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Abstract—We are interested in the connection-level stability of
a network employing congestion control. In particular, we study
how the stability region of the network (i.e., the set of offered
loads for which the number of active users in the network remains
finite) is affected by congestion control. Previous works in the
literature typically adopt a time-scale separation assumption,
which assumes that, whenever the number of users in the system
changes, the data rates of the users are adjusted instantaneously
to the optimal and fair rate allocation. Under this assumption,
it has been shown that such rate assignment policies can achieve
the largest possible stability region. In this paper, this time-scale
separation assumption is removed and it is shown that the largest
possible stability region can still be achieved by a large class of
congestion control algorithms. A second assumption often made
in prior work is that the packets of a source (or user) are offered
to each link along its path instantaneously, rather than passing
through one queue at a time. We show that connection-level
stability is again maintained when this assumption is removed,
provided that a back-pressure scheduling algorithm is used
jointly with the appropriate congestion controller.

Index Terms—Communication networks, congestion control,
connection-level dynamics, stability, time-scale separation.

I. INTRODUCTION

CONGESTION control is a key functionality in modern
communication networks. The objective of congestion

control is to regulate the data rate at which each user injects
data into the network such that (a) the network capacity is
fully utilized, (b) excessive congestion inside the network is
avoided, and (c) some form of fairness (in terms of the amount
of service that each user receives) is ensured. Since the seminal
work by Kelly et al [3], it is clear that these objectives can
be mapped to a global optimization problem that maximizes
the total system utility, where different fairness objectives can
be achieved by appropriately choosing the utility functions.
Congestion control can then be viewed as a distributed iterative
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solution to the afore-mentioned global optimization problem
[3]–[8].

Significant advances in the understanding of congestion
control have been made under this optimization framework.
The results can roughly be categorized into two groups. In the
first body of work, it is assumed that the number of users in the
network is fixed and each user has infinite data to transfer. This
research focuses on developing distributed iterative algorithms
that converge to a fair rate allocation, which corresponds to
the solution of the global optimization problem. Various issues
have been addressed in this body of work, including global
convergence of the congestion control algorithm, local stability
of the equilibrium rate allocation under feedback delays, the
impact of random noise, and the asymptotic behavior of the
system when the number of users is large.

The second body of work studies a network with
connection-level dynamics, i.e., when the users randomly
enter and leave the network. When the users are in service,
their data rates are dynamically controlled according to the
congestion level in the network. A basic question in studying
the connection-level dynamics is the stability region of the
system employing congestion control. Here, by stability, we
mean that the number of active users in the system and the
queue lengths at each link in the network remain finite. The
stability region of the system under a given congestion control
algorithm is the set of offered loads under which the system
is stable. This body of work typically assumes that, whenever
the number of users in the system changes, the data rates of
the users are adjusted instantaneously to the optimal (and fair)
rate allocation computed by the global optimization problem.
This model essentially assumes a time-scale separation, i.e.,
the time scale of the arrivals and departures of the users is
much slower than that of the dynamics determined by the
congestion control algorithms derived in the first body of
work. Under this time-scale separation assumption, it has been
shown that the largest possible stability region can be achieved
by allocating data rates among the users according to certain
fairness criteria [9]–[12]. Further, it has been shown in [10]
that “unfair” resource allocations such as priority scheduling
may not achieve the largest possible stability region. Thus,
“fairness” is not merely an aesthetic property, but it actually
has a strong global performance implication, i.e., in achieving
the largest possible stability region.

In this paper, we study the connection-level stability region
of congestion controlled communication networks without
using the time-scale separation assumption. Note that the time-
scale separation assumption arises from the following well-
known observation: most of the traffic in the Internet is due
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to a small fraction of files which are extremely large. Since
these files only form a small fraction of the traffic and these
are ones for which congestion control can be assumed to
reach a steady-state, it would seem reasonable to assume that
these files arrive, stay in the system for a long time and
then depart, thus leading to two time-scale behavior. While
this intuition is reasonable, in reality, the distinction between
small files and large files is not as precise as this model
might suggest and therefore, it is hard to rigorously justify
the time-scale separation assumption. We will show that, even
when we remove the time-scale separation assumption, the
largest possible stability region can still be achieved by a large
class of congestion control algorithms that are derived from
the optimization framework. Hence, our result reinforces the
performance benefit of congestion control in a stronger sense.

A second assumption that is usually made in the congestion
control literature is that the packets of a source (or user)
are offered to each link along its path instantaneously, rather
than going through one queue at a time. While we adopt
this assumption in Sections 2-4, we will study a different
model in Section 5 that directly takes into account the packet
dynamics of going through one queue at a time. We will show
that connection-level stability is again maintained when the
“user-rates-applied-simultaneously-to-all-links” assumption is
removed, provided that a back-pressure scheduling algorithm
is used jointly with the appropriate congestion controller.

The rest of the paper is structured as follows. In Section II,
we present the system model and review some related results in
the literature. Our main result is presented in Section III, where
we show that the largest stability region can be achieved even
without the time-scale separation assumption. In Section IV,
we extend our main result to the case with multi-path routing
and the case with time-varying capacity. In Section V, we
extend our main result to explicitly account for the packet
dynamics of going through one queue at a time. We conclude
in Section VI.

II. THE SYSTEM MODEL AND RELATED RESULTS

In this section, we describe our system model and review
several related works. We consider a network with L links
and S classes of users. Let E = {1, 2, ..., L} denote the set
of links. For now, we assume that the capacity of each link
l ∈ E is Rl, and users of each class s have one path through
the network. (The extensions to the case with time-varying
capacity and multi-path routing are treated in Section IV.) Let
H l

s = 1, if the path of users of class s uses link l, and H l
s = 0,

otherwise.

A. Congestion Control
We first motivate the congestion controller used in the paper.

Note that congestion control is a key functionality in modern
communication networks to efficiently utilize the network
resources while avoiding excessive congestion, and to provide
fair rate-allocation to the users. Without proper congestion
control, the network can run into “congestion-collapse” [13],
a state where the useful throughput of the network drops by

orders of magnitude due to excessive congestion inside the
network.

Since the seminal work [3] by Kelly et al, it is clear that
congestion control can be modeled as a distributed solution to
the following network utility maximization problem. We first
consider the case when the number of users ns of each class
s is fixed, and each user has an infinite backlog to transfer.
Let xs denote the rate at which each user of class s sends
data into the network, and let Us(xs) be the utility received
by the user of class s when it sends data at rate xs. The
utility function Us(·) characterizes the “satisfaction level” of
a user of class s when it sends data at a certain rate, and as
we will soon discuss, it also corresponds to a certain fairness
objective. As is typically assumed in the literature, we assume
that each user of class s has a maximum data-rate limit of Ms,
and the utility function Us(·) is increasing, strictly concave,
and twice continuously differentiable on (0,Ms] [4]. Let ~n =
[n1, ..., nS ] and ~x = [x1, ..., xS ]. Congestion control can then
be formulated as the following global optimization problem
[3]:

max
~x:0≤xs≤Ms,s=1,...,S

S
∑

s=1

nsUs(xs) (1)

subject to
S
∑

s=1

H l
snsxs ≤ Rl

for all l = 1, ..., L.

1) Fair and Efficient Rate Allocation: The constraint in
(1) ensures that the network utilization never exceeds the
capacity, while the increasing utility functions ensure that the
capacity will be utilized as much as possible. Further, the
fairness objectives can be achieved by appropriately choosing
the utility functions [10], [14]. For example, utility functions
of the form

Us(xs) = ws log xs (2)

correspond to weighted proportional fairness, where ws, s =
1, ..., S are the weights. A more general form of the utility
function is

Us(xs) = ws
x1−β

s

1 − β
, for some β > 0 and β 6= 1. (3)

Maximizing the total system utility will correspond to maxi-
mizing weighted throughput as β → 0, weighted proportional
fairness as β → 1, and max-min fainess as β → ∞.

2) A Distributed Congestion-Controller and its Conver-
gence: Congestion control can then be viewed as a distributed
iterative solution to the above global optimization problem
[3]–[8]. The type of congestion controller that is most related
to this paper is the so-called “dual solution” given below
[4]. We associate an implicit cost ql with each link l and let
~q = [q1, ..., qL]. The following iterative algorithm can solve
problem (1) with an appropriate choice of the step-size.

Algorithm A:
At each time instant t,
• The data rate of each user of class s is determined by:

xs(t) = argmax
0≤xs≤Ms

Us(xs) − xs

L
∑

l=1

H l
sq

l(t). (4)
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• The implicit cost at each link l is updated by:

ql(t+1) =

[

ql(t) + αl

(

S
∑

s=1

H l
snsxs(t) − Rl

)]+

, (5)

where [·]+ denotes the projection to [0,∞) and αl is a
positive step-size for each link l.

The following proposition was shown in [4] with slightly
different notation.

Proposition 1: Assume that the number of users in the
system is fixed. Further, assume that the curvatures of Us(·)
are bounded away from zero on (0,Ms], i.e., there exists a
positive number γs for each class s such that

−U ′′
s (xs) ≥ γs > 0 for all xs ∈ (0,Ms]. (6)

Let ~x ∗ denote the optimal solution to problem (1). Let

S = maxl

S
∑

s=1
H l

sns denote the maximum number of users

using any link, and let L = maxs

L
∑

l=1

H l
s denote the maximum

number of links used by any user. If

max
l

αl ≤
2

SL
min

s
γs, (7)

then Algorithm A converges, i.e., ~x(t) → ~x ∗ as t → ∞.
Hence, when the step-sizes αl are sufficiently small, the

“dual solution” can solve the problem (1) as t → ∞.

B. Connection-Level Stability
The discussion of congestion control in Section II-A has

focused on the static setting, i.e., we have assumed that the
number of users of each class is fixed and each user has an
infinite amount of data to transfer. In real networks, users also
exhibit connection-level dynamics, i.e., they randomly enter
the network, have only a finite amount of data to transfer, and
leave the network after the data transfer is completed. When
the users are in service, their data rates are assumed to be
dynamically controlled according to the congestion controller
presented earlier. However, because the number of active users
constantly changes, the congestion control algorithm may not
be able to converge before the next time instant when a user
enters or leaves the system. Hence, although convergence is an
important goal for the static setting, we would be interested in
other performance measures (such as stability and completion
time) when there are connection-level dynamics. In particular,
Stability is often a first-order and important performance
measure to study [9]–[12], [15]. Here, by stability, we mean
that the number of active users in the system and the queue
lengths at each link in the network remain finite. To be precise,
we assume that users of class s arrive to the network according
to a Poisson process with rate λs and that each user brings
with it a file for transfer whose size is exponentially distributed
with mean 1/µs. The load brought by users of class s is then
ρs = λs/µs. Let ~ρ = [ρ1, ..., ρS ]. Let ns(t) denote the number
of active users of class s that still have data to inject into the
system at time t and let ~n(t) = [n1(t), ..., nS(t)]. Note that
according to this definition of ~n(t), once a user injects all of its
data (from the file that it brings) into the network, even though

the data may not have reached the destination yet, we assume
that the user will immediately leave the system. We assume
that users of the same class s send data into the network at
the same rate. Let xs(t) denote the data injection rate of users
of class s at time t and let ~x(t) = [x1(t), ..., xS(t)].1 The
data injection rate xs(t) will be determined by the congestion
control algorithm. Due to the assumptions on Poisson arrivals
and exponential file size distributions, the evolution of ~n(t)
will be governed by a Markov process. Its transition rates are
given by:

ns(t) → ns(t) + 1, with rate λs,

ns(t) → ns(t) − 1, with rate µsns(t)xs(t)

if ns(t) > 0. (8)

The data injected into the network create queue-backlogs at
the links. We assume that the queue length are updated every
time slot of length T . Assuming that the data injection rate
of each user is applied instantaneously over all links that the
user’s route traverses, the evolution of the queue length Ql at
link l is then governed by:2

Ql((k + 1)T ) =
[

Ql(kT )

+

(

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(t)dt − TRl

)]+

. (9)

Let ~Q(t) = [Q1(t), ..., QL(t)].
We can now mathematically define the notion of stability

that we are interested in. Note that here the stability of the
system must be defined jointly for ~n(t) and ~Q(t). To see
this, consider a rate allocation policy that allocates a constant
rate xs(t) = xs for each user of class s. At an arbitrarily
large offered load ~ρ, if we can choose xs sufficiently large,
then the number of active users ~n(t) in the system can be
easily made stable. (Recall that in our definition of ~n(t), a
user is considered to have left the system once it injects all
of its data into the network.) However, the links inside the
network may be severely congested and the queue lengths
~Q(t) may approach infinity. On the other hand, if we choose
xs sufficiently small, then the queue length ~Q(t) can be easily
made stable. However, each user will then take a long time
to complete service, and hence the number of active users
~n(t) may approach infinity. Clearly, for the system to operate
correctly, we should avoid both of the above two cases. Hence,
it is necessary to define the notion of stability jointly for
[~n(t), ~Q(t)].

