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a b s t r a c t

Photorealistic visualization combines 3-D geometric models with their texture images to render the
virtualworld. This paper points out that the texture images should be radiometrically corrected to achieve
a true realistic appearance. Such a correction should include not only the color adjustment among images
of the same object, but also the shade variation caused by the illumination change. The objective of this
study is to correct the input texture images such that their shade varies when being rendered under
different illumination directions. To achieve this goal we first apply the specular-to-diffuse mechanism
based on the dichromatic reflection model to remove the specular component from the texture image.
The resultant diffusion-only image then undergoes a shade correction to produce a normalized shade-
free texture image. In the final step, shades under any illumination are produced to achieve a true
photorealistic effect. Presented in the paper are the principles and methods for such corrections, along
with a performance evaluation based on the graphic and numerical results for roof texture images.

© 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Photorealistic visualization combines 3-D geometric models
with their texture images to render the virtual world. This
process provides a realistic perception and is becoming a popular
functionality for geospatial exploration (Döllner et al., 2006).
Recently, a photorealistic visualization over urban areas is of
particular interest and challenge due to the complexity and variety
of urban features (Varshosaz, 2003). This is more obvious for
large scale visualization, where man-made features need to be
presented in great detail at a high resolution. The state-of-the-
art of the technologies makes it possible to map building roof
and façade texture images onto the geometric models in an
automated or semi-automated manner. However, at least two
problems have not been sufficiently addressed so that a perfect
photorealistic visualization can be achieved. First, the images
used for texture mapping may likely be collected at different
locations and angles and even with different sensors. Objects
made of the same materials usually do not have exactly the
same appearance or color due to a number of reasons such as
illumination direction, camera pointing, specular reflection, sensor
noise, and environmental noise. Such ‘‘internal differences’’ can
even be observed among the different primitives of an object in
a single image. These internal differences among images are often
corrected during the production of the imagemosaics by adjusting
their colors using various radiometric correction methods such as
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multi-resolution spline convolution (Burt and Adelson, 1983),
histogrammatching (Du et al., 2001; Zheng et al., 2006), weighted-
blending (Nicholas, 2001), and polygon based blending (Tsai
et al., 2005). The other problem is related to rendering. When a
photorealistic model is rendered under an illumination direction
other than the one from which the texture images were taken, the
view should appear different from the original texture images, i.e.,
a new shade effectwill occur. This phenomenon is primarily caused
by the difference between the real illumination direction and the
rendering illumination direction, and thus is named as ‘‘external
difference’’ here for briefness. An ideal photorealistic view should
not only perform a color adjustment between images, but also
change the color of the texture images according to the rendering
illumination direction.
The above two problems are generally referred to as color

correction in this paper and should be resolved to achieve a
high fidelity true photorealistic visualization. It should be pointed
out that this concept is an extension to the classical geometric
correction that only changes the geometry of the image in the
process of rectification or rendering. It is also a conceptual
generalization from the ordinary color adjustment where color
differences among the images of the same scenes are minimized.
The color correction in this paper will change the radiometry or
color of the texture images such that they are mutually consistent
and also vary with the change of the illumination directions.
Such combined geometric and radiometric corrections form a
comprehensive concept for a true photorealistic visualization.
This study addresses two issues in the color correction: specular

removal and shade correction. The texture image records the
electromagnetic energy reflected from the object. It consists of two
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components: specular reflection and diffusion reflection. Specular
reflection is a surface phenomenon. Even for significantly rough
surfaces, specular reflection is observed at the specular direction
and may cause an erroneous result in image segmentation and
shading analysis. Hence, the specular reflection is undesirable and
needs to be removed (Nayer et al., 1993). This is a classical topic
in computer graphics (Shafer, 1985) and many efforts exist to
remove the confounding effect of the illumination sources so that
the corrected texture image contains only the color of the object.
In addition, to carry out the shade’s correction, the specular effect
should be first removed from the texture image, which therefore
becomes the first task in this study.
The other component, diffuse reflection, results from the

