler-
ance. Some surface fitting or modeling steps may be followed
based on the segmentation results. Since this paper assumes
that all the building roofs are polyhedral, this scenario will be
discussed elsewhere.
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TABLE 1

RESULTS (IN DEGREES) OF CLUSTERING DIRECTIONAL PLANES™

Cluster# [ Count Min Max Mean (@
1 403 0.050 12.588 1.768 1.262
within 2 388 0.100 11.527 1.670 1.342
cluster 3 160 0.119 12.612 2.257 2.305
4 174 0.141 8.356 1.722 1.510
5 78 0.854 13.029 5.359 2.573
between-cluster distances 24.537 52.508 35.319 10.106

for the five clustered planes

*Cluster#: sequential cluster number; Count: the number of normal vectors in
the cluster; Min, Max and Mean: the minimum, maximum and mean angular
difference (in degrees) from the mean of one cluster (for within-cluster) or
entire clusters (for between-clusters); ¢ : standard deviation (in degrees) of
the angular difference from the mean of one cluster or entire clusters.

TABLE 1I
PARAMETERS AND STATISTICS FOR SEGMENTED PLANES™
Pl# | #Pts Ny ny, ny P Min | Max o
1 434 0.452 0.003 0.892 96.43 -0.13 | 0.12 0.04
2 93 0.442 0.004 | 0.897 | 110.53 | -0.10 | 0.09 0.04
3 23 -0.441 | -0.003 | 0.898 | -77.76 | -0.07 | 0.09 0.04
4 474 | -0.446 | -0.003 | 0.895 | -35.99 | -0.13 | 0.12 0.05
5 35 -0.001 0.430 0.903 102.18 | -0.14 | 0.56 0.07
6 26 -0.005 0.444 | 0.896 | 108.46 | -0.06 | 0.06 0.03
7 177 | -0.003 0.447 0.894 | 130.38 | -0.10 | 0.09 0.04
8 29 0.001 -0.430 | 0.903 | -57.83 | -0.13 | 0.11 0.05
9 23 0.007 0.431 0.902 55.61 -0.06 | 0.05 0.03
10 188 0.006 | -0.451 | 0.892 | -35.21 | -0.09 | 0.10 0.03
11 80 0.019 | -0.012 | 1.000 20.50 -0.60 | 0.51 0.09
ucC 19 - - - - - - -

* Pl#: sequential plane number; #Pts: the number of lidar points in a plane; n,,
ny, n, and p : plane parameters of directional consines and intercept (in meters);
Min, Max and o: min., max. and standard deviation of the distances of lidar
points to their corresponding planes (in meters). UC: Unclassified.

B. Evaluation

Three tables are produced to assess the performance of the
aforementioned steps. The first table (Table I) captures the
results from the clustering process. It shows that the normals in
Fig. 3 are clustered into five (5) classes. It also lists the within-
cluster minimum, maximum, mean, and standard deviation of
the differences (in degrees) for the normal vectors with respect
to their corresponding cluster centers. The maximum value of
2.6° for the standard deviation suggests that all normal vectors
within this range of each other are considered to belong to
the same cluster. Finally, the minimum separation of 24.5°
between different clusters indicates the normals are very well
separated.

Table II presents an evaluation of two counts: the assumption
of polyhedral roof and the correct determination of the planar
parameters. Once the roof points are segmented, their per-
pendicular distances pg = n,x + nyy + n.z (with n2 + n? +
n? = 1) to the planes on which they are supposed to lie are
evaluated. The columns of Min and Max indicate the signed
minimum and maximum distances of a segmented point from
its corresponding plane. The extreme values of Min and Max
presented in the table can help draw several conclusions. It
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TABLE III
STATISTICS (IN METERS) OF PLANAR SEGMENT COMPACTNESS™

Sgmt# #Pts Min Max Mean o
1 474 0.58 1.47 1.16 0.23
2 434 0.70 1.37 1.14 0.15
3 177 0.69 1.50 1.10 0.19
4 188 0.69 1.41 1.12 0.15
5 80 0.79 1.29 1.08 0.12
6 93 0.86 1.39 1.13 0.14
7 27 1.01 1.31 1.14 0.07
8 34 0.94 1.32 1.14 0.08
9 24 0.95 1.50 1.19 0.19
10 21 1.04 1.36 1.17 0.09
11 10 1.00 1.28 1.16 0.10
12 13 0.87 1.32 1.13 0.15

ucC 26 - - - -

*Sgmt#: segment number; #Pts: the number of lidar points in a
segment; Min, Max and ¢ : minimum, maximum and standard
deviation of the triangle edge lengths in the triangulation of
lidar points, all in meters.

