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a b s t r a c t

This paper presents a novel approach to building roof modeling, including roof plane segmentation and
roof model reconstruction, from airborne laser scanning data. Segmentation is performed by minimizing
an energy function formulated as multiphase level set. The energy function is minimized when each
segment corresponds to one or several roof plans of the same normal vector. With this formulation,
maximum n regions are segmented at a time by applying log2 n level set functions. The roof ridges or
step edges are then delineated by the union of the zero level contours of the level set functions. In
the final step of segmentation, coplanar and parallel roof segments are separated into individual roof
segments based on their connectivity and homogeneity. To reconstruct a 3D roof model, roof structure
points are determined by intersecting adjacent roof segments or line segments of building boundary and
then connected based on their topological relations inferred from the segmentation result. As a global
solution to the segmentation problem, the proposed approach determines multiple roof segments at the
same time, which leads to topological consistency among the segment boundaries. The paper describes
the principle and solution of the multiphase level set approach and demonstrates its performance and
properties with two airborne laser scanning data sets.

© 2011 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote
Sensing, Inc. (ISPRS).
1. Introduction

The 3D building model is one of the necessary components in
various scientific and engineering applications, such as urban plan-
ning, virtual reality, telecommunication or emergency response.
Over the past two decades, 3D building modeling has been car-
ried out from various kinds of data sources, among which Air-
borne Laser Scanning (ALS) data gains increasing popularity in
recent practices and studies. Due to its capability ofmeasuring both
height and planimetric location and its increasingly higher density
of up to more than ten (10) points per square meter, detailed roof
plane structure aswell as building boundary canbeprecisely deter-
mined (Oude Elberink and Vosselman, 2009; Rottensteiner, 2003;
Rottensteiner and Briese, 2002; Sampath and Shan, 2010; Verma
et al., 2006; Vosselman and Dijkman, 2001; Zhou and Neumann,
2008).

Most reported building modeling approaches follow four
common processing steps. First, ground points and non-ground
points are separated. This separation can be accomplished through
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morphological filtering (Arefi and Hahn, 2005; Zhang et al.,
2003), labeling process (Shan and Sampath, 2005), and analysis of
height texture measures (Oude Elberink and Maas, 2000). More
details about various filter algorithms and their experimental
comparisons are presented in Sithole and Vosselman (2004). In the
second step, identified non-ground points are further processed
to remove unwanted points, most of which are returns from
trees, cars, or side walls of buildings. These unwanted points
can be identified and removed by analyzing the first and last
returns (Alharthy and Bethel, 2002), eigenvalue analysis of local
covariance matrix (Sampath and Shan, 2010; Verma et al., 2006),
or dimensionality learning (Wang and Shan, 2009). The third step
is to determine planar roof primitives. Various methods have been
studied, including region growing (Rottensteiner, 2003), Hough
transform (Maas and Vosselman, 1999; Vosselman and Dijkman,
2001), and RANSAC (RANdom SAmple Consensus) (Tarsha-Kurdi
et al., 2008). The main objective of this step is to segment the
original point clouds into planar roof primitives based on certain
similarity properties. For an overview of different segmentation
approaches, we refer the reader to Vosselman et al. (2004).
More details on the comparison between RANSAC and Hough
transform for roof plane segmentation and their experimental
results are presented in Tarsha-Kurdi et al. (2007). The final
step is to reconstruct building models, for which there are two
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Fig. 1. Implicit representation of the curve C: (a) Curve C(=∂ω); (b) Implicit representation of C by the zero level curve of the level set function φ(x, y).
general approaches: the model-driven and the data-driven. In a
model-driven approach, a predefined catalog of roof forms is
used to find the best fit for the segmented roof primitives (Maas
and Vosselman, 1999). The advantage of this approach is that
it can always reconstruct a topologically consistent model. In
contrast, if the estimated model is very complex or not included
in the predefined roof catalog, its 3D reconstruction process may
fail. In data-driven approach, the 3D model is reconstructed by
assembling segmented individual roof planes. One of the difficult
issues in this method is to determine the topologic relations
among the detected roof segments. To this end, roof topology is
described by a graph or adjacencymatrix (Forlani et al., 2006; Oude
Elberink and Vosselman, 2009; Sampath and Shan, 2010; Verma
et al., 2006), based on which roof structures, e.g., intersections of
adjacent roof segments, including roof ridges and corner points,
can be determined.

While most existing approaches show promising results
towards 3D building modeling, there are still a number of issues
to be improved. In the context of segmentation (either from
digital surface model or LiDAR points), segmented roofs are
mostly disconnected, which leads to confusion for determining
the neighborhood relations among roof segments. Furthermore,
locating height discontinuities (step edges) only from LiDAR points
is also difficult and requires additional information or constraint.
To resolve these issues, we introduce a novel approach to roof
segmentation and reconstruction. It formulates the region-based
segmentation under the framework of level set method. Level
set method itself has been widely used in computer vision
community for image segmentation. However, only a fewwere for
remote sensing applications, such as boundary extraction between
different natural features. (Zhang and Jiang, 2008), segmentation of
SAR imagery (Ayed et al., 2005; Horritt, 1999), detection of man-
made objects (Cao et al., 2005) and building boundary extraction
(Cao and Yang, 2007; Karantzalos and Paragios, 2008; Song and
Shan, 2008) from either satellite or aerial images. At the time of
writing, we are not aware of reported applications of level set
method for airborne laser ranging data segmentation. It has not
been fully studied and evaluated in topographic remote sensing for
either imagery or ranging data.

Comparing with other building modeling methods, the pro-
posed approach, though implemented in a gridded spatial domain,
does not resample the original point clouds such that the accu-
racy of original data is retained. Multiphase level set formulation
allows for segmentation of multi-regions in one run. Furthermore,
the segmentation process can also be implemented recursively and
does not need a priori knowledge on building structure. Finally,
segmented roof planes are always connectedwithout gap or empty
region, which represents the same topologic relations as that of the
given roof form. This defines the roof structures and supports roof
reconstruction. Like most other studies, this paper also assumes
polyhedral buildings and thus focuses on segmenting planar roof
elements. Since airborne LiDAR points lie mostly on the building
roof tops and only a small fraction of points is from side walls of
buildings, the final 3D building model is represented by extrud-
ing the reconstructed roof shape. As a result, some buildings with
complex 3D structures like overhangs may not be accurately re-
constructed.