light rays penetrating the object surface, undergoing multiple
reflections, and re-emerging at the object’s surface. It varies slowly
and is treated as independent from the viewing direction in some
simplified reflection models such as the Lambertian model (Wolff,
1996). The effect of diffuse reflection is the gradual change of
intensities over the texture image. Such an effect is also called
the shade, which is the change of intensity due to the spatial
variation of the object’s surface (Finlayson and Schaefer, 2001).
Three potential problems for true photorealistic visualization can
arise due to the shade. First, it causes objects composed of the
same material with an identical color to appear differently in the
texture image. The second problem is related to the performance
of rendering. Efficient texture mapping should be able to balance
between the rendering speed and the rendering details, and not all
details are needed for rendering (Heckbert, 1986). Hence, the shade
in the texture images of the same material should be generated to
form one ‘‘normalized’’ texture image that can be used formultiple
roofs made of the same material. The third problem is that the
shade needs to be changed when the model is rendered from an
illumination direction different than the one in which the texture
images were taken. Our second task is therefore to correct the
shades of the same material to a normalized shade and change
(transform) it according to the illumination direction when being
rendered.
The remainder of the paper first discusses the principles of

specular removal and the shade’s correction. Relevant studies in
computer graphics and remote sensing are reviewed for each topic.
The study then uses color images of building roofs to demonstrate
the presented principles and methodology. Both the graphic and
numerical results are presented to evaluate the performance of this
study.

2. Specular reflection removal

As was addressed earlier, the intensity of a texture image
has two components: specular reflection and diffuse reflection.
Separating the specular component from the texture image is
necessary for photorealistic visualization and is also a prerequisite
for the shade’s correction. This is a topic that has been extensively
studied in computer graphics with most of the effort based on the
dichromatic reflectancemodel (Shafer, 1985). Utilizing this model,
Klinker et al. (1988) observed that the color histogram of an object
with a uniform diffuse color presents a T-shape with two limbs,
respectively corresponding to the diffuse component and the
specular component. However, this T-shape is rarely separable for
most real images due to the existence of noise (Klinker et al., 1988).
Bajcsy et al. (1990) showed additional limbs produced by inter-
reflections between objects. They suggested that the separation
should be performed in the space of brightness, saturation and
hue. Although it wasmore accurate, it needed the correct specular-
diffuse pixel segmentation. Lee (1992) used a ‘‘moving sensor’’
method and applied spectral differencing to the color histograms
of the consecutive images for the specular component extraction.
More recently, Tan et al. (2004) proposed a separation method
based on the distribution of specular and diffuse points or pixels
in a two-dimensional maximum chromaticity-intensity space. Our
study in this paper adopts and applies this method. However, for
a consistency of discussion and the convenience of readers, it will
be presented below along with derivations and an example of the
implementation. For the complete original work, see Tan et al.
(2004).
The dichromatic reflectionmodel (Shafer, 1985) is composed of

two additive components, diffuse reflection and specular reflection

I(x) = wd(x)D(x)+ ws(x)S(x) (1)

where
I = {Ir , Ig , Ib}T : the color vector of the image’s intensity, where

the subscripts r , g , b respectively stand for the red, green and blue
components.

x = {x, y}: the image’s coordinates.
D(x), S(x): the diffuse reflection vector and the specular

reflection vector.
wd(x), ws(x): weighting factors for the diffuse and specular

components.
According to Tan and Ikeuchi (2005), the diffuse reflection is due
to the varying refractive indices in the object’s surfaces, while the
specular reflection is mainly due to the refractive index difference
between the object surface and the air. The values of the weighting
factors depend on the geometric structure of the object at the
location x.
Next, the concept of chromaticity is introduced, which in

general is defined as a normalized vector (Tan et al., 2004).

σ(x) =
I(x)

Ir(x)+ Ig(x)+ Ib(x)

λ(x) =
D(x)

Dr(x)+ Dg(x)+ Db(x)

γ(x) =
S(x)

Sr(x)+ Sg(x)+ Sb(x)

(2)

σ is the chromaticity corresponding to the image’s intensity.
By inserting the diffuse chromaticity (λ) and the specular
chromaticity (γ) into Eq. (1), the image’s intensity can be expressed
as a combination of the diffuse chromaticity and the specular
chromaticity

I(x) = md(x)λ(x)+ms(x)γ(x) (3)

wheremd(x) andms(x) are the normalized weight factors

md(x) = wd(x)(Dr(x)+ Dg(x)+ Db(x))
ms(x) = ws(x)(Sr(x)+ Sg(x)+ Sb(x)).