shows the capability to separate two parallel planes. An extreme
value of —0.60 m is obtained for this building. This indicates
the worst nonplanarity within one planar cluster. The small
standard deviations (max. 0.09 m) suggest the overall planarity
of the segmented roof points. Together with the Min and Max
columns, the standard deviation values measure the quality of
roof segmentation. A small measure means that the correspond-
ing points fit well with their planes, while a large value can
indicate two things: the segmentation is not proper, i.e., the
points may belong to different planes, or the assumption of the
polyhedral nature of the roof is not valid. The unclassified (UC)
row shows the results for points that do not match any of the
planes generated from the process. A majority of these points
lie inside a twin depression on the roof of the building (Fig. 5).

Table III presents a measure of compactness of each planar
segment. The PI# 3 in Table II is separated into two segments
(Sgmt# 11 and 12) in Table III. The points of each segment are
triangulated and the edge lengths of each triangle are recorded.
Shown in Table III are the statistics of the triangle edge lengths
for all the roof segments. The table shows the compactness of
the resultant roof segments. It is shown that the average edge
length in a roof segment is very close to the lidar point density
(~1.1 m), and the small standard deviation of the lengths
suggests that the triangles are mostly equilateral, which reflects
the distribution of lidar points on a building roof. This shows
that the final segmentation is density compact, and there is no
apparent outlier in the results. The row labeled UC refers to the
lidar points that are not classified and are mostly returns from
vertical sections or walls of the roof. It has been included for
the sake of completeness. It should be noted that the reason the
count of UC points has increased from 19 in Table II to 26 in
Table IIT is due to the fact that spatial separation of planar points
has resulted in some isolated points (less than three in numbers)
and hence they are added into the UC class.
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TABLE IV
PLANE CLUSTERING STATISTICS (IN METERS) FOR 15 BUILDINGS™
Building |y | 4yc | #pls | Min | Max | ©
Name

Lambert 6285 286 8 -1.01 0.67 0.15
Compt. Sci. 1601 19 11 -0.60 0.56 0.04
Mech. Eng. 3017 214 14 -1.96 1.40 0.16
Ag. 1 3226 271 15 -1.29 1.21 0.24
Stanley 2128 59 14 -1.05 1.28 0.11
Chem. Eng. 1774 56 10 -0.88 0.79 0.10
ISS 2208 170 21 -1.52 1.53 0.15
Ag. 3 1515 49 13 -0.97 1.40 0.17
Dorm 763 85 7 -1.19 1.30 0.13
Mathews 1584 36 7 -1.13 1.25 0.13
Health Ctr 2009 55 12 -1.10 1.30 0.15
Tourism 2065 104 8 -0.95 1.40 0.19
Physics 8942 302 22 -1.72 1.14 0.17
Stewart Ctr 14748 1011 46 -1.24 0.96 0.18
Hovde 1555 77 10 -1.44 1.03 0.10

Mean -1.20 1.14 0.15

e #UC: the number of unclassified lidar points

Finally, Table IV provides a summary statistics for 15 build-
ings over the Purdue University campus. Similar to Table II,
Table IV shows that the average resolution among parallel
planes across these buildings is ~1.2 m. The UC points rep-
resent lidar returns from vertical walls, small chimneys, over-
hanging trees, etc., that have not been classified into any roof
planes. The ratio of UC points to the total number of points is
~5%. This is calculated by dividing the sum of the numbers
presented in the column “UC” to the sum of the numbers
presented in the column “#Pts.” The UC point percentage also
depends on the type of the roof. A roof with large number of
small planes is likely to have more UC points.

V. BUILDING RECONSTRUCTION

Building reconstruction is the determination of the building
shape with minimum parameters or minimum geometric primi-
tives (such as vertices) and their connectivity. This section uses
the segmented lidar points to reconstruct the building roof and
evaluate its quality.

A. Method

The roof consists of roof planes, breaklines (ridges), edges
(roof boundary), and the corresponding vertices. Since the
clustering results have determined each planar segment and its
belonging lidar points, the reconstruction step will intersect
these planar segments to determine the roof breaklines and
vertices.

An adjacency matrix is used to describe the connectivity
among the planar segments. We define the distance of two
planar segments as the minimum distance of all possible point
combinations between the two segments

d(P,Q) = min (d(ps, q;))

where d(P, Q) is the distance between two planar segments
P and @, d(pi,q;) stands for the distance between any two
points p; and g;, respectively, in the segments P and (). As the

Vpi € P; Vq; € Q (11)
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Fig. 6. Planar segment adjacency and vertex determination for building
reconstruction.