The proposed approach is summarized below. It starts with de-
termining normal vectors of each LiDAR point of the building. Local
planarity at each point is analyzed to exclude non-planar points
lying on roof ridges or step edges. Initial level set functions rep-
resented as surfaces are defined in the underneath 2D Cartesian
grid enclosing all building points. The segmentation process, for-
mulated as an energyminimization problemwithmultiphase level
set divides this 2D grid into multiple homogeneous regions with
similar normal vectors. As the result of this segmentation, topo-
logical relations among different roof segments are determined by
using the segmented Cartesian grid (i.e., a labeled image). Finally,
roof segments and their topologic relations are used to reconstruct
the 3D roof model.

The remainder of this paper is as follows. Section 2 describes
the principles of level set method and its recent extension to
multiphase andmultichannel setup. Section 3 discusses roof plane
segmentation based on this method, while Section 4 determines
the roof topology and reconstruction. Results from two different
data sets are presented and evaluated in Section 5. Section 6
presents the final conclusion on this approach.

2. Principles

2.1. Level set method

Osher and Sethian (1988) introduced level set method to
describe evolving curves and surfaces. It has then been widely
used in a variety of image segmentation and boundary detection
problems in computer vision. The main idea is to embed the
evolving curves or surfaces in a space of one dimension higher.
As the most important advantage, level set method allows for
topological changes of the evolving curves, such as merging and
breaking. LetΩ be a fixed rectangular grid in R2. A two dimensional
image u0 is then defined as u0 : Ω → R. We consider the evolving
curve C in Ω as the boundary of an open subset ω ∈ Ω , i.e.,
C = ∂ω as shown in Fig. 1(a). In level set approach, the boundary
C is represented implicitly as the zero level curve of one higher
Lipschitz function φ as shown in Fig. 1(b), such that

φ(x, y) > 0 in ω
φ(x, y) < 0 in Ω − ω
φ(x, y) = 0 on ∂ω = C .

(1)

The function φ is called level set function and represented as
a signed distance function for practical purpose as shown in
Fig. 1(b). The deformation of the evolving curve C is represented
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by introducing a time viable t to the level set function such that

∂φ(x, y, t)
∂t

= F |∇φ| with φ(x, y, 0) = φ0(x, y) (2)

where t denotes evolving time,φ0(x, y) = 0defines the initial level
set functions at t = 0, F is the speed for curve propagation, and ∇

is the gradient operator. This equation describes the propagation
of the curve C with speed F . A special case is the motion by mean
curvature K , which is used to describe many physical phenomena,
such as burning flames and crystal growth (Sethian, 1990).

For image segmentation, the evolving curve C needs to be
stopped at the object boundary to be detected. This can be handled
in two different ways by (1) applying an edge-stopping function,
or (2) minimizing an energy function. The edge-stopping function
stops the curve evolving at the object boundary. However, this
is reliable only when the object boundary has a strong gradient.
When noise or insignificant gradient exists, the evolving curvemay
not stop at the object boundary. Another drawback of this approach
is that it allows for only one-way curve evolution, namely shrinking
or growing based on the sign of F . Therefore, a priori knowledge
about object boundary is required to determine an initial zero level
curve and its propagation direction.

To resolve these issues, the region-based (also called energy
based) level set method was proposed by Chan and Vese (2001).
In this approach, the propagation of a curve is halted based on the
energy minimization criterion. For a given image u0 with only two
regions as shown in Fig. 1(a), the energy function E is defined as
follows

E = µ · Length(C) + ν · Area(Cin) + F(Cin) + F(Cout) (3)

where C is the boundary of an open subset ω ∈ Ω, µ ≥ 0, ν ≥

0 are fixed weight factors, and Cin, Cout represent the inside and
outside region of the curve, respectively. The two fitting terms
F(Cin) and F(Cout) are defined in Eq. (4) such that they have
minimum values when the curve C lies on the object boundary.

F(Cin) = λ1

∫
Cin

(u0 − c1)2dxdy

F(Cout) = λ2

∫
Cout

(u0 − c2)2dxdy
(4)

where λ1 >, λ2 > 0 are fixed weight factors and c1, c2 are re-
spectively the average intensity (or other feature) values inside and
outside the curve C . It is seen that the above energy function E of
Eq. (3) is minimized when the curve C lies on the object boundary
because the two fitting terms vanish.

To incorporate the level set principle into this minimization
problem, the Heaviside function H(z) and delta function δ(z) are
introduced.

H(x) =


1 if x ≥ 0
0 if x < 0

δ(x) = H ′(x) =
d
dx

H(x).
(5)

Assuming the level set function φ takes (+) and (−) values inside
and outside the curve C respectively, its Length(C) and Area(Cin)
can be represented as

Area(Cin) =

∫
Ω

H(φ(x, y))dxdy

Length(C) =

∫
Ω

|∇H(φ(x, y))|dxdy

=

∫
Ω

δ(φ(x, y))|∇φ(x, y)|dxdy.