We say that the Markov process [~n(t), ~Q(t)] is stable-in-
the-mean or simply stable [16] if

lim sup
t→∞

1

t

∫ t

0

E

[

S
∑

s=1

ns(t) +

L
∑

l=1

Ql(t)

]

dt < ∞. (10)

1Although we do not specify the units of these quantities, we do assume
that their units are consistent. For example, if the file size is in bits, and
time is in seconds, then the units of λs and 1/µs are per second and bits,
respectively, and the units of ρs, xs and the link capacity Rl are all bits per
second.

2This assumption will be removed in Section V.
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By the Markov inequality, this implies that, as M → ∞,

lim sup
t→∞

1

t

∫ t

0

P

[

S
∑

s=1

ns(t) +

L
∑

l=1

Ql(t) > M

]

dt → 0.

Roughly speaking, the system is stable if both the number of
users in the system and the queue lengths at each link in the
network remain finite. Note that the queue length Ql in our
model can be any real positive number. One could have used
the techniques of [2] to discretize Ql, and modeled the system
as a countable state-space Markov process. If in addition
this countable state-space Markov process is irreducible, then
the above notion of stability also implies positive recurrence.
However, in this paper we do not pursue this approach, and we
simply use stability-in-the-mean to be our notion of stability.

We define the stability region Θ of the system under a
given congestion controller to be the set of offered loads ~ρ
such that the system is stable for any ~ρ ∈ Θ. We say that
the stability region achieved by a congestion controller is the
largest possible when the following holds: for any offered
load, if this congestion controller cannot stabilize the system,
no other congestion controller can. Trivially, the capacity
constraint determines an upper bound3 on the stability region
achieved by any congestion controller, i.e.,

Θ ⊂ Θ0 ,

{

~ρ |

S
∑

s=1

H l
sρs ≤ Rl for all l

}

. (11)

In the rest of the paper, we will be interested in studying
whether the congestion controller developed through a static
setting (such as the one in Section II-A) can also achieve the
largest possible stability region when there are connection-
level dynamics. As we reviewed related work in Section II-D,
there are cases where the congestion controller (or more
precisely, the rate allocation algorithm) is not properly de-
signed, and can lead to a strictly smaller stability region.
Hence, the connection-level stability of a system employing
congestion control is not a trivial problem. In prior work, the
connection stability problem has typically been studied under
the following time-scale separation assumption.

The Time-Scale Separation Assumption:
• The data rates ~x(t) of the users at each time instant t

are adjusted instantaneously to the optimal rate allocation
computed by the global optimization problem (1) with
~n = ~n(t).

We refer to a congestion controller that allocates data rates
according to the above time-scale separation assumption as
the idealized congestion controller. Note that in this case,
since the congestion controller chooses the data rates ~x(t)
such that the aggregate data arrival rate at each link is no
greater than the link capacity (see the constraints in (1)), the
queues Ql(t) are always stable according to (9). Hence, we can
model the system as a countable state-space Markov chain by
denoting the number of active users ~n(t), as the system state.
The stability of the system is then equivalent to the positive
recurrence of the Markov chain ~n(t).

3This upper bound can be established along the lines of Lemma 3.3 in [17]
or Section III.A of [18], i.e., it can be shown that the Markov process will
not be stable if ~ρ lies outside the set Θ0.

The next proposition from [10] shows that the stability
region achieved by the idealized congestion controller is
indeed the largest possible found on the right hand side of
(11).

Proposition 2: Under the time-scale separation assumption,
if the utility functions are of the form in (2) or (3) for some
β > 0, then for any offered load ~ρ that resides strictly inside
Θ0, the Markov process ~n(t) is positive recurrent and hence,

lim sup
t→∞

1

t

∫ t

0

1
{

S
P

s=1
ns(t)>M}

dt → 0, as M → ∞.

Proofs of the above result using fluid limits and the Foster-
Lyapunov theorem can also be found in [19] and [20], respec-
tively.

C. Problem Statement
As discussed in the Introduction, time-scale separation is

difficult to verify in real networks. When the number of users
in the network changes rapidly, the data rates of the users em-
ploying a congestion control algorithm (such as algorithm A)
may never converge. Further, note that the step-size condition
(7) in Proposition 1 becomes more stringent as the number of
users in the system increases. As the offered load ~ρ approaches
the boundary of the stability region Θ0, the number of users in
the system will approach infinity. Hence, given a chosen set of
step-sizes, algorithm A will fail to converge when the offered
load is close to the boundary of Θ0. The time-scale separation
assumption will not hold in either of these two cases.

In this paper, we will study the connection-level stability
region of congestion controlled communication networks with-
out using the time-scale separation assumption. In particular,
we are interested in the following question: will the class of
congestion control algorithms introduced in Section II-A be
able to achieve the largest stability region Θ0, even when the
time-scale separation assumption is removed?

D. Related Work
Stability is an important subject for many stochastic sys-

tems. The stability region for arbitrary networks has been
studied in [17], [21]. The original models in [17], [21] do not
have congestion control or connection-level dynamics. Instead,
they assume that packets arrive to the system according to a
given stochastic process, and hence the packet injection rate
cannot be controlled. The role of the network is to route
these packets through the system, and, if the link capacity can
also be controlled, to determine the optimal link transmission
patterns. Optimal control schemes are developed in [17], [21]
that achieve the largest stability region, which is in a similar
form as (11) for the case when the link capacity is fixed.
It would be instructive to map the results in [17], [21] to
the model in Section II-B. We can either take xs(t) as being
infinitely large, in which case when a user arrives to the system
the entire file is injected immediately into the network; or, we
can take xs(t) to be at a fixed value. In both cases, the packet
arrival process is completely determined once the value of
xs(t) is fixed. Hence, we can apply the control schemes and
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the results from [17], [21]. In particular, since the average
packet arrival rate by users of class s is exactly equal to the
offered load ρs when xs(t) is a constant, if we apply the
control schemes in [17], [21], the results there imply that the
system will be stable as long as ~ρ falls strictly inside the set
Θ0 given by (11). Note that when the rates xs(t) are fixed, we
only need to consider the stability of the queue length ~Q(t),
because at any fixed xs(t) the number of active users ~n(t) is
always finite by standard results from M/M/∞/∞ queues.

However, choosing a fixed xs(t) means that the system
does not have the capability to dynamically control the data
rates based on the current congestion levels. Hence, we will
refer to the above stability result (that is directly derived from
[17], [21]) as stability without congestion control. Historically,
the Internet without proper congestion control has suffered
from “congestion collapse” [13], a state where the useful
throughput of the network drops by orders of magnitude due to
excessive congestion inside the system. Hence, most modern
communication networks do employ some form of congestion
control mechanism. In this paper, we are interested in the
stability of the system when congestion control algorithms
are employed. In order to differentiate with the notion of
“stability without congestion control” [17], [21], we refer to
the stability of a system employing congestion control as
connection-level stability. Note that connection-level stability
cannot be inferred from the results of [17], [21]. Specifically,
in [17], [21], although the control policy itself does not require
any knowledge of the statistics of the packet arrival process,
the stability result does require certain assumptions on its
correlation structure. When one employs a dynamic congestion
controller, it is unclear whether these assumptions hold for
the stochastic process with which users inject data into the
network. Hence, we cannot use the stability results of [17],
[21].

The authors in [9]–[12], [15] study the connection-level
stability problem under the time-scale separation assumption
that, at each time-instant t, the data injection rates ~x(t) are
chosen as a function of the current number of active users
~n(t). In particular, the data injection rates xs(t) may be
chosen to maximize the total system utility as in (1), where
ns is replaced by the instantaneous number of users ns(t)
in the system [10], [12]. Alternatively, the rates ~x(t) can
be chosen according to other fairness and optimality criteria
(e.g., according to max-min fairness [9]). Under this time-
scale separation assumption, it has been pointed out that the
introduction of certain congestion-control mechanisms may
prevent link capacities from being fully utilized, which might
reduce the stability region of the system [9]. In fact, examples
have been provided in [10] that, under certain “unfair” rate-
allocation mechanisms (e.g., those using priority-scheduling),
the connection-level stability region of the system is indeed
strictly smaller than the upper bound Θ0 given in (11).
Therefore, the question of connection-level stability is not a
trivial one. On the positive side, it has been shown that certain
types of “fair” congestion controllers can indeed achieve the
largest stability region (e.g., in Proposition 2), when time-
scale separation is assumed. Thus, the “fairness” objective of
congestion control is not merely an aesthetic property, but it

actually has a strong global performance implication, i.e., in
achieving the largest possible stability region.

III. CONNECTION-LEVEL STABILITY WITHOUT
TIME-SCALE SEPARATION

In this section, we study the connection-level stability of
systems employing congestion control, without the afore-
mentioned time-scale separation assumption. We first describe
some more details on the dynamics of the system. We assume
that time is divided into slots of length T . We use the following
congestion controller similar to Algorithm A in Section II-A.
We still assign an implicit cost ql with each link l. The implicit
cost ql corresponds to the congestion level at link l (and we
will soon see that ql is simply a scalar multiple of the real
queue length at link l). We assume that the implicit costs are
updated only at the end of each time slot. However, users may
arrive and depart at any point within a time slot. Let ~q(kT )
denote the implicit costs at time slot k. At any time t, the data
rate of users of class s is given by

xs(t) = xs(kT ) = min

































ws

L
∑

l=1

H l
sq

l(kT )











1/β

,Ms























, (12)

for kT ≤ t < (k+1)T , where β > 0. Note that Equation (12)
is the solution to (4) when the utility function is of the form
(2) or (3). (We use the convention β = 1 when the utility
function is of the form (2).) At the end of each time slot k,
the implicit costs are updated by

ql((k + 1)T ) =
[

ql(kT )

+ αl

(

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(kT )dt − TRl

)]+

. (13)

Note that both equations are closely related to Algorithm A.
However, unlike the case in Proposition 2 where the rate
allocation ~x(t) is determined by the solution to (1), which
by itself requires Algorithm A to converge instantaneously at
each time, now the rate allocation ~x(t) is determined by the
current implicit costs. Hence, we have removed the time-scale
separation assumption.

Remark: By comparing (13) with (9), we observe that the
implicit cost ql(t) is simply a scaled version of the queue
length Ql(t), i.e., ql(t) = αlQ

l(t) assuming ql(0) = Ql(0) =
0. Hence, in the sequel we will focus on the stability of the
Markov process [~n(kT ), ~q(kT )] because it is equivalent to the
stability of [~n(kT ), ~Q(kT )] as defined in (10).

The following proposition shows that, even when the time-
scale separation assumption is removed, the above congestion
control algorithm can still achieve the largest possible stability
region.