TABLE V
ADJACENCY MATRIX OF THE BUILDING IN FIG. 6
Vertex | 1|2 3|4 [5]6]|7|8|o]10]1nn]12
1 * %
2 * * * * * *
3 * *
4 * *
5 * * * * * *
6 * * & * * & *
7 * * * *
8 * * * *
9 * *
10 * *
11 * & % *
12 * * * *

result of such neighborhood evaluation, the adjacency matrix is
formed for all the planar segments of a building. It represents
the mutual adjacency between any two roof segments. For the
building model shown in Fig. 6 (the same building as Figs. 2
and 5), the corresponding adjacency matrix is listed in Table V.
For plane 1, the adjacency matrix suggests it is adjacent to
planes 2, 3, and 4. The intersection of planes 1 and 2 is the
breakline EF, with E and F denoting vertices. To determine
these two vertices, we need the planes that are adjacent to both
planes 1 and 2. We determine this from the adjacency matrix
by looking at the rows of planes 1 and 2, and determining that
planes 3 and 4 are adjacent to both planes 1 and 2. Under the
assumption that the intersecting planes do not form a volume,
i.e., we are dealing with a surface, the intersection of the three
adjacent planes {1,2,3} determines the vertex F, whereas E
is obtained as the intersection of planes {1,2,4}. In general,
a vertex is called degree r-vertex if it is the intersection of
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Fig. 7.

(Left) Building with flat roof planes and (right) its reconstruction.

r planes. As shown in Fig. 6, E and F are degree 3 vertices
and can be, respectively, determined by solving the equations
of the three corresponding planes. Similarly, vertex I and J
are determined, respectively, by using four planar equations
because their degree is 4.

However, singularity occurs when determining a vertex with
r < 3. For vertices A and B on the building edge or boundary,
r is two. In this situation, we need to introduce the boundary
constraint. Vertices A and B are, respectively, forced to lie on
the breaklines AE and BF determined by using the adjacency
matrix. The actual location of B is determined by projecting
all the boundary points in planes 1 and 3 that are “close”
(i.e., points that lie at a distance slightly less than twice of the
point spacing) to the line BF and then selecting the end point.
An alternative solution is to introduce one or more vertical
planes that pass through the building edges [26]. For example,
to determine the vertex B, two vertical planes, respectively,
passing the boundary line BA and BC are introduced. They
will join the roof planes 1 and 3 to determine the vertex B.
Another singular situation is that no adjacent plane (r = 1)
is found for a given roof segment. This occurs frequently in
buildings with flat roofs. As shown in Fig. 7, the building has
three major roof planes, none of which has adjacent planes.
Hence, such buildings can only be reconstructed by regularizing
their boundaries as discussed in [40].

This section presents a general solution to the aforemen-
tioned boundary reconstruction problem. It is extended from
the authors’ recent work [40], which determines a building’s
footprint through a local convex hull approach and then regu-
larizes it to two mutually orthogonal directions. This process
[40] first approximates the roof boundary from the segmented
lidar points by applying a local convex hull approach. In the
next step, the longer line segments are determined from the
approximate boundary, which estimates the orientation of
the building footprint. All line segments are then constrained by
using a least squares formulation to lie perpendicular or parallel
to each other. The aforementioned process is generalized as be-
low to consider arbitrary directions. The central idea is to divide
the boundary into several mutually perpendicular or parallel
line groups; however, there is no constraint between the groups.
We consider the boundary of a roof plane shown in Fig. 7.
Let the equation of the plane be n,x +nyy +n.z —p =0,
with n2 + n? +n? = 1. The first step is to extract the longer
edges of the roof plane. This is done by sequentially following
the boundary points and looking for positions where the slopes
of two consecutive edges are significantly different. Points on
consecutive edges with similar slopes are grouped to one line
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segment. In this way, we will form a set of line segments
{l1,12,...,1,}, from which longer (>4 points) line segments
{Li,Lo,...,L,} are then selected. The longer line seg-
ments are modeled by the equation (z — T)/as = (y — 7,)/
bs = (z — Zs)/cs, Where {Z,7,Z}5 are the mean coordinates
of the points in the long line L, The parameters of the line
{a,b, c}s define the direction of the lines. In the previous work
[40], these parameters are used to divide the line segments into
two mutually orthogonal categories. In this paper, we introduce
another level of division. For any long line segment L, with the
parameters {a, b, ¢}, all line segments (given by {a, b, c},.) that
yield the dot product {ai + bj + ck} e {ai +bj + ck}, =0
(perpendicular) or as/a, = bs/b, = cs/c, (parallel) are col-
lected, and categorized into a category C1. In a similar manner,
we generate further categories C', Cs, . . ., C), such that within
each category, we have mutually parallel or perpendicular
line segments. The line segments within each category are
processed in a manner similar to what was expounded in [40].
All line segments in all categories are also constrained to lie
on the roof plane n,x + n,y + n,z — p = 0 by the vector dot
product {ai + bj + ck}, ® {nyi+ny,j + n.k} =0 and with
the additional constraint that points on the line should always
be on the plane, i.e., satisfy the equation of the plane. This
ensures that the least squares solution within each category
consists of a series of mutually parallel and perpendicular lines
that lie on the plane. However, there is no constraint among
the line segments between different categories. This is regarded
as a generalization of the previous work where a building was
considered to have only two mutual parallel or perpendicular
directions, whereas we do not restrict the number of orthogonal
directions in the generalized framework in this paper.