(6)

The area expression above essentially counts the number of ‘1’s
inside the curve, while the length expression counts the number
of ‘1’s along the boundary. In a similar way, the two fitting terms
F(Cin) and F(Cout) can be rewritten as

F(Cin) = λ1

∫
Ω

(u0 − c1)2H(φ(x, y))dxdy

F(Cout) = λ2

∫
Ω

(u0 − c2)2(1 − H(φ(x, y)))dxdy.
(7)

Inserting Eqs. (6) and (7) into the energy function of Eq. (3), we
have

E = µ

∫
Ω

δ(φ(x, y))|∇H(φ(x, y))|dxdy + ν

∫
Ω

H(φ(x, y))dxdy

+ λ1

∫
Ω

(u0 − c1)2H(φ(x, y))dxdy

+ λ2

∫
Ω

(u0 − c2)2(1 − H(φ(x, y)))dxdy. (8)

Note that the integral range in Eq. (8) is extended to the whole
image domain Ω by introducing the Heaviside function. To
minimize Eq. (8), we first derive an Euler–Lagrange equation.
Keeping c1 and c2 fixed and minimizing the energy function E
with respect to φ, the corresponding Euler–Lagrange equation for
φ can then be derived. Parameterizing the descent direction by an
artificial time t ≥ 0, the Euler–Lagrange equation can be written
as

∂φ

∂t
= δ(φ)


µ · div


∇φ

|∇φ|


− ν

− λ1(u0 − c1)2 + λ2(u0 − c2)2

. (9)

The level set function φ will be determined by solving the above
partial differential equation, forwhich a finite difference technique
in the discrete domain will be presented in Section 2.3.

2.2. Multiphase and multichannel level set

This section considers a more general case in which there exist
more than two regions to be segmented or more than one data
layer (or channel) is involved in the segmentation process. To
segment more than two regions, the aforementioned approach
(called two-phase level set, i.e., one phase represents the inside and
the other outside of the zero level curve) needs to be extended.
Several authors have proposed different formulations to handle
a larger number of phases. Zhao et al. (1996) use one separate
level set function for each region. To keep the phases disjoint and
their union being the entire domain Ω , additional constraint term
is added to the energy function. The development of Vese and
Chan (2002) considers overlap and vacuum as separate regions.
As shown in Fig. 2(a), the two level set functions with overlap
divide Ω into four separate regions. In the same manner, eight
separate regions can be represented by three level set functions
as shown in Fig. 2(b) Therefore, log2 n level set functions are
required to represent n regions. In Fig. 2, R10 represents the region
satisfying the following condition: φ1(x, y) > 0 and φ2(x, y) <
0. Similar rules also apply to regions defined by three level set
functions.

The energy function for multiphase level set can be formulated
in a similar way as in Eq. (8), e.g., the energy function for two level
set functions is

E = λ1

∫
Ω

(u0 − c11)2H(φ1)H(φ2)dxdy

+ λ2

∫
Ω

(u0 − c10)2H(φ1)(1 − H(φ2))dxdy



K. Kim, J. Shan / ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 484–497 487
Fig. 2. Regions represented by multiphase level set functions: (a) Four regions by two level set functions; (b) Eight regions by three level set functions.
+ λ3

∫
Ω

(u0 − c01)2(1 − H(φ1))H(φ2)dxdy

+ λ4

∫
Ω

(u0 − c00)2(1 − H(φ1))(1 − H(φ2))dxdy

+ ν1 ·

∫
Ω

H(φ1)dxdy + ν2 ·

∫
Ω

H(φ2)dxdy

+ µ1 ·

∫
Ω

|∇H(φ1)|dxdy + µ2 ·

∫
Ω

|∇H(φ2)|dxdy (10)

where c11, c10, c01, c00 represent the average feature values (such
as intensity) of the four regions and λi=1,2, νi=1,2 and µi=1,2 are
fixed weight factors. When multiple channels, such as RGB color
images, are involved for segmentation, the energy function is
represented as

E = λ1

∫
Ω

‖u0 − c11‖2H(φ1)H(φ2)dxdy

+ λ2

∫
Ω

‖u0 − c10‖2H(φ1)(1 − H(φ2))dxdy

+ λ3

∫
Ω

‖u0 − c01‖2(1 − H(φ1))H(φ2)dxdy

+ λ4

∫
Ω

‖u0 − c00‖2(1 − H(φ1))(1 − H(φ2))dxdy

+ ν1 ·

∫
Ω

H(φ1)dxdy + ν2 ·

∫
Ω

H(φ2)dxdy

+ µ1 ·

∫
Ω

|∇H(φ1)|dxdy + µ2 ·

∫
Ω

|∇H(φ2)|dx (11)

where u0 is the input multiple channel image, and c11, c10, c01, c00
are the average feature values of the four regions. In the same
manner as deriving Eq. (9), the corresponding partial derivative
equation for each level function can be derived. For example,
φ1(x, y, t) is given by

∂φ1

∂t
= δ(φ1)


µ1 · div


∇φ1

|∇φ1|


− ν1

+ (λ3‖u0 − c01‖2
− λ1‖u0 − c11‖2)H(φ2)

− (λ2‖u0 − c10‖2
− λ4‖u0 − c00‖2)(1 − H(φ2))


. (12)

2.3. Numerical solution

To solve the partial derivative equations of Eq. (9) or (12) in the
discrete domain, the finite difference technique is used.Weassume
that the input image u0 is anM ×N grid with one channel. Let h be
the space step, 1t the time step, (xi, yj) = (ih, jh) the grid point,
for 1 ≤ i ≤ N and 1 ≤ j ≤ M and φ(i, j) = φ(xi, yj). Then, ∇φ can
be estimated by central difference, i.e.

∇φ =


∂φ

∂x
,
∂φ

∂y


,

φx =
∂φ

∂x
≈

φ(i + 1, j) − φ(i − 1, j)
21x

,

φy =
∂φ

∂y
≈

φ(i, j + 1) − φ(i, j − 1)
21y

.