Proposition 3: Assume that the utility functions are either
of the form in (2) (in which case we use the convention that
β = 1), or of the form in (3) for some β > 1, and that
the data rates of the users are controlled by (12) and (13).

Let S̄ = maxl

S
∑

s=1
H l

s denote the maximum number of classes
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using any link, and let L̄ = maxs

L
∑

l=1

H l
s denote the maximum

number of links used by any class, If

max
l

αl ≤
1

T S̄L̄

2β − 1

16
min

s

ws

ρsM
β
s

, β ≥ 1, (14)

then for any offered load ~ρ that resides strictly inside Θ0, the
system described by the Markov process [~n(kT ), ~q(kT )] is
stable.

Remark: Since Θ0 in (11) is the upper bound on the stability
region achieved by any congestion controller, Proposition 3
implies that the congestion controller in (12) and (13) can
achieve the largest possible stability region.

Before we state the proof for Proposition 3, we would
like to highlight the difference between the results in Propo-
sitions 2 and 3. First, no time-scale separation assumption
is required in Proposition 3. Hence, we do not require the
data rates of the users to be chosen at each time according
to the solution to (1), which by itself requires an iterative
procedure. Second, a step-size rule that is independent of the
instantaneous number of users in the system is provided in (14)
(note the difference between S and S̄). Given our discussion at
the beginning of this section, it is quite surprising that we do
not need to reduce the step-sizes even when the offered load
is close to the boundary of the stability region. In fact, since
the set Θ0 is bounded, the feasible value of ρs is also upper-
bounded by max~ρ∈Θ0

ρs. Hence, the step-sizes can be chosen
independently of the offered load. The step-size rule (14) is
also dependent on Ms, which is the maximum data rate of
users belonging to class s. This dependence is not surprising.
Recall that Equation (12) is the solution to (4) when the utility
function Us(·) is of the form (2) or (3). We thus have,

U ′′
s (xs) = −β

ws

xβ+1
s

.

Hence, the minimum curvature of Us(·) is

γs =
βws

Mβ+1
s

.

Let ñs = ρs/Ms, which can be interpreted as the average
number of users of class s in a (fictitious) M/M/∞/∞
system, where each user of class s is served at its maximum
data rate Ms. The step-size condition (14) then becomes

max
l

αl ≤
1

T S̄L̄

2β − 1

16β
min

s

γs

ñs
,

which is comparable to (7). However, note that ñs is quite
different from E[ns(t)], the average number of users of class
s in the real system. Again, in our model without time-scale
separation, since ñs is always bounded, the step-sizes can be
chosen independently of the offered load.

Sketch of the Proof of Proposition 3: The precise proof is
quite technical. Hence, here we will use a heuristic fluid-model
argument to illustrate the main idea of the proof and relegate
the full proof to the Appendix. This fluid-model argument will
be used again in Sections IV and V to treat the extensions of
Proposition 3. We will look at the following fluid model that

approximates the dynamics of the original system in (8), (12)
and (13):

d

dt
ns(t) = λs − µsns(t)xs(t), (15)

xs(t) =











ws

L
∑

l=1

H l
sq

l(t)











1/β

, (16)

d

dt
ql(t) = (17)






















αl

(

S
∑

s=1
H l

sns(t)xs(t) − Rl

)

,

when
S
∑

s=1
H l

sns(t)xs(t) ≥ Rl or ql > 0 ,

0, otherwise.

Roughly speaking, this fluid model becomes a good approxi-
mation of the original system when the quantities ~n(t) and ~q(t)
are large, in which case the effect of the randomness in (8) and
the “jumps” in the discrete-time update (13) are dominated by
the “overall trend” that is described by the continuous-time
differential equations (15)-(17).

We consider the following Lyapunov function

V(~n, ~q) = Vn(~n) + Vq(~q), (18)

where

Vn(~n) =
1

1 + β

S
∑

s=1

Ks1wsn
β+1
s

µsρ
β
s

Vq(~q) =
1

2

L
∑

l=1

Kl2(q
l)2

αl
,

and the positive parameters Ks1 and Kl2 will be determined
later on. (Recall that the implicit cost ql is equal to αl

multiplied by the queue length Ql. Hence, in order to show
stability we can focus on ql instead of Ql.) The rationale
for choosing such a Lyapunov function is as follows: the
first term Vn(~n) is the Lyapunov function used in [10] to
prove connection-level stability with the time-scale separation
assumption. The second term Vq(~q) is a natural Lyapunov
function which can be used to prove the stability of (17) if
the arrival rates at the links are fixed. Thus, we hope that
some linear combination of these two terms would serve as the
Lyapunov function to establish the connection-level stability
of the fluid model system (15)-(17). Note that, according to
(15), we have,

d

dt
nβ+1

s (t) = (β + 1)nβ
s (t)

d

dt
ns(t)

= (β + 1)nβ
s (t)(λs − µsns(t)xs(t)).

Hence,

dVn(~n(t))

dt
=

S
∑

s=1

Ks1wsn
β
s (t)

µsρ
β
s

(λs − µsns(t)xs(t))

=

S
∑

s=1

Ks1wsn
β
s (t)

ρβ
s

(ρs − ns(t)xs(t)). (19)
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From the assumption that ~ρ resides strictly inside Θ0, there
exists an ε > 0 such that

(1 + 2ε)
S
∑

s=1

H l
sρs ≤ Rl, for all l. (20)

Adding and subtracting ε
S
∑

s=1

Ks1wsnβ
s (t)

ρβ−1
s

, we have (dropping
the variable t for ease of exposition),

dVn

dt

= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

Ks1wsn
β
s

ρβ
s

[(1 + ε)ρs

−nsxs] (21)

= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

Ks1(1 + ε)βws

xβ
s

[(1 + ε)ρs

−nsxs] + (A) (22)

= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

Ks1(1 + ε)β

(

L
∑

l=1

H l
sq

l

)

[(1 + ε)ρs

−nsxs] + (A) (23)

where in (22) we have denoted

(A) = −

S
∑

s=1

Ks1ws

[

(1 + ε)β

xβ
s

−
nβ

s

ρβ
s

]

[(1 + ε)ρs − nsxs],

(24)
and in (23) we have used Equation (16). Further, according to
(17), we have

ql(t)
d

dt
ql(t) = αlq

l(t)

[

S
∑

s=1

H l
sns(t)xs(t) − Rl

]

under both conditions in Equation (17). Hence,

dVq(~q(t))

dt
=

L
∑

l=1

Kl2q
l(t)

[

S
∑

s=1

H l
sns(t)xs(t) − Rl

]

. (25)

Combining (23) and (25), we can compute the derivative of
V(~n(t), ~q(t)) with respect to t as (again we drop the variable
t for ease of exposition):

dV

dt

= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

Ks1(1 + ε)β

(

L
∑

l=1

H l
sq

l

)

[(1 + ε)ρs − nsxs]

+
L
∑

l=1

Kl2q
l

[

S
∑

s=1

H l
snsxs − Rl

]

+ (A)

= −ε
S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+
L
∑

l=1

ql

[

S
∑

s=1

Ks1(1 + ε)β+1H l
sρs

−

S
∑

s=1

Ks1(1 + ε)βH l
snsxs

]

+

L
∑

l=1

Kl2q
l

[

S
∑

s=1

H l
snsxs − Rl

]

+ (A), (26)

where in the last step we have interchanged the order of the
summation over l and over s. Note that by construction (24),

(A)

= −

S
∑

s=1

Ks1ws
[(1 + ε)βρβ

s − nβ
s xβ

s ]

xβ
s ρβ

s

[(1 + ε)ρs − nsxs]

≤ 0. (27)

Further, if we choose Ks1 = 1/(1 + ε)β and Kl2 = 1, then
L
∑

l=1

ql

[

S
∑

s=1

Ks1(1 + ε)βH l
snsxs

]

=

L
∑

l=1

Kl2q
l

[

S
∑

s=1

H l
snsxs

]

(28)

and they cancel each other in (26). We thus have,

dV

dt
= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

L
∑

l=1

ql

[

(1 + ε)

S
∑

s=1

H l
sρs − Rl

]

+ (A) (29)

≤ −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

−ε
L
∑

l=1

ql
S
∑

s=1

H l
sρs + (A), (30)

where in (30) we have used Inequality (20). This provides the
negative drift [22] necessary to establish the stability of the
system governed by (15)-(17).

For the original system governed by (8), (12) and (13),
the above fluid-model argument may serve as a plausible
explanation for its connection-level stability. Note that if we
could establish that the fluid model (15)-(17) is indeed a fluid
limit of the original system, we could have used the result
of [23] to show the stability of the original system. However,
there are some technical difficulties in pursuing this approach,
namely, in establishing that the fluid model system (15)-(17)
is indeed the fluid limit of the original system under some
limiting regime. Typically, we need some form of uniform
convergence over compact intervals to construct such a fluid
limit [23], which usually requires that the rates of the state-
transition in (8) and the rates of change in the update (13) are
bounded. Unfortunately, the state-transition rates in (8) and
the rates of change in (13) can both be arbitrarily large when
ns(t)xs(t) is large, or, in other words, when ~n(t) is large
and ~q(t) is small. This unboundedness becomes an obstacle
for constructing the appropriate fluid limit. (Note that this
problem does not arise when we use the time-scale separation
assumption [10], since in that case there is no ~q(t), and
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ns(t)xs(t) is upper-bounded by the capacity of the largest
link in the network.)

There are two approaches to resolving this difficulty. The
first approach would be to impose an additional constraint on
ns(t)xs(t), i.e., one can assume that the aggregate data rate
of users of each class s is bounded by a number M̂s. Thus,
the data rate of each class-s user is governed by the following
equation, which replaced (12):

xs(t) = min

































ws

L
∑

l=1

H l
sq

l(t)











1/β

,
M̂

ns























. (31)

In [2], we have used this approach to establish the connection-
level stability for all β > 0. Further, the stepsize rule in (14) is
also not needed if the above additional constraint is imposed.
The weakness of this approach is that equation (31) requires
some additional congestion control mechanisms to share the
bandwidth between ns flows when the upper bound M̂s is
met.

An alternative approach is to search for a Lyapunov func-
tion for the original system directly. In fact, the fluid-model
argument has already disclosed to us the Lyapunov function
(18) and the main idea to obtain the negative drifts. The
key step is in (28) where the terms containing ns(t)xs(t)
cancel each other. In the Appendix, we will establish the
negative drift of the Lyapunov function (18) for the original
system directly. Readers will find that the line of argument
there closely resembles that of the fluid-model argument in
this section. The main difference in the full proof in the
Appendix is that we will carefully bound the additional terms
due to the randomness and the jumps in the discrete-time
updates. The weakness of this second approach, however,
is that it cannot be used to establish the connection-level
stability for β < 1. We briefly outline the main difference
in the full technical proof. Lemma 5 in Appendix A can be
compared to Equation (23). Note that when we compute the
derivative of Vn(~n(t)) in Equation (23), we have ignored all
second-order variations. However, to compute the difference
of Vn(~n((k + 1)T )) − Vn(~n(kT )) in Lemma 5, the second-
order terms must be carefully accounted for. Further, the
effect of Ms (the upper bound on the data injection rate)
was ignored in our heuristic fluid-model argument, and must
also be accounted for. In Lemma 5, we will show that the
term (A) in (27) is non-positive and is on the order of
−nβ+1

s (t)xs(t), and the effect of all second-order changes
can be bounded by O(nβ

s (t)xs(t)). Hence, the effect of the
second-order changes can be bounded by |(A)|/2 plus a
constant. Further, we will show that the effect of Ms can
also be bounded by a constant. Hence, the net effect of these
additional terms plus the term (A) is bounded by (A)/2,
which is non-positive and is on the order of −nβ+1

s (t)xs(t)/2.
When β ≥ 1, since xs(t) ≤ Ms, the net effect (A)/2 can
be further upper bounded by −n2

s(t)x
2
s(t)/(2Ms) times a

constant4. Then, in Appendix C, we show Lemma 6, which

4It is in this step that we need the condition β ≥ 1.

can be compared to Equation (25). We again show that those
second-order variations ignored in our heuristic fluid-model
argument is on the order of O(n2

s(t)x
2
s(t)). Note that this

second-order term can thus be dominated by (A)/2 with
appropriate choice of the stepsizes. Finally, in Appendix D,
the steps are comparable to Equation (30), when the terms
containing ns(t)xs(t) cancel each other (readers can compare
Equation (28) with Equation (74)), and all second-order terms
can be bounded by a constant provided that the stepsize
condition (14) holds. We thus establish the negative drift for
proving the stability of the original system.