(4)

Before the full mathematic development for the specular compo-
nent removal is presented, its task can be conceptually introduced
below. A pixel in an imagemay belong to one of two types: a diffuse
pixel or a specular pixel. A diffuse pixel has no specular component,
i.e., ms = 0, which means that its intensity comes entirely from
the diffuse reflections of the objects. On the other hand, a specular
pixel has both a diffuse component and a specular component, i.e.,
md > 0 and ms > 0, which implies that its intensity comes from
both a single mirror reflection and multiple diffusion reflections
at the object’s surface due to its roughness. The task of removing
the specular component is to determine the specular contribution,
ms(x)γ(x), in Eq. (3) such that it can be subtracted from the im-
age color vector I(x). The resultant diffuse contribution,md(x)λ(x),
will be the final color vector in the specular-free image.
To calculate the specular component, the concept of chromatic-

ity defined in Eq. (2) is utilized. Since (γr + γg + γb) = (λr + λg +
λb) = (σr+σg+σb) = 1, inserting Eq. (3) into the σ(x) expression
in Eq. (2) will yield

σ(x) =
md(x)λ(x)+ms(x)γ(x)

md(x)+ms(x)
. (5)
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Fig. 1. Steps for determining the maximum chromaticity σ̃ .
According to Tan et al. (2004), the maximum chromaticity, which
essentially identifies the dominant color, is defined as

σ̃ (x) = max
{
σr(x), σg(x), σb(x)

}
=

Ĩ(x)
Ir(x)+ Ig(x)+ Ib(x)

(6)

where

Ĩ(x) = max
{
Ir(x), Ig(x), Ib(x)

}
. (7)

As md > 0 and ms > 0, and under the assumption of white
illumination, i.e., γ(x) = (1/3 1/3 1/3)T , it can be shown
that the maximum elements of σ(x),λ(x), and γ(x) occur at the
same row or at the same color component (such as red). Let
λ̃(x) and γ̃ (x), respectively, be the elements in λ(x) and γ(x)
corresponding to σ̃ (x) in σ(x), then Eq. (5) can be written in the
scalar formwith themaximum chromaticity σ̃ (x) = (md(x)λ̃(x)+
ms(x)γ̃ (x))/(md(x)+ms(x)). With rearrangement this will lead to

ms(x) = md(x)
λ̃(x)− σ̃ (x)
σ̃ (x)− γ̃ (x)

. (8)

Inserting Eq. (8) into Eq. (3) and considering γ̃ (x) = 1/3, we have

Ĩ(x) = md(x)(3λ̃(x)− 1)
σ̃ (x)

3σ̃ (x)− 1
(9)

or

md(x) =
Ĩ(x)(3σ̃ (x)− 1)
σ̃ (x)(3λ̃(x)− 1)

. (10)

Once the diffuse weight factor is determined from the last
equation, the specular weight factor can be calculated with
ms(x) = Ir(x)+ Ig(x)+ Ib(x)−md(x). (11)
Finally, the diffuse component, i.e., the specular-free image can be
formed by subtracting the specular contribution,ms(x)/3, from the
input image I(x)with the following equation

md(x)λ(x) = I(x)−ms(x)[1/3 1/3 1/3]T . (12)
The above development in Tan et al. (2004) forms the basis of
the specular-to-diffuse mechanism for the specular component
removal. It is seen that once σ̃ (x) and λ̃(x) are determined,
Eqs. (10)–(12) can then be used to remove the specular component.
Under the assumption that the object’s surface in question is made
of the same material and uniform, then both the diffuse and the
specular pixels have the same diffuse component,