(13)

As for the divergence term in Eqs. (9) and (12), the mean curvature
K is used

K = div


∇φ

|∇φ|


=

φxxφ
2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y )
3/2

(14)

where φxx, φyy and φxy denote the second partial derivatives of
φ. To find global minimum with fast convergence, the Heaviside
functionH(φ) is regularized (Chan and Vese, 2001; Vese and Chan,
2002)

Hε(x) =
1
2


1 +

2
π

arctan
 x

ε


, δε =

d
dx

Hε(x) (15)

where ε is a tunable parameter determining the numerical
smearing. Approximating the time derivative with the forward
difference scheme, Eq. (12) is finally written as follows

φn+1
1 = φn

1 + 1t · δϵ(φ
n
1){µ1 · K1 − νi

+ (λ3‖u0 − c01‖2
− λ1‖u0 − c11‖2)Hε(φ

n
2)

− (λ2‖u0 − c10‖2
− λ4‖u0 − c00‖2)(1 − Hε(φ

n
2))} (16)

where φn
1 is an approximation of φ1 at time n(1t). Using this

evolving equation, new approximation of φn+1
1 is determined

iteratively from φn
1 . In Eq. (16), φ1,Hε(φ1), δε(φ1), K1 and u0

have the same dimension and can be considered as an M × N
matrix. Therefore, once we determine c11, c10, c01, c00, K1,Hε(φ

n
1)

and δε(φ
n
1), new approximation φn+1

1 is updated with Eq. (16).
The same applies for φ2. For detailed discretization and iterative
algorithm, we refer the reader to Rudin et al. (1992), Aubert and
Vese (1997) and Vese and Chan (2002).

3. Roof segmentation

This section describes the segmentation process based on
the level set principles. The local planarity of each LiDAR point
is analyzed and normal vectors of planar points are used for
segmentation. The segmentation is carried out in a 2D grid
enclosing all building points by applying two level set functions
such that the 2D grid is divided into four disjoint regions.
Each of the four regions corresponds to one or several planar
roof segments. This process can be applied recursively for more
complex building roofs. Finally, the separation of coplanar and
parallel roof segments is discussed.
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Fig. 3. Pre-processing step: (a) All building points; (b) Planar points (gray) and non-planar points (black); (c) 2D grid Ω with boundary points (black dots); (d) Mask
grid Ωm .
3.1. Normal vector calculation

Any plane π in R3 is represented uniquely by its normal vector
and distance to the coordinate origin. Therefore, most approaches
use normal vectors as the homogeneity criterion for planar roof
segmentation. For a data point pi, its normal vector is taken as the
average of those of its incident triangles. To prevent inaccurate
normal calculations, this study further considers the distance
between the given point and neighboring points. If one or more
sides of an incident triangle Tj are larger than two times the
LiDAR ground spacing, its normal vector NTj is not included for
calculation. To identify non-planar points, such as those at roof
ridges or building boundary, PCA (Principal Component Analysis)
or dimensionality analysis were used (Sampath and Shan, 2010;
Verma et al., 2006). Another approach used in this study is to
analyze the angular differences of the normal vectors. To check
if a point pi is a planar point, we calculate MAD (Mean Angle
Difference) of Npi with NTj of neighboring triangles as follows

Mean Angle Difference =
1
n

n−
j=1

Npi · NTj (17)

where n is the number of triangles incident to pi and (·) denotes
an inner product of two vectors. Ideally, MAD should be zero
if pi lies on the perfect plane spanned by neighboring triangles.
However, due to the inherent data noise and non-planarity of the
object, certain angle threshold (20° in this study) is applied. The
identified planar points and their normal vectors are then used for
the subsequent segmentation process.

3.2. Plane direction segmentation

Let P be planar points and N be their normal vectors. We use
N as input feature vectors to level set approach, with nx, ny and
nz forming three channels. Two level set functions are involved for
segmentation, i.e., up to four regions can be segmented at one time.
First, we specify a 2D grid Ω enclosing P with cell size 1g . The
cell size is determined from the average point density dp satisfying
1g = 1/


dp. Therefore, the number of cells is approximately

equal to that of LiDAR points of the building. Different cell sizes
may possibly lead to different segmentation results. Generally, a
large cell size produces a coarse segmentation and some small
features may not be retained. In contrast, a small cell size leads
to a fine segmentation at a cost of data redundancy, more storage
and computation time. It is considered that a cell size similar to
the original LiDAR ground spacing produces the most accurate
results (Behan, 2000). Two initial level set functions φ1 and φ2
(see Section 5.3) are defined from a set of regularly spaced zero
level curves in Ω . Building boundary points are then determined
using the α-shape algorithm (Edelsbrunner et al., 1983; Sampath
and Shan, 2007; Wei, 2008), which forms a mask grid Ωm to avoid
calculation outside the building boundary. Fig. 3 is used to illustrate
this process.

In the subsequent step, segmentation is carried out iteratively
to divide Ωm into four disjoint regions Ωi (1 ≤ i ≤ 4), each of
which represents a spatial extent with the similar normal vectors.
It should be noted that a region may consist of either one roof
segment or a group of roof segmentswith the samenormal vectors.
The roof segments of one region Ωi need not to be spatially
connected. The energy function to be minimized is Eq. (11), where
u0 is determined from the calculated normal vectors N by linear
interpolation, c11, c10 etc. are the mean normal vectors in the
corresponding regions. As an example, for region R10 we have

c10 =
1
k

k−
i=1

Ni, for ∀i : φ1(pi(x, y)) ≥ 0 and φ2(pi(x, y)) < 0

(18)
where k is the number of points of region R10, φ1(pi(x, y)) and
φ2(pi(x, y)) are evaluations of φ1 and φ2 respectively at a data
point pi(x, y). The numerical solution to the final evolving equation
is based on Eq. (16). In this study, we use 1t = 0.01, ε =

1.5, µi=1,2 = 0.01 × 2552, νi=1,2 = 0 and λi=1–4 = 1 with
φ0
1(x, y), φ

0
2(x, y) as initial level set functions. Among these

parameters, 1t and µ affect the quality and performance of
segmentation. A large1t can speed up the evolution, but may lead
to incorrect segmentation results. Similarly, µ defines the scale of
this method; a small value can detect small objects and vice versa.
In summary, the segmentation process can be outlined as follows.
• Specify Ω with cell size 1g . The number of rows and columns

depends on the average point density.
• Extract building boundary points and create a mask grid Ωm.
• Initialize two level set functions φ0

1 and φ0
2 using the signed

distance functions.
• Repeat the following steps until convergence or for a given

number of iterations.
– Compute Hε(φ

n
i ) and δε(φ

n
i ) using Eq. (15).

– Compute the mean curvatures Ki using Eq. (14).
– Compute the mean normal vectors of four regions, i.e.,

c11, c10, c01 and c00 for each φn
i .