IV. EXTENSIONS TO SYSTEMS WITH MULTIPATH ROUTING
AND TIME-VARYING CAPACITY

In this section, we extend our main result to systems
with multipath routing and time-varying capacity. For ease of
exposition, we will mainly use the type of heuristic fluid-model
argument as in Section III to illustrate these results. However,
rigorous proofs of these results can be readily obtained by
following the techniques in the Appendix.

A. Multipath Routing

We now assume that each user of class s can use θ(s)
alternate paths through the network. Let H l

sj = 1 if path j of
class s uses link l, H l

sj = 0 otherwise. Let xsj denote the data
rate on path j of each class-s user. Let ~xs = [xs1, ..., xs,θ(s)].
The existence of multiple alternate paths affects our network
model in a number of ways. Firstly, for connection-level
dynamics, the transition rates of the number of active users
are now given by:

ns(t) → ns(t) + 1, with rate λs,

ns(t) → ns(t) − 1, with rate µsns(t)
∑θ(s)

j=1 xsj(t)

if ns(t) > 0. (32)

Secondly, to determine an upper bound on the stability region
of the system, note that for any offered load ~ρ that the system
can stabilize, there must exist ρsj , j = 1, ..., θ(s), s = 1, ..., S,
such that

θ(s)
∑

j=1

ρsj = ρs, for all s and

S
∑

s=1

θ(s)
∑

j=1

H l
sjρsj ≤ Rl, for all l. (33)

Hence, an upper bound on the stability region is the set Θ0

given by:
Θ0 = {~ρ|(33) can be satisfied}. (34)

Finally, the congestion controller is also affected by multi-
path. We consider the following multipath congestion control
algorithm: For some positive constants cs, s = 1, ..., S, and
non-negative constants ysj , j = 1, ..., θ(s), s = 1, ..., S,
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• At each time slot k, the data rate of users of class s is
given by

~xs(t) = ~xs(kT ) (35)

= argmax
~xs≥0,

Pθ(s)
j=1 xsj≤Ms







Us(

θ(s)
∑

j=1

xsj)

−
cs

2

θ(s)
∑

j=1

(xsj − ysj)
2 −

θ(s)
∑

j=1

xsj

L
∑

l=1

H l
sjq

l(kT )







,

for kT ≤ t < (k+1)T , where Ms is again the maximum
data rate of each user of class s.

• At the end of time slot k, the implicit costs are updated
by:

ql((k + 1)T ) =
[

ql(kT )

+αl





S
∑

s=1

θ(s)
∑

j=1

H l
sj

∫ (k+1)T

kT

ns(t)xsj(kT )dt

− TRl
)]+

. (36)

Remark: When the number of users ns in the system
is fixed, the update in (35) and (36) solves the following
optimization problem [24]:

max
~x≥0

S
∑

s=1

ns







Us(

θ(s)
∑

j=1

xsj) −
cs

2

θ(s)
∑

j=1

(xsj − ysj)
2







subject to
S
∑

s=1

θ(s)
∑

j=1

H l
sjnsxsj ≤ Rl for all l

θ(s)
∑

j=1

xsj ≤ Ms for all s. (37)

We can imagine that when cs is small, the above problem ap-
proximates the multipath utility maximization problem given
below [24]:

max
~x≥0

S
∑

s=1

nsUs(

θ(s)
∑

j=1

xsj)

subject to
S
∑

s=1

θ(s)
∑

j=1

H l
sjnsxsj ≤ Rl for all l

θ(s)
∑

j=1

xsj ≤ Ms for all s,

which is comparable to the single-path utility-maximization
problem (1). The constants cs and ysj in the approximate
problem (37) are used to alleviate the “oscillation” problem in
systems with multipath routing [24]. This oscillation problem
will occur when cs = 0, because then the maximization in
(35) will only use the path with the smallest “cost” to transmit
data. (The cost qsj of a path j of class s is the sum of the

implicit costs of all links on the path, i.e., qsj =
L
∑

l=1

H l
sjq

l.)
Hence, when the costs of two paths are close to each other, a
small perturbation on the implicit costs will trigger the entire

load offered by class s to be switched to another path. When
ci is positive, the maximizer of (35) becomes continuous with
respect to the implicit costs, and such oscillation will not occur
any more.

We now provide a heuristic fluid-model argument similar
to Section III that the system governed by (32), (35) and (36)
will achieve the largest possible stability region Θ0 given in
(34). Again, we assume that the utility function is of the form
(2) or (3). We can write down the following fluid model that
approximates the dynamics of the original system:

d

dt
ns(t) = λs − µsns(t)

θ(s)
∑

j=1

xsj(t),

~xs(t) = argmax
~xs≥0







Us(

θ(s)
∑

j=1

xsj) −
cs

2

θ(s)
∑

j=1

(xsj − ysj)
2

−

θ(s)
∑

j=1

xsj

L
∑

l=1

H l
sjq

l(t)







,

d

dt
ql(t) =



































αl

(

S
∑

s=1

θ(s)
∑

j=1

H l
sjns(t)xsj(t) − Rl

)

when
S
∑

s=1

θ(s)
∑

j=1

H l
sjns(t)xsj(t) ≥ Rl

or ql > 0 ,
0, otherwise.

We will use the following Lyapunov function

V(~n, ~q) = Vn(~n) + Vq(~q),

where

Vn(~n) =
1

1 + β

S
∑

s=1

Ks1wsn
β+1
s

µsρ
β
s

+

S
∑

s=1

θ(s)
∑

j=1

csysjns

µs
,

and

Vq(~q) =

L
∑

l=1

(ql)2

2αl
.

Then, using the same type of fluid-model argument as in
Section III, we have,

dVn(~n(t))

dt
=

S
∑

s=1

Ks1wsn
β
s (t)

ρβ
s

[ρs − ns(t)

θ(s)
∑

j=1

xsj(t)]

+

S
∑

s=1

θ(s)
∑

j=1

csysj [ρs − ns(t)

θ(s)
∑

j=1

xsj(t)].

This equation is comparable to (19). From the stability con-
dition, if ~ρ lies strictly inside Θ0, there exists an ε > 0 such
that (1 + 2ε)~ρ ∈ Θ0. This implies that there exists ρsj such
that ρs =

∑θ(s)
j=1 ρsj for all s and

(1 + 2ε)

S
∑

s=1

θ(s)
∑

j=1

H l
sjρsj ≤ Rl for all l.
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Adding and subtracting ε
S
∑

s=1

Ks1wsnβ
s

ρβ−1
s

as in Section III, we
have (dropping the variable t for ease of exposition),

dVn

dt

= −ε
S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

Ks1wsn
β
s

ρβ
s



(1 + ε)ρs − ns

θ(s)
∑

j=1

xsj





+
S
∑

s=1

cs





θ(s)
∑

j=1

ysj







(1 + ε)ρs − ns

θ(s)
∑

j=1

xsj





−ε

S
∑

s=1

θ(s)
∑

j=1

csysjρs (38)

= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+
S
∑

s=1

Ks1(1 + ε)βws

(
∑θ(s)

j=1 xsj)β



(1 + ε)ρs − ns

θ(s)
∑

j=1

xsj





+

S
∑

s=1

cs





θ(s)
∑

j=1

ysj







(1 + ε)ρs − ns

θ(s)
∑

j=1

xsj





−ε
S
∑

s=1

θ(s)
∑

j=1

csysjρs + (A), (39)

where

(A) = −
S
∑

s=1

{

Ks1ws

[

(1 + ε)β

(
∑θ(s)

j=1 xsj)β
−

nβ
s

ρβ
s

]

×



(1 + ε)ρs − ns

θ(s)
∑

j=1

xsj











≤ 0. (40)

Using ρs =
∑θ(s)

j=1 ρsj , we have

S
∑

s=1

Ks1(1 + ε)βws

(
∑θ(s)

j=1 xsj)β



(1 + ε)ρs − ns

θ(s)
∑

j=1

xsj





=

S
∑

s=1

θ(s)
∑

j=1

Ks1(1 + ε)βws

(
∑θ(s)

h=1 xsh)β
[(1 + ε)ρsj − nsxsj ]

and

S
∑

s=1

cs





θ(s)
∑

j=1

ysj







(1 + ε)ρs − ns

θ(s)
∑

j=1

xsj





=
S
∑

s=1

θ(s)
∑

j=1

csysj [(1 + ε)ρsj − nsxsj ]

+

S
∑

s=1

θ(s)
∑

j=1

csysj

∑

h6=j

[(1 + ε)ρsh − nsxsh] .

Hence, adding and subtracting
∑S

s=1

∑θ(s)
j=1 csxsj [(1+ε)ρsj −

nsxsj ], we have,

dVn

dt

≤ −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

θ(s)
∑

j=1

[

Ks1(1 + ε)βws

(
∑θ(s)

h=1 xsh)β

−cs(xsj − ysj)] [(1 + ε)ρsj − nsxsj ]

+
S
∑

s=1

θ(s)
∑

j=1

csxsj [(1 + ε)ρsj − nsxsj ] + F0 (41)

where

F0 ≤ (1 + ε)

S
∑

s=1

cs

θ(s)
∑

j=1

ysj

∑

h6=j

ρsh − ε

S
∑

s=1

θ(s)
∑

j=1

csysjρs + (A).

Note that Equation (41) is comparable to Equation (22). Since
xsj ≤ Ms for all s, j, we have

S
∑

s=1

θ(s)
∑

j=1

csxsj [(1 + ε)ρsj − nsxsj ] ≤ F1, (42)

where F1 = (1 + ε)
∑S

s=1

∑θ(s)
j=1 csMsρsj . Further, assuming

that the utility function Us(·) is of the form (2) or (3), since
~xs solves (35), there must exist some δsj ≥ 0, j = 1, ..., θ(s)
and δs0 ≥ 0 such that

ws

(
∑θ(s)

h=1 xsh)β
−cs(xsj−ysj)+δsj−δs0 = qsj , for all s, j,

(43)
where qsj =

L
∑

l=1

H l
sjq

l. Here, δsj , j = 1, ..., θ(s) are the
Lagrange multiplers for the constraint xsj ≥ 0, and δs0 is
the Lagrange multiplier for the constraint

∑θ(s)
j=1 xsj ≤ Ms.

Further, δsjxsj = 0 and δs0(
∑θ(s)

j=1 xsj − Ms) = 0 due
to the complementary slackness condition. Hence, if we let
Ks1 = 1/(1 + ε)β , we have

S
∑

s=1

θ(s)
∑

j=1

[

Ks1(1 + ε)βws

(
∑θ(s)

h=1 xsh)β
− cs(xsj − ysj)

]

×[(1 + ε)ρsj − nsxsj ]

=

S
∑

s=1

θ(s)
∑

j=1

(qsj − δsj + δs0)[(1 + ε)ρsj − nsxsj ]

≤

S
∑

s=1

θ(s)
∑

j=1

qsj [(1 + ε)ρsj − nsxsj ]

+
S
∑

s=1

θ(s)
∑

j=1

(1 + ε)δs0ρsj (using δsjxsj = 0)

=
L
∑

l=1

ql



(1 + ε)
S
∑

s=1

θ(s)
∑

j=1

H l
sjρsj −

S
∑

s=1

θ(s)
∑

j=1

H l
sjnsxsj





+

S
∑

s=1

θ(s)
∑

j=1

(1 + ε)δs0ρsj . (44)
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It is easy to show that δs0 is bounded for all s. Specifically,
note that when δs0 > 0, we must have

∑θ(s)
j=1 xsj = Ms.