λ̃(x) = λ̃(xd) = σ̃ (xd) (13)

where xd stands for the diffuse pixels. Thus, the key in using
Eqs. (10)–(12) is to obtain the maximum chromaticity σ̃ (omitting
the location for simplicity of notations) for the diffuse pixels.
According to Tan et al. (2004), the maximum chromaticity-

intensity space (σ̃ , Ĩ) is formed where the horizontal axis
represents the maximum chromaticity defined in Eq. (6) and the
vertical axis is for the maximum intensity of the color vector
defined in Eq. (7). Under the assumption of a uniform surface
and a white illumination, the specular pixels should have a larger
intensity (Ĩ) and smaller maximum chromaticity (σ̃ ) than the
diffuse pixels due to the maximum operation in the definition
of Ĩ . In addition, the maximum chromaticity (σ̃ ) of the diffuse
pixels should be a constant for the uniform object. However, due
to the effect of the sensor and the environmental noises, such
ideal situation does not occur in real images and one cannot
directly separate the two components using the above principle.
The suggested procedure by Tan et al. (2004) consists of the
following steps. First, we calculate the color index (u).

u =
Ir + Ib − 2Ig
Ig + Ib − 2Ir

(14)

for every pixel of the object. This color index is designed such that
the effect of the equal specular components will be canceled in a
noise-free image and all the pixels from one uniform object should
ideally yield a constant u value. To consider the effect of noise, we
divide the range of u, (umin, umax) into a number of bins (50 in this
study). As shown in Fig. 1, the pixels corresponding to one bin ui
(upper left) are plotted into the maximum chromaticity-intensity
space (σ̃ , Ĩ) (upper right). Such a plot will be approximated by a
number of straight lines (100 in this study) as an approximation
to Eq. (9). The maximum σ̃ ’s of each of the straight lines
will be selected as candidates (lower right), yielding 100 σ̃ ’s
corresponding to the 100 straight lines. This procedure is repeated
for all 50 bins of u and a total of 5000 candidate σ̃ ’s are selected.
The final selection of σ̃ for the object is determined by forming the
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(a) Specular image. (b) Specular-free image.
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(c) (δ̃, Ĩ) of the specular image. (d) (δ̃, Ĩ) of the specular-free image.

Fig. 2. Specular correction of a tent image.
histogram of σ̃ ’s and selecting the σ̃ that has the highest frequency
(lower left).
For the purpose of illustration, the above principles and

implementation are applied to correct the specular effect on an
aerial image of a tent shown in Fig. 2(a). The intermediate steps
and results for this correction are depicted in Fig. 1 and the original
image and final specular-free image are shown in Fig. 2(a) and (b),
respectively. Fig. 2(c) and (d) present the maximum chromaticity-
intensity space of the example image before and after the specular
correction.

3. Shade correction and transform

Once the specular-free image is obtained, it is ready for a further
correction of the shade effect. For this purpose, what is needed
is a reflection model that describes the relationship between
the shade (image), the object and the incoming light. Remote
sensing has used various methods to correct the shade effects
caused by the topography. Representative methods include the
Lambertian (cosine) correction, theMinnaert correction (Minnaert,
1941; Teillet et al., 1982), and a normalization method (Civco,
1989). Newton et al. (1991) applied a complex and intensive
shading model to remove the irradiance variation effects in the
Landsat TM imagery using digital elevation models.
This study uses the three popular reflection models: the cosine

(Lambertian) model, the Minnaert model, and the Marsik model.
All thesemodels need to calculate the incident angle i, i.e., the angle
between the illumination normal (O) and the surface normal (S).
As shown in Fig. 3, E is the slope inclination, Z is the solar zenith
angle, Ao is the solar azimuth, and As is the surface aspect of the
slope. Under these notations, the unit vector of the solar direction
is [sin Z · sin Ao sin Z · cos Ao cos Z ]Tand the unit vector of the
surface normal is [sin E · sin As sin E · cos As cos E]T . The dot
product of the two unit vectors leads to the following formula
(Holben and Justice, 1980; Smith et al., 1980)

cos i = cos E cos Z + sin E sin Z cos(As − Ao). (15)
Fig. 3. Geometry of incident angle calculation.

The Lambertian model assumes that the object’s surface is a
perfect diffuse reflector, i.e., the same amount of reflectance occurs
in all viewing directions. Thismodel can bewritten as (Teillet et al.,
1982; Jones et al., 1988)

In = (Id − Ia)/cosi (16)

where Id is the color vector of the specular-free or diffuse-only
image, Ia is the constant color vector caused by the ambient light, In
is the color vector to be determined for the final shade-free image
or a normalized image.
The Minnaert model below was developed for the photometric

analysis of the lunar surface in Minnaert (1941)

In =
Id cos e

cosk i cosk e
(17)

where e is the slope angle and k is the Minnaert constant. The
model uses the Minnaert constant k to describe the roughness of a



312 Y. Song, J. Shan / ISPRS Journal of Photogrammetry and Remote Sensing 65 (2010) 308–315
Table 1
Means and color ratios of roofs in one building.