– Update new φn+1
1 and φn+1

2 using Eq. (16).
– Check convergence.

The intermediate plots and final segmentation results are
presented in Fig. 4. Fig. 4(a)–(d) show the variations of two zero
level curves and four regions from their initial setup (Fig. 4(a)).
Four segmented regions Ωi(1 ≤ i ≤ 4) are presented as a
labeled image in Fig. 4(d) with different colors. Each region can
also be represented (or extracted) separately using the definition
of multiphase level set. For example, Ω1 (=R11) and Ω2 (=R10)
are determined with grid cells satisfying {Ω1(x, y) : φ1(x, y) ≥ 0
and φ2(x, y) ≥ 0} and {Ω2(x, y) : φ1(x, y) ≥ 0 and φ2(x, y) < 0},
respectively. It should be noted that the outcome of the above step
also generates the roof ridges, which are represented as the union
of two zero level curves as shown in Fig. 4(d).
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Fig. 4. Segmentation results: (a)–(d) Intermediate plots of four regions (Ωi) and two zero level curves (black and whites lines) at different iteration steps (1,4,7 and 10);
(e) and (f) Separation of misconnected segments; (g) Separated roof planes; (h) Segmented points.
a b c d

Fig. 5. Separation of parallel planes: (a) Two separated coplanar planes; (b) and (c) Histograms of disclosures of plane ‘‘1’’ and ‘‘2’’; (d) Separated parallel planes.
3.3. Roof segment separation

In the segmentation outcome shown in Fig. 4(d), roof segments
with the same direction are grouped. This section further separates
these planes, e.g., coplanar or parallel planes, into individual roof
segments.

Coplanar planes have the same mathematical formulation but
are spatially separated. Every segmented region Ωi in Fig. 4(d)
consists of a few coplanar planes. Their separation can be
performed by density clustering and connectivity analysis in the
original data space (Sampath and Shan, 2010). In a 2D grid, a simple
connectivity analysis with four or eight neighbors (Haralick and
Shapiro, 1992) can be applied. In this study, connectivity analysis
with four neighbors is applied to each segment Ωi. In case a few
coplanar segments meet at one pixel (Fig. 4(e)), they are separated
by applying morphological opening as shown in Fig. 4(f). For small
segments, they are merged with adjacent larger ones. From this
process, Ωi and corresponding point sets Pi are further separated
into a total of 14 roof segments as shown in Fig. 4(g) and (h), which
are denoted as Ω̄i and P̄i hereafter.

Once coplanar planes are separated, we check the existence
of parallel planes in each segment Ω̄i. First, the mean disclosure
of Ω̄i is determined by plugging data points p ∈ P̄i into the
corresponding plane equation. If the mean disclosure of Ω̄i is
beyond a certain threshold, Ω̄i is considered to have parallel
planes. Then, segmentation is applied to Ω̄i with corresponding
disclosures as the feature vectors. Fig. 5 is used to show this
process. Roof segment marked as ‘‘1’’ in Fig. 5(a) consists of only
one plane, whereas roof segment ‘‘2’’ consists of two groups
of parallel planes, i.e., the upper four coplanar planes and the
lower, enclosing one. Their mean disclosures are respectively
0.047 m and 0.63 m as shown in Fig. 5(b) and (c) Because of
its significant disclosure, the segment ‘‘2’’ is further separated
until each newly separated roof segment satisfies a predefined
disclosure threshold. The separated two groups of parallel planes
are shown in Fig. 5(d) with dark and light gray. Finally, the
upper four small coplanar planes are separated into individual roof
segments through connectivity analysis.

4. Roof reconstruction

This section describes the reconstruction of a 3D roof model
from the above segmentation result by determining the vertices
of each roof segment and their connectivity. We call those vertices
roof structure points hereafter. These points are mostly induced
by the intersection of at least three non-parallel planes and can be
determined from the segmentation outcome of the above step.

4.1. Identification of roof structure points

First, we analyze the adjacency among the roof segments to
identify roof structure points. We subdivide Ω̄ with grid interval
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Fig. 6. Identification of roof structure points: (a) Case 1: points induced by three non-parallel planes; (b) Case 2: point induced by four roof planes; (c) Case 3: point induced
by two roof planes (light and dark gray) and roof boundary; (d) Point on the roof ridge (not a roof structure point); (e) Identified roof structure points and their types (square:
case 1 & 2; circle: case 3); (f) Reflection points; (g) Roof structure points induced by building boundary; (h) Four closely-located points.
0.5 pixels and check how many unique roof segments exist at
four neighboring cells within ±0.25 intervals. In Fig. 6(a)–(d), four
different cases are presented. White dots and squares denote grid
points and their four neighboring cells, respectively.

If a grid point has at least three unique non-parallel roof
segments in its neighborhood as shown in Fig. 6(a) and (b), it is
considered as an intersection of corresponding roof segments. If
two or three unique non-parallel roof segments and at least one
building outside (dark blue) meet at a grid point (Fig. 6(c)), it is
considered as an intersection of the corresponding roof segments
and a vertical plane, which is determined from the building
boundary. If only two unique non-parallel roof segments are found
at a grid point as shown in Fig. 6(d), this point must lie on the
roof ridge where two neighboring roof segments meet, and thus
will not be considered as a roof structure point. The identified
roof structure points are shown in Fig. 6(e) with different symbols.
Although the 2D positions of these roof structure points may be
different from their actual positions, they clearly imply which roof
planes are adjacent and constitute roof structure points.

Based on this process, most of the roof structure points induced
by the intersection of non-parallel roof segments are identified.
To represent roof shape correctly, the intersection of two line
segments of building boundary is also considered as a candidate
for roof structure point. To determine these points, we first apply
the α shape algorithm to trace the building boundary, followed by
Douglas–Peucker algorithm. (Douglas and Peucker, 1973) to find
reflection points as shown in Fig. 6(f). All boundary points between
two consecutive reflection points are fitted to a line by RANSAC.
Fig. 6(g) shows the candidate roof structure points determined by
intersecting line segments on the building boundary. When some
candidate roof structure points from these two groups are very
close to each other as shown in Fig. 6(e) and (f), the points induced
by non-parallel planes are used.