Summing (43) over all xsj > 0, and noting that δsj = 0 when
xsj > 0, we have, for all s,

Js
ws

Mβ
s

− cs(Ms −
∑

j:xsj>0

ysj) − Jsδs0 =
∑

j:xsj>0

qsj ,

where Js ≤ θ(s) is the cardinality of the set {j : xsj > 0}.
Since qsj ≥ 0, δs0 is therefore bounded by

δs0 ≤
ws

Mβ
s

+ cs

θ(s)
∑

j=1

ysj/Js ≤ F ′
s,

where F ′
s = ws

Mβ
s

+ cs

∑θ(s)
j=1 ysj . Finally, substituting (42) and

(44) into (41), we have,

dVn

dt
≤ −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

L
∑

l=1

ql



(1 + ε)

S
∑

s=1

θ(s)
∑

j=1

H l
sjρsj

−

S
∑

s=1

θ(s)
∑

j=1

H l
sjnsxsj



+ F0 + F1 + F2,

where F2 = (1 + ε)
∑S

s=1

∑θ(s)
j=1 F ′

sρsj . This equation is
comparable to (23). Now, using the argument in Section III
again (see Equation (25)), we have,

dVq

dt
=

L
∑

l=1

ql





S
∑

s=1

θ(s)
∑

j=1

H l
sjnsxsj − Rl



 .

The terms containing nsxsj in the expression of dVn

dt and dVq

dt
cancel each other. We thus have,

dV

dt
≤ −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

L
∑

l=1

ql



(1 + ε)

S
∑

s=1

θ(s)
∑

j=1

H l
sjρsj − Rl





+F0 + F1 + F2

≤ −ε
S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

− ε
L
∑

l=1

ql
S
∑

s=1

θ(s)
∑

j=1

H l
sjρsj

+F0 + F1 + F2.

This thus provides the negative drift for stability. Similar to the
discussions at the end of Section III, the full proof that takes
into account the second-order variations can be obtained along
the line of proof in the Appendix. Specifically, all second-order
variations (due to randomness and discrete-time updates) can
be bounded by |(A)|/2, where the quantity (A) is given by
(40) and is non-positive.

B. Time-Varying Capacity

Our main result can also be readily extended to the case
with time-varying capacity. Time-varying capacity arises nat-
urally in wireless networks. When there is channel fading,
the propagation gain between the transmitter and the receiver
varies over time. Hence, even when the transmission power
is fixed, the capacity at each link is still time-varying [25].
Further, even if there is no fading in a wireless network, it is
usually preferable to activate different sets of links alternately
[17], [21], [26], [27]. Otherwise, if all links are activated at
the same time, they may create so much mutual interference
such that none of the links can carry data at an acceptable
rate.

Through the above discussion on wireless networks, we
observe two factors that lead to time-varying capacity. The
first factor is the change in the environment (i.e., channel
fading). The second factor is that different configurations (i.e.,
activation patterns of links) can be chosen at different times
even if the outside environment is identical. We now describe
a general model that captures both of these two factors. We use
κ to denote the state of the environment. In the case of wireless
networks, the state κ summarizes the current set of propagation
gains between transmitters and receivers. We assume that time
is again divided into slots of length T , and the state of the
environment is fixed within each time slot. Let κ(kT ) denote
the state of the environment at time slot k. We assume that, at
each time slot, the state κ(kT ) is chosen independently and
identically from a set K, following the distribution πκ, κ ∈ K.
Next, let ~R = [R1, ..., Rl] denote the vector of link capacities
on all links. We assume that, when the state of the environment
is κ, the vector ~R can be chosen within a set Rκ. In other
words, this set Rκ models the possible configurations of the
link capacities at state κ. For technical reasons, we assume
that Rκ is closed and bounded for each κ ∈ K.

Consider the model of Section II-A, where ns users of
class s = 1, ..., S are sharing the network capacity. Each user
of class s may still traverse multiple links, where routing is
defined by H l

s (for simplicity we assume single-path routing
here). The goal of congestion control is again to maximize the
total system utility, subject to the constraint that the aggregate
rates allocated to the users are no greater than the links’ service
capacity supported by choosing appropriate schedules ~R(t).
With time-varying capacity, the congestion controller must be
designed jointly with the schedules ~R(t) for each time slot
[28]–[32]. In the literature, the following congestion controller
has often been used to achieve this goal. Assuming that the
rate-assignments and the scheduling decision are also updated
at the beginning of every time-slot of length T . The rate-
control component of the congestion controller is in fact nearly
identical to the one in Section III. We still associate an implicit
cost ql for each link l. At each time slot k, the data rate of
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users of class s is given by

xs(t) = xs(kT ) = min

































ws

L
∑

l=1

H l
sq

l(kT )











1/β

,Ms























,

(45)
for kT ≤ t < (k +1)T , (use β = 1 when the utility functions
are of the form (2)). At the end of each time slot, the implicit
costs are updated by

ql((k + 1)T ) =

[

ql(kT ) + αl

(

S
∑

s=1

H l
sns(kT )xs(kT )dt

−Rl(kT )
)]+

. (46)

(Note that the capacity of each link Rl(t) is now time-varying.)
The scheduling policy is chosen as follows: at each time slot
k, the schedule ~R(kT ) is chosen to be the vector ~R ∈ Rκ(kT )

that maximizes
L
∑

l=1

ql(kT )Rl, i.e.,

~R(t) = ~R(kT ) = argmax
~R∈Rκ(kT )

L
∑

l=1

ql(kT )Rl, (47)

for kT ≤ t < (k + 1)T . This scheduling policy is in fact
identical to the scheduling policies in [17], [21], [27]. It can
be shown that, when the number of users ns of each class s
is fixed, and the positive stepsizes αl are sufficiently small,
the above joint congestion-control and scheduling algorithm
will converge to a neighborhood of the rate-allocation that
maximizes the total system utility [28], [29].

Next, consider the model with connection-level user-
dynamics (as in Section II-B), where users of class s arrive ac-
cording to a Poisson process with rate λs, that each user brings
with it a file for transfer whose size is exponentially distributed
with mean 1/µs. We ask the question again: without the
time-scale separation assumption, does the above congestion
controller achieve the largest possible stability region? We first
answer the following question: what is the largest possible
stability region for such systems with time-varying capacity.
Consider the following system which is generated from the
original system. For each node i that can act as the source
node of a certain class s, we divide node i into two nodes
iA and iB . The new system has the same user arrival process
as the original system. However, in the new system users of
class s arrive at node iA first. Further, whenever a user of
class s arrives to the new system, the entire file is injected
into node iA, and the user leaves the system immediately
afterwards. Node iA is connected to node iB with a link with
infinite capacity, and node iB will be connected to the rest
of the network according to the original network topology.
We now argue that if the original network with congestion
control can be stabilized, then this new system can also
be stabilized. Specifically, the congestion control mechanism
simply regulates the rate between each pair of node iA and
node iB . Hence, the stability region of the original system with
congestion control must be no larger than the stability region
of the new system where we do not impose any restriction on

whether or not to use congestion control. Now, let us focus
on the new system: the statistics of the data arrival process at
each source node iA is known, and the average data injection
rate by class-s users is equal to ρs. Hence, we can now use
some of the stability results from [17], [21]. Let

Θ0 =

{

~ρ

∣

∣

∣

∣

∣

[

S
∑

s=1

H l
sρs] ∈

∑

κ∈K

πκCo(Rκ)

}

. (48)

It has been shown in [17], [21] that no control scheme can
stabilize the new system if the average rate ~ρ of the data
injection process is outside the set Θ0. Therefore, we can
conclude that Θ0 is also an upper bound on the stability
region of our original system. On the other hand, although
[17], [21] provide control schemes to stabilize the new system
for any offered load ~ρ that lies strictly inside Θ0, as we
discussed in Section II-D, these results correspond to the case
with no congestion control. Hence, we cannot use them to
deduce the connection-level stability of the original system
when congestion control is enforced.

We next show that the congestion controller in (45)-(47) in-
deed achieves the largest possible stability region Θ0, without
the time-scale separation assumption. We first specify some
more details of the system dynamics. The congestion control
and scheduling decision are still assumed to be updated every
time-slot of length T according to (45) and (47). Thus, the
value of xs(t) and ~R(t) are equal to xs(kT ) and ~R(kT ),
respectively, when kT ≤ t < (k + 1)T . However, users may
enter or leave the system within a time-slot (according to the
transition rates in (8)). Therefore, we change the implicit-cost
update at the end of the time-slot to

ql((k + 1)T ) =
[

ql(kT )

+αl

(

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(kT )dt

−TRl(kT )
)]+

. (49)

Note that ql(kT ) can again be viewed as a scalar-multiple of
the real queue length Ql(kT ) at link l.

We now provide a heuristic fluid-model argument similar
to Section III that the above joint congestion-control and
scheduling policy achieves the largest possible stability region
Θ0. We use the Lyapunov function V(·, ·) in (18). Following
the heuristic fluid-model argument in Section III, we can show
that, given ~n(t), ~q(t) and κ(t),

dV(~n(t), ~q(t))

dt

= −ε
S
∑

s=1

Ks1wsn
β
s (t)

ρβ−1
s

+
L
∑

l=1

ql(t)

[

(1 + ε)
S
∑

s=1

H l
sρs

−Rl(t)
]

+ (A).

Note that this equation is comparable to Equation (29), where
the only change is in the time-varying capacity Rl(t). The
quantity (A) is again given by (24) and is non-positive. Taking
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expectation with respect to κ(t), we have

E

[

dV

dt
|~n(t), ~q(t)

]

= −ε
S
∑

s=1

Ks1wsn
β
s (t)

ρβ−1
s

+
L
∑

l=1

ql(t)

{

(1 + ε)
S
∑

s=1

H l
sρs

−E[Rl(t)|~q(t)]
}

+ (A). (50)

If ~ρ ∈ Θ0, there must exist an ε > 0 such that

(1 + 2ε)~ρ ∈ Θ0.

Since Θ0 is given by (48), there must exist Rl
κ, l = 1, ..., L,

κ ∈ K, such that the vectors [R1
κ, ..., RL

κ ] satisfy

[R1
κ, ..., RL

κ ] ∈ Co(Rκ), for all κ ∈ K,

and

(1 + 2ε)

S
∑

s=1

H l
sρs ≤

∑

κ∈K

πκRl
κ, for all l.

By the definition of the scheduling policy (47), given ~q(t),
L
∑

l=1

ql(t)Rl(t) ≥
L
∑

l=1

ql(t)Rl
κ if κ(t) = κ.

Hence,
L
∑

l=1

ql(t)E[Rl(t)|~q(t)] ≥

L
∑

l=1

ql(t)
∑

κ∈K

πκRl
κ

≥ (1 + 2ε)

L
∑

l=1

ql(t)

S
∑

s=1

H l
sρs.

Substituting into (50), we have

E[
dV

dt
|~n(t), ~q(t)] ≤ −ε

S
∑

s=1

Ks1wsns(t)
β

ρβ−1
s

−ε

L
∑

l=1

ql(t)

S
∑

s=1

H l
sρs + (A).