In summary, a building is reconstructed based on the seg-
mented planes and their adjacency matrix. A building consists
of a collection of planar segments, which are defined by their
planar equations and ordered boundary points. The adjacency
matrix defines the connectivity among the planar segments. The
intersection of three or more adjacent planes yields the roof ver-
tices. A roof edge is formed by connecting two vertices where
two constituent planes intersect. For flat roofs, they are simply
reconstructed by boundary approximation and regularization.

B. Evaluation

The aforementioned reconstruction results represent a vector
or boundary model of the building roof. The accuracy of the
derived roof planes depends on the quality of segmentation
as the equations of the planes are estimated from the seg-
mented points. Therefore, smaller planes with less number of
segmented points are expected to be less accurate than the larger
ones. Another reason for the expected drop in accuracy for
smaller planes is that a higher percentage of the segmented
points from a smaller plane are near its boundary. Table VI
shows the estimated accuracy for the roof planes of the building
shown in Fig. 6. The estimates are based on the assumption
that the horizontal standard deviation o, = o, = 30 cm and
the vertical standard deviation o, = 10 cm for each lidar point.
All the lidar points of a planar segment are used to determine
the plane equation based on the least squares criterion. Let
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TABLE VI
ESTIMATED ACCURACY OF PLANE FITTING FOR THE BUILDING IN FIG. 6

Pt | wpis |09 % 4 °p
degrees meters
1 474 0.033 0.012 0.033 0.19
2 434 0.038 0.012 0.038 0.15
3 177 0.042 0.064 0.064 0.36
4 188 0.043 0.061 0.061 0.16
5 80 0.057 0.072 0.337 0.20
6 93 0.247 0.062 0.247 0.75
7 27 0.290 0.504 0.504 1.75
8 34 0.362 0.525 0.526 3.06
9 24 0.874 0.694 0.780 4.91
10 21 0.595 0.932 0.931 3.16
11 10 0.645 0.886 0.887 5.89
12 13 1.034 0.733 0.954 7.58

the equation of the plane be n,x + nyy +n.z — p = 0, with
n? +n2 +n? =1, then its direction consines are cos() =
Ng, cos(B) =ny, cos(y) =n,. The quantities o,, o, and
o~ represent the standard deviations of the direction angles.
As expected, larger planes have higher accuracy than smaller
ones, with a range varying from 0.03° to 1.03°. It is noticed
that the smaller planes demonstrate large and unstable fitting
uncertainties, particularly in the intercept distance p.

Another concern in building reconstruction is the accuracy
of the vertices generated. Most of the vertices have been deter-
mined either using the minimal required intersection of three
planes, or as in case of the outer ones, using the assumption of
vertical walls. Fig. 8 shows five reconstructed buildings along
with their images and color-coded segmented lidar points. The
breaklines, including roof edges and ridges, are represented in
the reconstructed models. The lack of lidar returns from the
vertical sections of the building prevents their participation in
the adjacency matrix. Therefore, the vertices of a building are
determined by essentially one of the three methods: Type A,
intersection of lines, e.g., for flat roof; Type B, intersection
of lines (equivalent to vertical walls) and planes; and Type C,
intersection of planes. The vertices marked “A” in Fig. 8, cor-
respond to vertices that are formed without any explicit inter-
section of planes. They are most easily seen as corners of roof
planes that have no adjacent roofs, such as “flat roofs.” Such
vertices are the least accurate ones since they simply do not
use planar extension and determined by intersecting two lines.
The vertices marked “B” correspond to locations that are often
formed by the intersection of two planes and two corresponding
“vertical walls” (expressed as line equations). Since the vertical
walls are essentially formulated by the segment boundaries, the
participation of roof planes will enhance the accuracy of line
intersection. As the result, Type B vertices are less affected by
the intersecting lines and therefore have a better accuracy than
Type A vertices. The vertices marked “C” are locations that
are formed from the intersection of three or more planes. Most
interior roof planes have this type of vertices and can therefore
benefit from the areal extent of the lidar point clouds. This
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Fig. 8. Building images, segmented lidar points, and reconstructed buildings.
makes Type C vertices have the best accuracy. Based on the their combinations (Type B). The error propagation law then