4.2. Positioning of roof structure points

In 3D space, three planeswhose normal vectors are not coplanar
intersect at exactly one point. By examining the number of unique
roof segments and their normal vectors at each candidate roof
structure point, its actual position in 3D space is determined
through the following process. First, if a candidate roof structure
point is adjacent to three non-parallel roof segments, e.g., Fig. 6(a),
its actual 3D position is determined by intersecting these roof
segments. If four unique roof segments are identified as in Fig. 6(b),
the least squares approach is applied. For a candidate roof structure
point induced by roof segments and boundary line segment as
shown in Fig. 6(c), we define a vertical plane from the line segment,
which has the shortest distance to the given intersection point.
Then, the actual position is determined by plane intersection.
When a cluster of estimated roof structure points are adjacent
within a certain threshold (Fig. 6(h)), their arithmetic mean is
taken as the final position of the structure point. For a candidate
roof structure point induced from the line segments of building
boundary, its height is assigned from the closest LiDAR point.
Fig. 7(a) plots the determined roof structure points (in black) and
raw LiDAR points.

For the 3D representation of a roof model, the remaining step
is to determine the order of vertices, i.e., roof structure points, of
each roof polygon. To achieve this, we again make use of a labeled
image in 2D. We consider each roof segment Ω̄i as a binary image
consisting of 1 and 0 for inside and outside roof plane, respectively.
From the top left pixel of a roof segment, we sequentially follow
the edge pixels. The order of the structure points is then defined by
the sequential numbers of their corresponding closest pixels. This
approach allows for determining vertices of any type of polygons
in the correct order regardless of convex or non-convex shape.
Fig. 7(b) illustrates this process. The same process is applied to
all the roof segments. Finally, a 3D roof model is represented
by assembling each roof segment polygon with its vertices and
facades are generated by extruding line segments of the building
boundary as shown in Fig. 7(c) For the final data structure, DCEL
(Doubly Connected Edge List) is used. In this representation,
vertices, edges, faces and all necessary connectivity information
are maintained using three collections of records, i.e., vertices,
half-edges and faces respectively. In the vertex record, each roof
structure point is stored with its coordinates and a pointer to
a half-edge which has this vertex as its origin. In the half-edge
record, three roof ridges (Twin(e⃗),Next(e⃗), Prev(e⃗)), its vertex
origin (Origin(e⃗)), and a face (Face(e⃗)) are stored. In the face record,
a half-edge (e⃗(f )) of its exterior boundary is stored (Fig. 7(d)).
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Fig. 7. Reconstruction of a 3D roof model: (a) Roof structure points; (b) Points on one roof plane; (c) Reconstructed roof model; (d) DCEL representation.
a b

Fig. 8. Snapshots of the two tested data sets: (a) Purdue campus; (b) Heerbrugg, Switzerland.
Table 1
Summary of the two test data sets.

Location Equipment Date of acquisition Average point density # Returns # Returns used

Purdue campus Optech ALTM 1210 Spring 2001 ≈1 pt/m2 2 2
Heerbrugg, Switzerland Leica ALS60 03/08/2009 ≈4 pts/m2 4 4
5. Tests and discussion

The proposed approach is applied to the two data sets
summarized in Table 1 and shown in Fig. 8. A number of
buildings are chosen from the LiDAR point clouds in each data
set for evaluation. Fig. 9 presents the segmentation results and
reconstructed roof models. The aerial photos (from GoogleMap)
and shaded relief images (from the LiDAR points) are also
presented to show overall roof structures. For all segmentation
processes two level set functions are used in a recursive manner.

5.1. Evaluation of reconstructed buildings

Through a visual comparison of the segmented roof planes with
the original LiDARdata, Table 2 shows the completeness of the nine
(9) buildings in Fig. 9.

As shown in Table 2, some roof planes are missed in two
extracted buildings (#1 and #2) in the Purdue data set. This is
largely due to the coarse point density of this LiDAR data set. Most
of the LiDAR points on the missed roof planes were identified
as non-planar points (shown in Fig. 10) and excluded in the
segmentation process.

The accuracy of a reconstructed roof model is described by
the distances of LiDAR points to the segmented roof plane and
the angular differences between their local normals and the plane
segment normal. The distance and angular means are summarized
in Table 3 for the roof planes of two buildings (#2 and #9).
They measure how an extracted plane segment fits to the LiDAR
points. These two discrepancies are apparently affected by LiDAR
point density. The higher the density (Heerbrugg data set), the
smaller size the neighboring LiDAR points occupy, which means
more planarity of the neighborhood and thus the smaller distance
disclosures. On the other hand, a smaller neighborhood size would
cause larger uncertainty on the plane orientation, leading to larger
angular differences as shown in Table 3. These two measures
actually indicate the best separability that our approach can
achieve.

We applied the proposed approach to a larger area in the
Heerbrugg data set. The shaded relief of this area is presented
in Fig. 11(a) along with building labels, while the reconstructed
building models are shown in Fig. 11(b). It is seen that different
roof types such as gable, hip, flat and a few more complex roofs
are mixed in this area. All 20 buildings are reconstructed without
difficulty except building #19, which has a dormer on its left
side. Its 2D structure is represented in Fig. 12(a) The two points
with solid circles are identified as roof structure points with three
adjacent planes (P1, P2 and P3), while the other two points with
open circles are not determined. For this reason, roof planes P2 and
P3 cannot be reconstructed. In contrast, all roof structure points
of a dormer connected with building boundary are identified
correctly as in building #5 in Fig. 9. The problem of Fig. 12(a)
is resolved as follows. Once all roof structure points (cases 1–3
shown in Fig. 6) are determined, the number of roof structure
points of each roof plane are analyzed. Any roof plane with less
than 3 roof structure points is identified. These are roof segments
either standing alone or contained by another roof segment, which
can therefore be traced as building boundary as discussed in
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Fig. 9. Segmented roof and reconstructed roof models. From left to right: aerial photo, shaded relief, segmented roof (non-planar points with black dots), and roof model.
(1)–(4): Purdue; (5)–(9): Heerbrugg.
Table 2
Completeness of reconstructed buildings.