Roof 1 Roof 2 Roof 3 Roof 4 Roof 5

Mean R 204.3 145.5 192.8 218.3 114.5
Mean G 162.2 104.3 149.1 183.6 113.0
Mean B 138.0 96.4 127.5 160.6 108.5
Color ratio −0.16 −0.37 −0.20 −0.13 0.41
Incident angle 39.98° 67.75° 56.82° 20.88° 0.23°

surface. For surfaceswith a Lambertian behavior, k = 1; otherwise,
k < 1.
The third model is based on the Marsik (1971) method. It takes

the form

In =
1

1+ log(cos i)
Cd ⊗ Id −

1
1+ log(cos i)

Ca (18)

where − log(cos i) = D is called the shading density function
(Marsik, 1971), Cd and Ca are the scale vectors, respectively, for the
diffuse light and the ambient light,⊗ stands for the product of the
corresponding elements in two vectors.
A shade transform is needed to convert the shade under one

illumination direction to the shade under another illumination
direction. For this purpose we use the shade-free image of the
intermediate step, i.e., the resultant shade-free image created
through a shade correction is transformed to form a new shade
image. This is the reverse process of the shade correction. The
unknown to be determined for shade transform is Id, while all the
other parameters, except the incident angle i, in the above shade
models (Eqs. (16)–(18)) are known through the shade correction
process.

4. Tests and discussion

This section evaluates the aforementioned principles and
methods for the specular removal and the shade correction for
generating a true photorealistic effect. The tests are carried out
with roof models and roof texture images obtained by aerial
photography. The roof images have a pixel size of 30 µm and are
obtained by scanning the aerial photographs at a scale of 1:4000.
The scanned images have three R, G, B bands with a radiometric
scale from 0 to 255 per band. The roof models are digitized roof
by roof from a stereo pair. For the simplicity of discussion and to
prevent any ambiguity in the context, the term roof here refers to
each individual digitized planar face atop a building.
Every individual building is processed with two sequential

steps: specular removal and shade correction. After verifying
the assumption of white illumination following Tominaga and
Wandell (1989), each roof image is separately applied to the
specular removal. The pixels of every roof image are treated as
one correction unit, for which a maximum chromaticity σ̃ is
determined. After that, every roof pixel is subject to the specular
reflection removal by using Eqs. (10)–(13).
The specular-free images are then used for the shade correction.

We first group the roofs of a building according to their color
ratios (Eq. (14)) calculated by the mean color components of all
pixels in one roof. Roofs with the maximum color ratio difference
within±0.25 (gray value) are regarded as being made of the same
material and should have the same reflection properties. As an
example, Table 1 lists the mean R, G and B components and the
color ratios of the five roofs of a building (Fig. 4). Roofs 1, 2, 3 and 4
are considered to be made of the same material, which is different
from the material for roof 5.
The three shading models described in Section 3 are applied

to the specular-free images for the shade correction. The solar
azimuth and zenith at the time the image was taken are obtained
based on the time tag and location of the aerial photograph using
the NOAA solar calculator (http://www.srrb.noaa.gov/highlights/
sunrise/azel.html). The incident angles are then calculated using
the roof normals with Eq. (15). Every roof within one group will
form one set of equations to determine the normalized color In and
other parameters Ia or Ca and Cd with a linear regression. The pixel
values of the roof images are then adjusted for shade correction
by using the resultant model parameters. Fig. 4 shows the shade-
corrected roofs with and without specular reflection removal.
For comparison purpose, the shade correction results from both

with and without specular reflection removal are presented along
with their histograms to show the distribution of the pixel values.
The original image and its histogram (C1) in Fig. 4 suggest that
the entire building roof has two dominant colors which represent
four slant parts (roof 1–4) and one flat part (roof 5). However,
the histogram of the original image shows three apparent peaks
due to three illuminated slant parts, one shaded slant part and
the flat part. A successful specular removal and shade correction
should ideally make the two dominant colors more distinct and
show only two peaks. The middle (C2) and right columns (C3)
show improvement towards this goal. Shade correction increases
the separability of the two dominant colors by harmonizing the
colors of the roofs made of the samematerial and thus successfully
forming the two more centralized peaks in the histograms. It
should be noted, however, that such an improvement is sometimes
not apparently visible from the texture images if their specular
component is small. Instead, the histograms demonstrate the
differences in all three shade correction models.
In order to quantitatively evaluate the performance of the

specular and the shade corrections, Table 2 lists the standard
deviations of the images for the above four roofs made of the same
material. We first calculate the variance of each individual roof
(planar face)