Noting that the quantity (A) is non-positive, the above inequal-
ity then provides the negative drift required to establish stabil-
ity. A rigorous proof without using the heuristic fluid-model
can also be readily obtained by following the techniques in
the Appendix, and by showing that all second-order variations
in the original discrete-time system is bounded by |(A)|/2.

V. JOINT CONGESTION CONTROL WITH BACK-PRESSURE
ALGORITHMS

A key assumption that is made in the congestion control
algorithms considered in the previous sections is that: when
the implicit costs are updated (Equations (5), (13), (36) and
(49)), the data rate xs of each user of class s is applied simul-
taneously to all links along its path. While this assumption is
widely adopted in the optimization flow-control literature [3]–
[8], it can have some subtle and undesirable implications for
stability. Note that there are two ways the congestion control
algorithms in the previous sections can be implemented. The
user could communicate its data rate xs to each link along its

path using a dedicated control channel. Alternatively, the link l
can count the total number of packets (or fluid) that go through
itself, and use this measurement to estimate the aggregate data

rate
S
∑

s=1
H l

sns(t)xs(t) directly. It can then use this estimate

to update the implicit cost ql(t). The latter approach does
not require a separate control channel, and hence may be
preferable. However, note that in a real system packets have
to traverse the links one-by-one. Hence, when a user of class
s changes its rate xs at time t, it will take a certain delay
∆t before a downstream link can observe this change. Since
this delay ∆t consists of the queueing delay at each upstream
link, it can potentially be large, especially when the offered
load is high. It is then unclear whether the stability results
in the previous sections will still hold when the implicit-
cost updates are based on arbitrarily-delayed versions of the
users’ rates. In fact, for queueing networks without congestion
control, instability problems have been observed when this
“user-rates-applied-simultaneously-to-all-links” assumption is
removed. Specifically, examples have been constructed where
a queueing network appears to be stable under this “user-
rates-applied-simultaneously-to-all-links” assumption, but is
actually unstable when packets traverse the network link-by-
link [33]–[35].

In this section, we will use a different congestion control
algorithm that does not require the above assumption that user
rates are applied simultaneously to all links. This congestion
controller is motivated by the recent results in joint congestion
control and scheduling in multihop wireless networks [28],
[30]–[32], and the so-called “back-pressure” algorithm in
the literature [17], [21]. Unlike the models in the previous
sections, we now explicitly model the process of the data
traversing the network, link by link. We will then show
that this congestion-controller achieves the largest stability
region of the system even without the time-scale separation
assumption.

We first introduce some additional notation. We use a
node-pair (i,m) to denote a link l ∈ E , where i is the
transmitter node and m is the receiving node. The routing
matrix [H l

sj ] and the link-rate Rl is rewritten as [H im
sj ] and

Rim, respectively. For each class s, let fs and ds denote the
source node and destination node, respectively, of users of
class s. At each node i, let qs

i denote the implicit cost for
users of class s. As will become clear soon, the implicit cost
qs
i corresponds to a scalar-multiple of the length of the queue

at node i that contains data from class-s users. (Note: it is
possible to define the implicits costs at each node, as one cost
for each destination rather than one cost for each class. Here
we adopt the per-class definition for ease of exposition.) Let
qs
i = 0 if the node i is the destination node for class s, i.e.,

i = ds.
The new congestion controller with the back-pressure algo-

rithm is given by the following set of equations. Note that
the congestion controller takes into account the possibility
of multiple paths from the source and destination, and the
possibility of time-varying capacity (the models are identical
to that in Section IV). Assuming that the channel state changes
every time-slot of duration T , and both the congestion con-
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trol decision and the scheduling decision are updated at the
beginning of every time-slot.

• At each time slot k, the data rate of users of class s is
given by

xs(t) = xs(kT ) = argmax
0≤xs≤Ms

Us(xs) − xsq
s
fs

(kT ), (51)

for kT ≤ t < (k+1)T , where Ms is again the maximum
data rate of each user of class s, and qs

fs
is the class-s

implicit-cost at the source node fs for class s.
• At each time slot k, each link (i,m) picks the class s∗im

with the largest differential backlog, i.e.,

s∗im(t) = argmax
s:Him

sj
=1 for some j

(qs
i (kT ) − qs

m(kT )),

for kT ≤ t < (k + 1)T . Let the weight of link (i,m) be
the largest differential backlog, i.e.,

wim(t) = max{q
s∗

im(t)
i (kT ) − q

s∗
im(t)

m (kT ), 0}.

The schedule at time slot k is then determined by

~R(t) = argmax
~R∈Rκ(t)

L
∑

l=1

wim(t)Rim, (52)

for kT ≤ t < (k + 1)T . Note that s∗im(t), wim(t) and
~R(t) are all fixed over kT ≤ t < (k + 1)T .

• At each time slot k (i.e., kT ≤ t ≤ (k + 1)T ), each link
(i,m) forwards data for users of class s∗im(t) at the rate
of Rim(t). Let rim

s denote the forwarding rate of class-s
data at link (i,m), then for kT ≤ t < (k + 1)T ,

rim
s (t) =

{

Rim(t) if s = s∗im(t)
0 otherwise.

At the end of time slot k, the implicit costs are updated
by:

qs
i (k + 1)T ) = [qs

i (kT )

+as
i

(

∫ (k+1)T

kT

ns(t)xs(kT )1{fs=i}dt

+T
∑

m : (m, i) ∈ E ,
Hmi

sj
= 1 for some j

rmi
s (t)

−T
∑

m : (i, m) ∈ E ,
Him

sj
= 1 for some j

rim
s (t)

















+

for all s and i such that i 6= ds. (53)

Remark: We can assume that each node maintains a
separate queue for the data from each class s. Then qs

i is
obviously as

i multiplied by the length of the class-s queue at
node i.

When the number of users ns is the system is fixed, the
above algorithm can be shown to maximize the system utility
subject to capacity constraints [28], [30]. When there are
connection-level user-dynamics, the number of users ns(t)
can change within a time-slot. Again, we are interested the
stability of the system employing the above congestion control

algorithm. The following proposition shows that the above
congestion controller achieves the largest connection-level
stability region, even without using the time-scale separation
assumption.

Proposition 4: Assume that the utility functions are either
of the form in (2) (in which case we use the convention that
β = 1), or of the form in (3) for some β > 1, and that the data
rates of the users and the scheduling decision are governed by
the equations above. There exists a constant α0 such that if
the stepsizes αi

s ≤ α0 for all s and i, then for any offered
load ~ρ that resides strictly inside Θ0, the system described by
the Markov process [~n(kT ), ~q(kT )] is stable.

Again, we now only provide a heuristic fluid-model argu-
ment for this proposition (similar to Section III). When the
utility function is of the form (2) or (3), the heuristic fluid-
model is given by:

dns(t)

dt
= λs − µsns(t)xs(t),

xs(t) =

(

ws

qs
fs

(t)

)1/β

,

s∗im(t) = argmax
s:Him

sj
=1 for some j

(qs
i (t) − qs

m(t))

wim(t) = max{q
s∗

im

i (t) − q
s∗

im
m (t), 0}

~R(t) = argmax
~R∈Rκ(t)

L
∑

l=1

wim(t)Rim,

rim
s (t) =

{

Rim(t) if s = s∗im(t)
0 otherwise ,

and finally,

dqs
i (t)

dt
= as

i

(

ns(t)xs(t)1{fs=i}

−
∑

m : (m, i) ∈ E ,
Hmi

sj
= 1 for some j

rmi
s (t)

+
∑

m : (i, m) ∈ E ,
Him

sj
= 1 for some j

rim
s (t)









when qs
i (t) > 0 or when the term in parenthesis is non-

negative, and

dqs
i (t)

dt
= 0, otherwise.

We use the following Lyapunov function

V(~n, ~q) = Vn(~n) + Vq(~q),

where

Vn(~n) =
1

1 + β

S
∑

s=1

Ks1wsn
β+1
s

µsρ
β
s

Vq(~q) =

S
∑

s=1

I
∑

i=1

(qs
i )

2

2as
i

.
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Following the heuristic fluid-model argument in Section III,
we can show that, given ~n(t), ~q(t) and κ(t),

dVn(~n(t))

dt

= −ε
S
∑

s=1

Ks1wsn
β
s (t)

ρβ−1
s

+

S
∑

s=1

Ks1(1 + ε)βqs
fs

(t)[(1 + ε)ρs − ns(t)xs(t)]

+(A).

This equation is comparable to Equation (23), and the quantity
(A) is still given by (24). Further,

dVq(~q(t))

dt

=

S
∑

s=1

I
∑

i=1

qs
i (t)

[

ns(t)xs(t)1{fs=i}

+
∑

m : (m, i) ∈ E ,
Hmi

sj
= 1 for some j

rmi
s (t)

−
∑

m : (i, m) ∈ E ,
Him

sj
= 1 for some j

rim
s (t)









,

which is comparable to Equation (25). Let Ks1 = 1/(1+ ε)β .
Noting that

S
∑

s=1

qs
fs

(t)ns(t)xs(t) =

S
∑

s=1

I
∑

i=1

qs
i (t)ns(t)xs(t)1{fs=i}

and the corresponding terms in dVn

dt and dVq

dt cancel each other,
we thus have (dropping the variable t for ease of exposition):

dV

dt

= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

qs
fs

(1 + ε)ρs

+

S
∑

s=1

I
∑

i=1

qs
i









∑

m : (m, i) ∈ E ,
Hmi

sj
= 1 for some j

rmi
s

−
∑

m : (i, m) ∈ E ,
Him

sj
= 1 for some j

rim
s









+ (A)

= −ε
S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+
S
∑

s=1

qs
fs

(1 + ε)ρs

−
∑

(i,m)∈E

∑

s:Him
sj

=1 for some j

(qs
i − qs

m)rim
s + (A)

= −ε

S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

+

S
∑

s=1

qs
fs

(1 + ε)ρs −
∑

(i,m)∈E

wimRim + (A).

Taking expectation with respect to κ(t), we have

E

[

dV

dt
|~n(t), ~q(t)

]

= −ε

S
∑

s=1

Ks1wsn
β
s (t)

ρβ−1
s

+

S
∑

s=1

qs
fs

(1 + ε)ρs

−
∑

(i,m)∈E

wimE[Rim|~q(t)] + (A). (54)

If ~ρ ∈ Θ0, where Θ0 is given by (48), there must exist an
ε > 0 such that

(1 + 2ε)~ρ ∈ Θ0.

Therefore, there must exist Rim
κ , (i,m) ∈ L, κ ∈ K, such that

[Rim
κ ] ∈ Co(Rκ), for all κ ∈ K,

and there must exist ρsj , s = 1, ..., S, j = 1, ..., θ(s), such that
ρs =

∑θ(s)
j=1 ρsj , and [Rim

κ ] and [ρsj ] satisfy

(1+2ε)

S
∑

s=1

θ(s)
∑

j=1

Him
sj ρsj ≤

∑

κ∈K

πκRim
κ , for all (i,m) ∈ L.

By the definition of the scheduling policy (52), given ~q(t),

∑

(i,m)∈E

wimRim(t) ≥

L
∑

l=1

wimRim
κ , if κ(t) = κ.

Hence,
∑

(i,m)∈E

wimE[Rim(t)|~q(t)]

≥

L
∑

l=1

wim

∑

κ∈K

πκRim
κ

≥ (1 + 2ε)
∑

(i,m)∈E

wim

S
∑

s=1

θ(s)
∑

j=1

Him
sj ρsj

≥ (1 + 2ε)
∑

(i,m)∈E

S
∑

s=1

θ(s)
∑

j=1

(qs
i − qs

m)Him
sj ρsj

= (1 + 2ε)

S
∑

s=1

θ(s)
∑

j=1

ρsj

∑

(i,m)∈E

(qs
i − qs

m)Him
sj

= (1 + 2ε)
S
∑

s=1

θ(s)
∑

j=1

qs
fs

ρsj = (1 + 2ε)
S
∑

s=1

qs
fs

ρs.