Building # # Segmented roof planes # Roof planes in data Completeness (%)

1 10 14 71.4
2 11 12 91.6
3 7 7 100
4 12 12 100
5 23 23 100
6 3 3 100
7 5 5 100
8 10 10 100
9 14 14 100

Mean 95.8
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Fig. 10. Missed roof planes: (a) and (c) Locations of missed roof planes; (b) and (d) Non-planar points on the missed roof planes.
Fig. 11. A subset in Heerbrugg: (a) Shaded relief with identified building labels; (b) Reconstructed roof models.
a b c

Fig. 12. Reconstruction of a dormer structure of building # 19: (a) Difficult case, (b) segmented points, (c) color coded planes.
Table 3
Accuracy of reconstructed building #2 and #9.

Roof # Building #2 (Purdue) Building #9 (Heerbrugg)
Distance (m) Angular difference (°) Distance (m) Angular difference (°)

1 0.0267 3.87 0.0175 5.14
2 0.0316 5.11 0.0189 7.13
3 0.0275 2.75 0.0179 4.24
4 0.0256 2.85 0.0190 6.11
5 0.0186 2.14 0.0471 7.93
6 0.0888 4.42 0.0251 7.82
7 0.0293 3.11 0.0211 6.84
8 0.0263 2.46 0.0189 5.89
9 0.0282 3.68 0.0233 6.62

10 0.0343 2.82 0.0187 4.89
11 0.0199 1.88 0.0173 6.18
12 0.0263 2.74 0.0332 8.39
13 – – 0.0181 5.63
14 – – 0.0162 2.49
Mean 0.031 3.16 0.022 6.09
Section 4.1. Fig. 12(b) and (c) shows the segmented building points
and color coded planes for building #19.

5.2. Computational performance

This section studies the effect of the number of data points,
the number of grid cells, and initial level set functions on the
computational performance of the proposedmethod, especially its
convergence and computation time. The computation was carried
out on a CoreTM2 Duo CPU 2.5 GHz using MATLAB program.
Fig. 13(a)–(d) show regularly spaced initial zero level curves
with four different radii, i.e., 9×, 5×, 3× and 2× the LiDAR
point spacing, respectively. Fig. 13(e) shows the energy variation
(convergence) in terms of the number of iterations. The labeled
numbers in Fig. 13(e) are the same multiplication factors as in
Fig. 13(a)–(d) (Figure for 7× is omitted). For each initial zero level
curve, this program iterates for 50 timeswith a total execution time
less than 20 s.



494 K. Kim, J. Shan / ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 484–497
a b c d

e f

Fig. 13. Computational performance: (a)–(d) Initial zero level curves with different radii; (e) Convergence (energy function) versus the number of iterations under different
initial radii; (f) Failure of convergence 9×.
Table 4
Computational performance of individual buildings.

Building # np ng = M × N s/iteration Total time (s) Cells/s Points/s

1 1029 47 × 69 0.18 1.08 17625 5716
2 1473 78 × 72 0.29 2.32 19365 5079
3 958 60 × 61 0.18 4.50 20333 5322
4 1333 58 × 44 0.21 2.31 12094 6347
5 1490 90 × 36 0.27 2.43 12000 5518
6 10466 129 × 127 1.70 32.30 9641 6156
7 2674 60 × 49 0.39 3.90 7596 6856
8 867 53 × 25 0.13 2.99 10351 6669
9 2631 78 × 69 0.44 4.40 12204 5979
Fig. 13(e) shows that the iteration converges generally faster
with smaller radii for initial zero level curves. However, when the
radii of initial zero level curves are too close to the LiDAR ground
spacing, it may need more iteration, e.g., the case of 2× LiDAR
ground spacing. On the other hand, larger radii, e.g., 9×, may even
not produce correct segmentation result as shown in Fig. 13(f) (for
comparison see Fig. 4(h)), since the minimization is trapped at the
localminimumas shown in Fig. 13(e). By providing a larger number
of initial zero level curves with the proper radius over the entire
domain Ω , the segmentation process, e.g., breaking or merging of
different regions is accelerated, which leads to faster convergence.
Therefore, radius with 3–5× LiDAR ground spacing for initial zero
level curves is recommended.

We also provide computational time for buildings shown in
Fig. 9. The number of data points and grid cells in Ω are the most
significant factors affecting the convergence time. Let np be the
number of points and ng = M×N be the number of grid cells inΩ .
There are three main tasks per iteration: (1) identify all points pi ∈

P for a region and calculate its mean normal vector, (2) compute
fitting terms, i.e. Hε(φ

n
2) and (1 − Hε(φ

n
2)) in Eqs. (16) and (3)

update level set functions. The 1st task has linear time complexity
O(np). The time for the 2nd task isO(np log np), while the 3rd task is
simply updating a new φn+1 with O(ng) complexity. Therefore, np
is themain factor affecting the computation time. Table 4 gives the
details about the nine buildings in Fig. 9 and their execution time.

Table 4 shows that the computation time ismostly proportional
to np, about 5960 points per second per iteration. The computation
time is affected by both the number of grid cells and the number of
points, with the latter being more dominant. For example, though
buildings #1 and #5 have almost the same number of grid cells,
the larger number of points in building #5 leads to significantly
slower calculation (0.27 vs. 0.18 s per iteration). In contrast, for
buildings with similar number of data points, such as #7 and #9, a
substantial increase (78×69 vs. 60×49) in the number of cells only
causes minor extra computation cost (0.44 vs. 0.39 s per iteration).
To reduce the number of grid cells, one may find the dominant
building orientation and reorient it parallel to the coordinate axis.