σ 2i =
1
mi

mi∑
j=1

(gij − ḡi)2 (19)

where i and j are the roof and the pixel numbers, respectively; gij is
the pixel value of the j-th pixel of the i-th roof; ḡi is themean of the
i-th roof;mi is the number of pixels of the i-th roof. Thewithin-roof
variance is the average of the above variances of n individual roofs
made of the same material

σ̄ 2 =
1
n

n∑
i=1

σ 2i . (20)

On the contrary, the between-roof variance is calculated in a
similar way to Eq. (19), however, by taking the mean of the pixels
of all the roofs (Eq. (20)). The underlying mechanism for such an
evaluation is as follows. Each roof has an intrinsic shade variation
due to the material’s roughness. This variation is represented
by its variance as calculated in Eq. (19). For roofs made of the
same material, they should have a similar standard deviation, if
the shade and specular effects are corrected. The large variation
between the roofs, if any, is caused by the specular reflection and
the diffuse reflection. A perfect correction should yield a variance
between all roofs made of the samematerial as close as possible to
the variance of each individual roof, i.e., the within-roof variance.
First of all, as depicted in Table 2 (left section), the input images

show large between-roof standard deviations, which implies the
existence of specular reflection and shade differences among the
roofs. Our effort should reduce such between-roof variations,
ideally to the within-roof variance, which is intrinsic for the roofs
made of the samematerial. Table 2 (right section) shows the shade
correction without the specular correction changes the variation
between (asmeasured by average roof variance) roofs from 38.6 to
10.2 as an average of all three shade correction models. Including
the removal of the specular component, though it is small, can
further improve the color correction performance from 10.2 to
7.1, which is very close to the average within-roof variation (7.21)

http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
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Original Image Lambertian Model

Minnaert Model

Marsik Model

with specular reflection removal

Marsik Model

without specular reflection removal

Minnaert Model

Lambertian Model

R1

R2

C1 C2 C3

Fig. 4. Shade-corrected images (R1) and intensity histograms (R2) of the red band based on the original image (left column, C1) and different shade correction models for
with (middle column, C2) and without (right column, C3) the specular removal.
Table 2
Standard deviations of the input and shade-corrected roof images.
Band Input image Shade correction (between roofs)

Between roofs Within roofs Lambertian Minnaert Marsik
w/o w/ w/o w/ w/o w/

Red 37.30 6.54 13.37 7.81 10.81 8.29 9.35 6.34
Green 40.52 7.92 11.43 6.84 10.39 8.61 8.29 6.44
Blue 33.48 8.25 9.69 7.09 9.04 8.97 7.99 7.62
Intensity 38.60 7.21 11.59 6.82 10.09 8.27 8.21 6.21
w/o: without specular correction; w/: with specular correction.
in the input images. Such closeness is the optimal performance
one can expect in the specular and the diffusion corrections since
it harmonizes the roofs made of the same material, while at the
same time each individual roof is still perceptible by keeping its
intrinsic texture properties embedded in its variance. As for the
performance of the individual shade correction model, the Marsik
model yields the best results, followed by the Lambertian model
and the Minnaert model, although all of them are very similar in
this study.
Our final study is about a shade transform, i.e., to generate the

texture images under an illumination direction possibly different
from the one of the input images. As an evaluation strategy, we
first produce the texture images under the illuminationdirection in
which the original images were taken. The reproduced roof images
are then compared with the input images, pixel by pixel. Fig. 5
plots the standard deviations of such pixel-by-pixel differences
for the three color bands of the four roofs tested above. A perfect
shade correction and shade transform process should yield a
minimum variation during this forward (correction) and backward
(transform) process. According to Fig. 5, the specular correction
makes considerable improvement to the straight shade correction,
because the specular-free image helps the determination of the
parameters in the shade correctionmodels. This further verifies the
previous discussion. Finally, it is seen that the differences among
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Fig. 5. Standard deviations of the intensity differences between the reproduced
roof images and the input roof images, without (left three) and with (right three)
specular corrections.