Substituting into (54), we have

E

[

dV

dt
|~n(t), ~q(t)

]

≤ −ε
S
∑

s=1

Ks1wsn
β
s

ρβ−1
s

− ε
S
∑

s=1

qs
fs

ρs + (A).

Noting that the quantity (A) is non-positive, the above inequal-
ity then provides the negative drift required to establish stabil-
ity. A rigorous proof without using the heuristic fluid-model
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can also be readily obtained by following the techniques in the
Appendix, and by showing that all second-order variations in
the original discrete-time system are bounded by |(A)|/2. In
addition, the precise bound α0 on the stepsize can be obtained
as a function of the network topology and the parameters of
the utility function.

VI. CONCLUSION

In this paper, we have studied the connection-level stability
of a network employing congestion control. The type of
congestion control algorithms that we used in this paper are
similar to the so-called “dual solutions” in the congestion
control literature [3], which can be viewed as an iterative
solution to an optimization problem that maximizes the total
network utility. Prior works that study the connection-level
stability problem typically adopt a time-scale separation as-
sumption, which assumes that, whenever the number of users
in the system changes, the data rates of the users are adjusted
instantaneously to the optimal rate allocation computed by the
global utility maximization problem. In this paper, we have
removed the time-scale separation assumption, and established
that a large class of congestion control algorithms based on the
so-called “dual solutions” can still achieve the largest possible
stability region.

There could be several directions for future work. First,
it would be interesting to see whether our main result holds
for the so-called “primal solutions” in the congestion control
literature [3]. Second, we have assumed that user inter-arrival
times and file-size distributions are exponential. Removing this
assumption is well-known to be a difficult problem, even for
models where time-scale separation is assumed. Third, we
have been unable to establish Proposition 3 for the case β < 1.
It would be interesting to prove stability (or prove that the
system may not be stable in general) for this case.

APPENDIX
PROOF OF PROPOSITION 3

We now establish directly the stability of the original
stochastic system governed by Equations (8), (12) and (13).
As readers will see soon, our proof here follows closely along
the lines of the heuristic fluid-model argument in Section III.
We will still use the Lyapunov function found in Section III,
i.e, we define

V(~n, ~q) = Vn(~n) + Vq(~q),

where

Vn(~n) =
1

(1 + ε)β

S
∑

s=1

wsn
β+1
s

(1 + β)µsρ
β
s

,

Vq(~q) =

L
∑

l=1

(ql)2

2αl
,

and ε is a positive constant in (0, 1] to be chosen later (in fact,
ε will be chosen in the same way as in (20)). We begin with
a few lemmas.

A. The Bound on the Changes of Vn(·)

The first lemma bounds the change in Vn(·) at each time
slot.

Lemma 5:

E[Vn(~n((k + 1)T ) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤ −ε

S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt

+

S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT )

]

[(1 + ε)ρsT

−

∫ (k+1)T

t=kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

]

−
S
∑

s=1

2β − 1

8(1 + ε)

ws

ρsM
β
s

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

+E1, (55)

where E0(s) and E1 are finite positive constants.
Proof: Fix t ∈ [kT, (k +1)T ). Over a small time interval

δt, we have

E
[

nβ+1
s (t + δt) − nβ+1

s (t)|~n(t), ~q(t)
]

= [(ns(t) + 1)β+1 − nβ+1
s (t)]λsδt

+[(ns(t) − 1)β+1 − nβ+1
s (t)]µsns(t)xs(t)δt + o(δt).

By the Mean-Value Theorem,

(n + ∆n)β+1 − nβ+1

= (β + 1)nβ∆n +
β(β + 1)

2
(n + ν∆n)β−1(∆n)2

for some ν ∈ (0, 1). Hence, letting ∆n = ±1, and using the
relationship that

(n ± ν)β−1 ≤ (2n)β−1 when n ≥ 1 and ν ∈ (0, 1) ,

(n + ν)β−1 ≤ 1 when n = 0 and ν ∈ (0, 1),

we have

E
[

nβ+1
s (t + δt) − nβ+1

s (t)|~n(t), ~q(t)
]

≤ (β + 1)nβ
s (t)[λsδt − µsns(t)xs(t)δt]

+2β−2β(β + 1)nβ−1
s (t) [λsδt + µsns(t)xs(t)δt]

+N1(s)δt + o(δt)

for some positive constant N1(s). We then have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
1

(1 + ε)β

S
∑

s=1

{

wsn
β
s (t)

µsρ
β
s

[λs − µsns(t)xs(t)]

+
β2β−2wsn

β−1
s (t)

µsρ
β
s

[λs + µsns(t)xs(t)]

+N1(s)} + o(1)

=
1

(1 + ε)β

S
∑

s=1

{

wsn
β
s (t)

ρβ
s

[ρs − ns(t)xs(t)]
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+
β2β−2wsn

β−1
s (t)

ρβ
s

[ρs + ns(t)xs(t)] + N1(s)

}

+o(1)

= −
ε

(1 + ε)β

S
∑

s=1

wsn
β
s (t)

ρβ−1
s

+
1

(1 + ε)β

S
∑

s=1

{

wsn
β
s (t)

ρβ
s

[(1 + ε)ρs − ns(t)xs(t)]

+
β2β−2wsn

β−1
s (t)

ρβ
s

[ρs + ns(t)xs(t)] + N1(s)

}

+o(1)

≤ −ε

S
∑

s=1

N0(s)n
β
s (t) +

S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs

−ns(t)xs(t)] (56)

+

[

ws

xβ
s (t)

−

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs

−ns(t)xs(t)] (57)

+ws

[

nβ
s (t)

((1 + ε)ρs)β
−

1

xβ
s (t)

]

[(1 + ε)ρs

−ns(t)xs(t)] (58)

+
β2β−2

(1 + ε)β

wsn
β−1
s (t)

ρβ
s

[ρs + ns(t)xs(t)] (59)

+
N1(s)

(1 + ε)β

}

+ o(1),

where

N0(s) =
1

(1 + ε)β

ws

ρβ−1
s

.

We now draw the connections to the fluid-model argument
in Section III. The first two terms in (56) correspond to the
first two terms in the fluid-model expression (23). They will
eventually lead to the first two terms in (55) of Lemma 5. The
term in (58) is the same as (A) in (24). The rest of the terms
(57) and (59) did not appear in the fluid-model expression. The
terms in (57) and (59) are due to, respectively: (a) the bound
Ms on the maximum data rate when Equation (12) replaces
Equation (16) of the fluid model; and (b) randomness when
Equation (8) replaces Equation (15) of the fluid model.

Let (A) and (B) denote the terms (58) and (59), respec-
tively. Our strategy is:

• Bound (57) by a constant.
• Show that (A) ≤ 0.
• Show that (B) is no greater than −(A)/2 plus some

second order terms.

Hence, the extra terms (57)-(59) will be dominated by (A)/2,
which is non-positive.

To carry out this strategy, first note that, by (12),

ws

xβ
s (t)

= max

{

L
∑

l=1

H l
sq

l(t),
ws

Mβ
s

}

.

Hence, the term (57) can be bounded by
[

ws

xβ
s (t)

−

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs − ns(t)xs(t)]

≤

[

ws

xβ
s (t)

−

L
∑

l=1

H l
sq

l(t)

]

(1 + ε)ρs

≤

[

ws

Mβ
s

−
L
∑

l=1

H l
sq

l(t)

]+

(1 + ε)ρs

≤ N2(s) ,
(1 + ε)wsρs

Mβ
s

. (60)

Next, note that

(A) = ws

[

nβ
s (t)

((1 + ε)ρs)β
−

1

xβ
s (t)

]

[(1 + ε)ρs

−ns(t)xs(t)]

= −ws

[

((1 + ε)ρs)
β − nβ

s (t)xβ
s (t)

]

((1 + ε)ρs)βxβ
s (t)

×[(1 + ε)ρs − ns(t)xs(t)]

≤ 0. (61)

Lastly, in order to show that (B) is dominated by −(A)/2
plus some second-order terms, we note the following. If
ns(t)xs(t) ≥ 2(1 + ε)ρs, then

[(1 + ε)ρs − ns(t)xs(t)]
[

((1 + ε)ρs)
β − nβ

s (t)xβ
s (t)

]

≥

[

ns(t)xs(t)

2

] [

2β − 1

2β
nβ

s (t)xβ
s (t)

]

. (62)

Hence,

(A) ≤ −
2β − 1

2β+1

wsn
β+1
s xs(t)

((1 + ε)ρs)β
,

and

(B) ≤
β2β−1

(1 + ε)β

wsn
β
s (t)xs(t)

ρβ
s

.

Since
β2β−1nβ

s (t) ≤
2β − 1

2β+2
nβ+1

s (t) + N3(s)

for some positive constant N3(s), we have,

(B) ≤ −
(A)

2
+

wsN3(s)xs(t)

((1 + ε)ρs)β

≤ −
(A)

2
+ N4(s),

where
N4(s) =

wsN3(s)Ms

((1 + ε)ρs)β
.

On the other hand, if ns(t)xs(t) < 2(1 + ε)ρs ≤ 4ρs, then

(B) ≤
5β2β−2

(1 + ε)β

wsn
β−1
s (t)

ρβ−1
s

= N5(s)n
β−1
s (t),

where
N5(s) =

5β2β−2

(1 + ε)β

ws

ρβ−1
s

.
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Hence, in both cases, we have,

(B) ≤ −
(A)

2
+ N5(s)n

β−1
s (t) + N4(s). (63)

Substituting (60) and (63) back to (57-59), we thus have,
E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤ −

S
∑

s=1

[

εN0(s)n
β
s (t) − N5(s)n

β−1
s (t)

]

+

S
∑

s=1

[

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs − ns(t)xs(t)]

+

S
∑

s=1

(A)

2
+

S
∑

s=1

[N1(s) + N2(s) + N4(s)]

+o(1). (64)

It remains to bound (A)/2 and the second order term
N5(s)n

β−1
s (t). We will use (61) and (62) again. Since xs(t) ≤

Ms, if ns(t)xs(t) ≥ 2(1 + ε)ρs, we have,

(A)

2
≤ −ws

2β − 1

2β+2

nβ+1
s (t)xβ+1

s (t)

((1 + ε)ρs)βMβ
s

≤ −ws
2β − 1

2β+2

2β−1

(1 + ε)ρs

n2
s(t)x

2
s(t)

Mβ
s

(65)

≤ −ws
2β − 1

8(1 + ε)

n2
s(t)x

2
s(t)

ρsM
β
s

.

On the other hand, if ns(t)xs(t) < 2(1 + ε)ρs, we still have
(A)/2 ≤ 0. Hence, in both cases,

(A)

2
≤ −ws

2β − 1

8(1 + ε)

n2
s(t)x

2
s(t)

ρsM
β
s

+ N6(s), (66)

where
N6(s) = ws

2β − 1

8(1 + ε)

(2(1 + ε)ρs)
2

ρsM
β
s

.

Further, note that

N5(s)n
β−1
s (t) ≤

εN0(s)

2
nβ

s (t) + N7(s) (67)

for some positive constant N7(s). Substituting (66) and (67)
into (64), we have,

lim
δt→0+

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤ −ε
S
∑

s=1

E0(s)n
β
s (t)

+

S
∑

s=1

[

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs − ns(t)xs(t)]

−

S
∑

s=1

2β − 1

8(1 + ε)

ws

ρsM
β
s

n2
s(t)x

2
s(t) + E1(s), (68)

where E0(s) = N0(s)/2 and

E1(s) = [N1(s) + N2(s) + N4(s) + N6(s) + N7(s)] .