5.3. Initial level set functions

Compared to the edge-based level set approach, the energy
minimization problem introduced in this paper is more flexible for
placing initial zero level curves (Chan and Vese, 2001). However,
this minimization problemmay not be convex, thus possibly leads
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Fig. 14. Layout of initial level set functions: (a), (b) Regularly spaced zero level curves; (c) Initial level set function φ0
1 represented as a signed distance function in 3D.
Fig. 15. Segmentation results from two level set functions: (a) R11 (empty); (b) R10; (c) R01; (d) R00.
to convergence at a local minimum. Defining the initial level set
function from a set of regularly spaced zero level curves over the
entire domain Ω is known to be helpful for finding the global
minimumand reducing the processing time for convergence (Chan
et al., 2000; Chan and Vese, 2001; Vese and Chan, 2002). Therefore,
we define the initial level set function in the following way. First,
a set of zero level curves with a fixed radius are placed regularly
in Ω . In case of multiphase level set, these curves are placed with
slight displacement to each other as shown in Fig. 13(a) and (b).
Then, the value of a pixel is its distance to the closest zero level
curve, with (+) for curve inside and (−) for curve outside, i.e.,

φ0
1(x, y) =


d((x, y), S) if (x, y) ∈ S
−d((x, y), S) if (x, y) ∈ Sc


(19)

where φ0
1(x, y) is an initial value at location φ1(x, y), S and Sc

denote inside and outside of the zero level curves, and d((x, y), S)
is the distance between the point (x, y) and closest S. An example
of initial level set function determined in this way is shown in
Fig. 14(c) with 3D representation.

5.4. Number of level set functions

In the previous example shown in Fig. 4, the number of
directional planes is the same as what two level set functions can
produce, i.e., four directional planes are segmented with two level
set functions. In this section, wewill show that it is actually flexible
in selecting the number of level set functions. We consider two
different cases in which the number of segments in the data is
(1) less than or (2) more than what the given number of level
set functions can produce. In Fig. 15, there are three groups of
directional roof planes. The original point clouds are shown in
Fig. 5(a). Two level set functions produce three regions R10, R01
and R00 with the 1st region R11 being empty as shown in Fig. 15.

When more planar roof planes exist than what the given
number of level set functions can segment, we apply the same
segmentation process in a recursive manner. To demonstrate,
only one level set function is applied to the same data shown in
Fig. 15. This produces only two regions as shown in Fig. 16(a)
and (b). It is seen that the 2nd region consists of one roof plane,
whereas two groups of roof plans with different normal vectors
are segmented into the 1st region, which needs to be further
segmented. Once regions ‘‘1’’ and ‘‘2’’ are separated, we analyze
the mean disclosure and mean angle difference of each Ω̄i for
further possible segmentation. In this example, region ‘‘1’’ of
Fig. 16(a) is further segmented with normal vectors first into
two regions shown in Fig. 16(c) and (d). Region ‘‘3’’ shown in
Fig. 16(c) is then further segmented with disclosures as feature
vectors into two groups of parallel planes as shown in Fig. 16(e)
and (f). Finally, region ‘‘4’’ in Fig. 16(e) is further separated into
four roof primitives. The final segmentation result (total eight
roof segments) and its reconstructed 3D model are presented in
Fig. 16(g) and (h), respectively.

6. Conclusion

This paper treats roof modeling from airborne laser scanning
data as a two-step task: segmentation and reconstruction.
Segmentation is meant to find the roof geometric primitives, i.e.,
planar roof segments in this study, while reconstruction is to
further determine their adjacency and integrity. Segmentation is
approached by the method of multiphase and multichannel level
set, which can simultaneously determine multiple segments. Two
level set functions are used to segment up to four directional
planes at a time and can be applied recursively for more complex
roofs. Coplanar or parallel planes are further separated into
individual roof segments through analyzing their connectivity and
homogeneity. Finally, roof structure points are determined by
intersecting adjacent roof segments and connected based on their
topological relations inferred from the segmentation outcome.

The proposed approach has some distinctive properties.
Compared to common region growing methods that only consider
local planarity around a data point, this approach is global. This
global nature also differentiates the proposed method from a
RANSAC based approach which estimates parameters for one roof
plane at a time. It simultaneously looks for multiple roof segments
depending on the number of level set functions involved. For
simple roof forms, e.g., gable, cross-gable, pyramid or hip roofs,
correct segmentation can be achieved within a few iterations
with two level set functions. As many other clustering methods,
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Fig. 16. Recursive segmentation with one level set function: (a) and (b) Initial segmentation results; (c) and (d) Recursive segmentation of region ‘‘1’’; (e) and (f) Recursive
segmentation of region ‘‘3’’; (g) Segmentation result; (h) Reconstructed model.
the framework of multiple level set can be used recursively to
segmentmore complex building roofs. All recursive segmentations
in our experiments proceeded to resolving under-segmentation
problem. On the contrary, over-segmentation problem, which
is more problematic case in this study, occurred when the
segmentation is trapped at the local minimum. This issue is largely
minimized by defining multiple initial zero level curves presented
in this paper. It is also found that 3–5× LiDAR ground spacing
among these curves is appropriate, with larger spacing leading
to possible incorrect convergence and smaller spacing to slower
computation. In the context of segmentation accuracy and detail,
our experiments showpromising results. However, likemost other
approaches, the results are affected by parameters involved. For
example, the mean angle difference used for determining the
homogeneity of segments clearly restricts further segmentation.
Another property is that it always produces connected segments
and their boundaries correspond to roof ridges or step edges,which
facilitates the determination of topologic relations among the roof
segments and thus benefits 3D roof reconstruction. This is different
from k-means clustering based methods, which only deal with
LiDAR points in feature space.

The proposed approach also has some limitations at the present
stage. Similar to other approaches, point clouds involved in the
method are largely building points. This requires the separation
of building points from others as exact as possible. This is an
active research topic and not dealt with in detail in this work.
As a common limitation of data-driven approach for building
reconstruction, the completeness of 3D reconstruction depends on
the average point density of the input point clouds. If there are not
enough data points to represent roof structures, they will not be
segmented correctly. In this study,most roof planes are segmented
without recursive process and only a feware fully segmented at the
third recursive step. Therefore,more testswith different roof forms
and complex buildings should be continued.
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