aforementioned discussion, vertices are essentially determined allows us to estimate the average uncertainty of Type A, B,
as an intersection of lines (Type A) or planes (Type C) or and C vertices be 0.19, 0.14, and 0.12 m, respectively. This
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uncertainly may increase up to 0.42 m for small roof segments,
such as the ones in the building of Fig. 6 with only ten points.
It should be noted that the actual range of the uncertainty
for vertices may vary with lidar data sets, however, the afore-
mentioned evaluation and understanding can lead to a general
conclusion that building interior can be reconstructed with a
better accuracy than its outer boundary. In addition, Fig. 8
uses an oval to show representative areas of unclassified lidar
points, and “F” for representative flat roof planes determined by
boundary tracing and regularization. Unclassified lidar points
may cause wrong reconstruction, as shown in Fig. 8(e).

VI. CONCLUSION

We have presented a framework to segment a building and
reconstruct it from unstructured airborne lidar point clouds. A
polyhedral model for the roof is assumed as this constitutes
most buildings. The segmentation step starts with the detection
of nonplanar points, such as the points on roof ridges and
edges, and trees. This is necessary because of the ambiguity
that they may belong to more than one plane or no plane at
all. This process is similar to robust interpolation, where the in-
terpolation process proceeds after the removal of outliers (e.g.,
RANSAC). It is also similar to the semisupervised classification
process where the training data sets are compared with edge
detection results in the image and those training pixels that
lie on edges are removed. The eigenanalysis is proven to be
a theoretically sound and practically effective technique that
can satisfactorily detect these nonplanar points. The normalized
eigenvalue )\, also termed as local flattening, is essentially a
measure of flatness in the vicinity of a point, and can serve
as a critical value for nonplanar point detection. The Voronoi
neighborhood is regarded as a natural neighborhood that does
not need to specify the size of the neighborhood. It is shown to
be suitable for surface normal estimation. However, care should
be exercised in areas near the roof boundary, where the Voronoi
neighbors may not be close together. Once the nonplanar points
are excluded, finding the roof planar segments can be rather
robustly accomplished through a clustering process. It is shown
that the potential-based method can yield a stable estimate on
the number of clusters and initial cluster centers, which are
needed for the following fuzzy k-means clustering calculation.
The concept of weight in the fuzzy k-means method is extended
to consider both the geometric similarity and topologic similar-
ity for a point to belong to a certain cluster. This way the points
with a higher likelihood to be planar will get a higher weight
toward the cluster center. The separation of parallel segments
and coplanar segments can be fairly easily accomplished based
on the planar equations and the connectivity, respectively. The
entire segmentation process can be evaluated by three quality
matrices, which are, respectively, for the separation of planes
with distinct directions, separation of parallel planes, and sep-
aration of coplanar elements. It is shown the proposed solution
framework can achieve an overall within-cluster precision of
2.5° and between-class separation as large as 25°. The distance
separation between two parallel planes can be set based on the
complexity of roof structures, while the final segments should
each have a point density similar to the one of the input lidar
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points. The three matrices together represent the quality of
planar roof segmentation from lidar data. The test results of
15 buildings with diverse complexity demonstrate the proposed
framework and its implementation steps.

The reconstruction process consists of determining the lo-
cation of the roof vertices, roof ridges, and roof edges or
boundaries. The adjacency matrix of the aforementioned de-
rived planar segments is essential for this purpose. Based on
this matrix, roof vertices, i.e., the intersection of roof ridges
or edges are determined by intersecting the involved planes,
which include roof segments and possibly vertical walls or roof
boundaries as the imposed constraints. Determining a vertex
by intersecting planes other than lines strengthens its reliability
and makes the best use of the dense lidar points distributed in
a plane. Single roof planes without adjacent planes are deter-
mined directly by using their boundary representations. This
way, the resultant buildings are topological consistent in terms
of their constituent components: vertices, lines, and polygons,
with all being embedded in a 3-D space. It is shown that roof
interior can be reconstructed with a better accuracy than roof
outlines. Moreover, the newly extended boundary regulariza-
tion approach can handle building roofs of diverse complexities
and produces topologically correct and geometrically accurate
building models.
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