Recall that kT ≤ t < (k + 1)T . We now take expectation at
both sides of (68) with respect to the distribution of [~n(t), ~q(t)]

conditioned on [~n(kT ), ~q(kT ]. The left hand side of (68) then
becomes

E

{

lim
δt→0+

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt
∣

∣

∣

∣

∣

~n(kT ), ~q(kT )

}

.

We can show (in Appendix B) that the order of the outer
expectation and the limit can be switched, i.e.,

E

{

lim
δt→0+

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt
∣

∣

∣

∣

∣

~n(kT ), ~q(kT )

}

= lim
δt→0+

E

{

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt
∣

∣

∣

∣

∣

~n(kT ), ~q(kT )

}

= lim
δt→0+

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(kT ), ~q(kT )]

δt
. (69)

Using (68) and (69), and integrating over t ∈ [kT, (k + 1)T ).
The result of (55) then follows.

B. Validity of the Switch of Order in (69)
For completeness, we next provide the proof that it is

valid to switch the order of the expectation and the limit in
(69). (Readers may skip this subsection and go directly to
Appendix C if this part of proof is of less interest.) We will use
the Dominated Convergence Theorem [36, p468] to establish
this validity. Towards this end, it is sufficient to show that,
there exist functions g1(~n(t), ~q(t)), g2(~n(t), ~q(t)) and some
δ0 > 0 such that

• The functions g1(~n(t), ~q(t)) and g2(~n(t), ~q(t)) are both
integrable conditioned on (~n(kT ), ~q(kT ), i.e.,

E[g1(~n(t), ~q(t))|~n(kT ), ~q(kT )] < +∞,

E[g2(~n(t), ~q(t))|~n(kT ), ~q(kT )] > −∞.

• For all 0 < δt < δ0,

g2(~n(t), ~q(t))

≤
E[Vn(~n(t + δt) − Vn(~n(t))|~n(t), ~q(t)]

δt
≤ g1(~n(t), ~q(t)). (70)

We next show that there exist such g1(·), g2(·) and δ0. The
basic idea is that ns(t) cannot change faster than some Poisson
process. Firstly, using a simple sample-path argument, we can
easily show that, for any δt > 0,

nβ+1
s (t + δt) − nβ+1

s (t) ≤ (ns(t) + Y1)
β+1 − nβ+1

s (t),

where Y1 is a Poisson random variable with mean λsδt, and Y1

is independent of [~n(t), ~q(t)]. Using the mean-value theorem,
we have, for some h ∈ [0, 1],

(ns(t) + Y1)
β+1 = nβ+1

s (t) + (β + 1)(ns(t) + hY1)
βY1,
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Hence,

nβ+1
s (t + δt) − nβ+1

s (t)

≤ (β + 1)(ns(t) + Y1)
βY1

≤ 2β(β + 1)(nβ
s (t) + Y β

1 )Y1

= 2β(β + 1)nβ
s (t)Y1 + 2β(β + 1)Y β+1

1 .

Dividing by δt and taking conditional expectation with respect
to [~n(t), ~q(t)], we have

E[nβ+1
s (t + δt) − nβ+1

s (t)|~n(t), ~q(t)]

δt

≤ 2β(β + 1)nβ
s (t)

E[Y1]

δt
+ 2β(β + 1)

E[Y β+1
1 ]

δt
.

Since Y1 is a Poisson random variable with mean λsδt, we
have,

E[Y1]

δt
= λs.

Further,

E[Y β+1
1 ]

δt
≤

E[exp{(β + 1)Y1} − 1]

δt

=
exp[λsδt(e

β+1 − 1)] − 1

δt
.

Using the derivative of the right hand side at δt = 0, we can
show that there exist a constant δ0, which does not depend on
[~n(t), ~q(t)], such that for any positive δt ≤ δ0,

E[Y β+1
1 ]

δt
≤ 2λs(e

β+1 − 1).

Hence, for all positive δt ≤ δ0, we have,

E[nβ+1
s (t + δt) − nβ+1

s (t)|~n(t), ~q(t)]

δt
≤ 2β(β + 1)λsn

β
s (t) + 2β+1(β + 1)(eβ+1 − 1)λs.

If we let

g1(~n(t), ~q(t))

,
1

(1 + ε)β

S
∑

s=1

ws

(1 + β)µsρ
β
s

[

2β(β + 1)λsn
β
s (t)

+2β+1(β + 1)(eβ+1 − 1)λs

]

,

it then provides one side of the bound in (70) needed for
the Dominated Convergence Theorem to hold. To obtain the
other side of the bound, using a simple sample-path argument
again, we can easily show that, for any δt > 0, conditioned
on [~n(t), ~q(t)],

nβ+1
s (t + δt) − nβ+1

s (t)

≥ (max{0, ns(t) − Y2})
β+1 − nβ+1

s (t)

≥ nβ+1
s (t) − (ns(t) + Y2)

β+1,

where Y2 is a Poisson random variable with mean
µsns(t)xs(t)δt. Using the mean-value theorem again, we
have,

(ns(t) + Y2)
β+1 = nβ+1

s (t) + (β + 1)(ns(t) + hY2)
βY2

for some h ∈ [0, 1]. Hence,

nβ+1
s (t + δt) − nβ+1

s (t)

≥ −(β + 1)(ns(t) + Y2)
βY2

≥ −2β(β + 1)(nβ
s (t) + Y β

2 )Y2

= −2β(β + 1)nβ
s (t)Y2 − 2β(β + 1)Y β+1

2 .

Dividing by δt and taking conditional expectation with respect
to [~n(t), ~q(t)], we have

E[nβ+1
s (t + δt) − nβ+1

s (t)|~n(t), ~q(t)]

δt

≥ −2β(β + 1)nβ
s (t)

E[Y2|~n(t), ~q(t)]

δt

−2β(β + 1)
E[Y β+1

2 |~n(t), ~q(t)]

δt
.

Conditioned on [~n(t), ~q(t)], since Y2 is a Poisson random
variable with mean µsns(t)xs(t)δt, we have,

E[Y2|~n(t), ~q(t)]

δt
= µsns(t)xs(t).

Further,
E[Y β+1

2 |~n(t), ~q(t)]

δt

≤
E[exp{(β + 1)Y2} − 1|~n(t), ~q(t)]

δt

=
exp[µsns(t)xs(t)δt(e

β+1 − 1)] − 1

δt
.

Note that the right hand side is increasing in δt. Hence, there
exists function

g0(~n(t), ~q(t)) ,
exp[µsns(t)xs(t)δ0(e

β+1 − 1)] − 1

δ0
,

such that for any positive δt < δ0,
E[Y β+1

2 |~n(t), ~q(t)]

δt
≤ g0(~n(t), ~q(t)).

Hence, for all positive δt < δ0,
E[nβ+1

s (t + δt) − nβ+1
s (t)|~n(t), ~q(t)]

δt
≥ −2β(β + 1)µsxs(t)n

β+1
s (t)

−2β(β + 1)g0(~n(t), ~q(t)).

If we let

g2(~n(t), ~q(t))

, −
1

(1 + ε)β

S
∑

s=1

{

ws

(1 + β)µsρ
β
s

×
[

2β(β + 1)µsxs(t)n
β+1
s (t)

+2β(β + 1)g0(~n(t), ~q(t))
]}

,

it provides another side of the bound needed in (70) for
the Dominated Convergence Theorem to hold. Finally, it is
easy to show that both g1(~n(t), ~q(t)) and g2(~n(t), ~q(t)) are
integrable conditioned on [~n(kT ), ~q(kT )], because ns(t) at
most increases by a Poisson random variable with mean
λs(t−kT )), and xs(t) is bounded by Ms. Therefore, according
to the Dominated Convergence Theorem [36, p468], the switch
of the expectation and the limit in (69) is correct.
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C. Bound on the Changes of Vq(·)

The next lemma bounds the change in Vq(·). For simplicity,
we use the following matrix notation. Let A denote the L×L
diagonal matrix whose l-th diagonal element is αl. Let H
denote the L × S matrix whose (l, s)-element is H l

s. Let
~R = [R1, ..., Rl] tr, where [·] tr denotes the transpose. Further
let Xs(t) = ns(t)xs(t) and let ~X(t) = [X1(t), ..., XS(t)] tr.
Then

Vq(~q) =
~q trA−1~q

2
,

and the update on the implicit costs (13) can be written as

~q((k + 1)T )

=

[

~q(kT ) + A

(

H

∫ (k+1)T

kT

~X(t)dt − ~RT

)]+

. (71)

Lemma 6:

E[Vq(~q((k + 1)T ) − Vq(~q(kT ))|~n(kT ), ~q(kT )]

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

E[ ~X(t)|~n(kT ), ~q(kT )]dt

−~RT
]

+TαmaxS̄L̄

×

S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

]

+E2, (72)

where αmax = maxl α
l, L̄ and S̄ are defined as in Proposi-

tion 3, and E2 is a finite positive constant.
Proof: By (71),

Vq(~q((k + 1)T ) − Vq(~q(kT ))

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

]

+
1

2

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

] tr

×A

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

]

.

We now draw the connections to the fluid-model argument
in Section III. Note that the first term on the right hand side
corresponds to that of (25). The other term on the right hand
side is due to the “jumps” in the discrete-time implicit-cost
update when Equation (13) replaces Equation (17) of the fluid
model. Using Cauchy-Schwartz Inequality, we have,

1

2

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

] tr

×A

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

]

≤

[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

+T 2 ~R trA~R.

Further,
[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

=
L
∑

l=1

αl

[

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(t)dt

]2

≤
L
∑

l=1

αl

[

S
∑

s=1

H l
s

]

S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2

≤ S̄

L
∑

l=1

αl





S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2




≤ T S̄

L
∑

l=1

αl

S
∑

s=1

H l
s

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

= T S̄

S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

][

L
∑

l=1

αlH
l
s

]

≤ TαmaxS̄L̄

S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

]

. (73)

Letting E2 = T 2 ~R trA~R, the result of (72) then follows.

D. Proof of Proposition 3
Adding (55) to (72), and noting that

S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT )

]

×

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

}

=
L
∑

l=1

ql(kT )

×
S
∑

s=1

H l
s

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

= ~q tr(kT )

[

H

∫ (k+1)T

kT

E[ ~X(t)|~n(kT ), ~q(kT )]dt

]

, (74)

we have,

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ −ε
S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt

+

S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT )

]

(1 + ε)ρsT − ~q tr(kT )~RT

−

S
∑

s=1

{[

2β − 1

8(1 + ε)

ws

ρsM
β
s

− TαmaxS̄L̄

]

×

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

}

(75)

+E3,
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where E3 = E1 + E2. If the condition (14) is satisfied, the
product term in (75) is non-positive. Hence, by a rearrange-
ment of the order of the summations, we have,

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ −ε

S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt

+T~q tr(kT )
[

(1 + ε)H~ρ − ~R
]

+ E3.

By assumption, ~ρ lies strictly inside Θ0. Hence, there exists
some ε ∈ (0, 1] such that (1 + 2ε)H~ρ ≤ ~R. Use this value of
ε in the definition of V(·, ·). we then have,

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ −ε

S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt

−εT~q tr(kT )H~ρ + E3

≤ −ε′

[

S
∑

s=1

nβ
s (kT ) +

L
∑

l=1

ql(kT )

]

+ E3

for some ε′ > 0. Following the telescoping argument in [16],
we have

lim sup
t→∞

1

t

∫ t

0

E

(

S
∑

s=1

nβ
s (t) +

L
∑

l=1

Ql(t)

)

dt < ∞.

Since β ≥ 1, this implies stability in the mean.
Remark: This proof will not work for β < 1, in which

case the relationship (65) will fail to hold. (We need (65) to
cancel the second term in (72) of the change in Vq(·).) We
have not been able to either prove or disprove the result of
Proposition 3 for the case β < 1. We will leave it for future
work.
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