Fig. 6. Shade correction of roof images, 1st column: Original texture image at
sun direction (As: 161.75°, Z: 46.82°); 2nd column: Shade-free texture image; 3rd
column: Texture rendering at sun location (As: 341.75°, Z: 46.82°; opposite to the
1st column); 4th column: Texture rendering at the same sundirection as the original
image. North is to the right.

the three shade correction methods are as small as only two gray
levels.
Figs. 6–8 present the rendered roofs generated by using the

Marsik model. In Fig. 6, the original texture images (1st column)
are shown beside the corrected shade-free images (2nd column).
Through the corrections the input images are normalized to their
material color without the specular and the diffuse reflections. The
roofs in a building made of the same material have little color
variation as is shown in the second column. The third column is the
rendering results at the illumination direction opposite to the one
of the input image. As is shown, the shade transform thus reverses
the brightness of the roofs in the input images. The last column
in Fig. 6 is the reproduced input images based on the shade-free
images by assuming the illumination direction being the same
as the input images. No apparent difference is noticed between
the input and its reproduction, illustrating a check on the ability
of the shade transform to match the original shade conditions.
Fig. 8. 3D models and texture mapping: Shaded geometric models (left), roof
texture mapping without (middle) and with (right) shade transform.

Fig. 7 simulates the roof shade changing during a day from 7:00
to 15:00 at a two-hour interval. Finally, Fig. 8 presents a number of
3-D building models and their texture rendering results. The first
column shows the expected shading effects by using the geometric
models under a certain illumination direction. The second column
renders the models with textures from the original image without
a color correction. It is clear that the input textures do not match
the expected shades (first column). The corrected texture images
are mapped to the geometric models and their rendering results
shown in the third column produce a good match to the desired
shade.

5. Conclusion

The concept of photorealistic visualizationneeds to be extended
to include the necessary radiometric corrections to the involved
texture images. Such corrections should not only handle the
color adjustment among images of the same object, but consider
the shade effect caused by variable illumination directions when
the model is being rendered. These corrections will lead to
the achievement of true photorealistic visualization. This study
has addressed the correction of two radiometric effects: the
specular reflection and the diffuse reflection. For removal of the
specular reflection, the method of Tan et al. (2004) based on the
dichromatic reflection model was applied. It was shown that the
specular effect was visible either directly in the texture images or
indirectly through their histograms. The removal of the specular
effect could enhance the contrast of the texture images, and
benefit the subsequent shade correction and determination of the
shade transform model. In the shade correction and transform
steps, the specular-free image was used to create a shade-free
or normalized texture image, which is both geometrically and
radiometrically corrected. It could then be used to render texture
images under any illumination direction different from the one in
which the input image was taken. Tests with a number of roof
Fig. 7. Roof rendering at different time of day. The very left is the input image taken at 11:43, October 5, 1999; followed by the rendered images at 7:00, 9:00, 11:00, 13:00
and 15:00. North is to the right.
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images demonstrated that both corrections could be implemented
effectively without interaction for a given building model. It was
shown that although the Marsik model was the best, all of the
three tested shade correctionmodels yielded similarly satisfactory
rendering results. Finally, the color correction outcome could be
quantitatively evaluated by the proposed evaluationmetrics based
on the between-roof and among-roof variances.
As for future effort, it is necessary to extend our current work

on roof images mostly formed of one type of material to more
complex objects, such as roofs with different colors and materials.
Ground images of building walls and façades shall also be included
to further demonstrate the performance and effect of the specular
and the shade correction. All this will allow for handling more
realistic building images that often consist of more than one
material type such as brick, window, door and other decorations.
The added realism will essentially demand not only the detailed
geometric modeling, but also a comprehensive material modeling
of the scene. Finally, the color correction discussed here should
be integrated with the visualization tools and the geographic
information systems to achieve a true photorealistic effect under
flexible illumination directions.
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