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ABSTRACT

This paper introduces a new parametric frequency estima-
tion technique, ROCK MUSIC, for uncovering frequency
components of a sum of complex exponentials in noise. The
ROCK MUSIC method is similar to conventional frequency
estimation methods, like MUSIC, that decompose the au-
tocorrelation matrix into signal and noise subspaces. The
distinguishing feature of this new method is that it does
not use an eigenvector decomposition but a decomposition
based on a Reduced Order Correlation Kernel.

This new non-unitary basis compresses the signal space,
thereby making it much more robust to incorrect subspace
partitioning than previous subspace frequency estimation
methods. Simulation of the ROCK MUSIC technique in-
dicates that large signal spaces may be represented by just
a few basis vectors. The signi�cance of this �nding is that
one does not need to know the correct number of signals
present in order to obtain classi�cation of the frequencies.
Thus the new ROCK MUSIC method resolves a fundamen-
tal limitation of conventional subspace frequency estimation
techniques. Finally, a signi�cant savings is possible, both
in terms of computation and sample support, because only
a small number of basis vectors are required.

1. BACKGROUND

An important problem in spectral estimation theory is to
identify which frequencies are present in a process which
is known to be a sum of complex exponentials in white
noise. This problem is frequently encountered in the spa-
tial domain where it is desired to determine the angle of
arrival of the plane waves impinging upon a linear antenna
array. In this context, the arrival angles of the plane waves
onto the array represent the frequencies to be estimated. A
common spectral estimation technique exploits the known
parametric form of the process to estimate which frequen-
cies are present by partitioning the space spanned by the
input data into signal and noise subspaces.

The method referred to as Pisarenko's harmonic decom-
position [1] partitions the data space into orthogonal signal
and noise subspaces and then projects a steering vector s(�)
onto the noise subspace in order to estimate the frequen-
cies present. Pisarenko's method requires that the exact
number of complex exponentials present, p, be known in
order to correctly partition the data space. Let the vec-
tor random process x represent the observed data, which
is assumed to be zero-mean without loss in generality. The

(p+1)�(p+1) autocorrelation matrixRx = E[xxH ] is then
computed and decomposed into its eigenvectors and eigen-
values. The p eigenvectors associated with the p largest
eigenvalues span the signal space and the eigenvector as-
sociated with the smallest eigenvalue, vmin, represents the
noise space. The Pisarenko frequency estimation function,

Spisarenko(�) =
1

k vHmins(�) k
2
; (1)

utilizes the orthogonality of the noise and signal space. The
inner product of the noise space vector vmin with the steer-
ing vector s(�) is zero for all those look directions which
correspond with the signal space. Therefore the frequency
estimation function will have a peak at each of the signal
frequencies.

An improvement to Pisarenko's method of parametric
frequency estimation is called MUSIC for MUltiple SIg-
nal Classi�cation [1, 2]. MUSIC di�ers from Pisarenko's
method in that Rx is no longer limited to dimension p+1,
but may now be of any dimension N > p. This larger auto-
correlation matrix is decomposed into its eigenvectors and
eigenvalues, and the eigenvectors associated with the largest
p eigenvalues are assumed to span the signal space. This im-
plies that the noise space is now of dimension N -p. There-
fore, for each noise eigenvector there will be p zeros which
lie on the unit circle and an additional N -p-1 zeros which
can lie anywhere including close to the unit circle. These
additional zeros can give rise to spurious peaks which make
it diÆcult to distinguish between the noise related peaks
and the true signal peaks. This is not a problem with Pis-
arenko's method because there is only one noise vector.

In order to mitigate the spurious peaks caused by the
additional dimensions of the noise, the MUSIC algorithm
averages the noise eigenvectors using the frequency estima-
tion function,

Smusic(�) =
1

NX
i=N�p

k vHi s(�) k
2

; (2)

where s(�) is projected onto fvig, the set of eigenvectors as-
sociated with the N -p smallest eigenvalues of Rx. Although
MUSIC is an improvement over Pisarenko's method because
it allows some 
exibility in overestimating the signal space
rank, it has very poor performance if the signal space is un-
derestimated. MUSIC therefore still requires knowledge of
how many signals are present in order to make an estimate
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Figure 1: The �lter structure for N=4.

of their frequencies. Finally, MUSIC also requires the com-
putational burden of computing the eigenvectors associated
with Rx.

2. ROCK MUSIC

The new ROCK MUSIC frequency estimation technique
uses a decomposition based on aReducedOrderCorrelation
Kernel [3] to replace the eigenvector decomposition in the
classical MUSIC algorithm. The ROCK MUSIC decompo-
sition de�nes a new, generally non-unitary, diagonalizing
basis to span the data space. This new basis forms a spec-
tral decomposition that compresses the signal space and
therefore requires very few basis vectors to represent a com-
plex signal environment. By selecting a small number, b, of
basis vectors, the new ROCK MUSIC frequency estimation
function is

Srock music(�) =
1

NX
i=N�b

k qHi s(�) k
2

; (3)

where the columns of QN =
�
q1 q2 : : : qN

�
form

the new non-unitary basis vectors to be de�ned. The ROCK
MUSIC technique can e�ectively estimate the signal space
in a manner which is nearly independent of the number
of complex exponentials present. Thus ROCK MUSIC re-
solves a fundamental limitation of previous parametric fre-
quency estimation techniques.

ROCK MUSIC's non-unitary basis set is created in the
same stage by stage manner used by the multistage Wiener
�lter in [4-6]. It is necessary to assume exactly one fre-
quency is known a priori in order to initialize the ROCK
MUSIC algorithm. This pivot into the algorithm can corre-
spond to a frequency which is known to be present, known
to be absent, or whose status is unknown and will require
later testing (see Sect. 4). This known frequency corre-
sponds to a normalized signal vector which is denoted h1 =
s(�1)=jjs(�1)jj, where �1 is the known frequency. The matrix
B1 is then de�ned to be the operator which projects onto
the nullspace of h1. The ROCK MUSIC algorithm begins
by projecting the observed data x using the operators h1
and B1:

d1 = h
H
1 x; (4)

x1 = B1x: (5)

To complete the initialization, the �rst-stage cross-correlation
vector is de�ned by,

rx1d1 = B1Rxh1: (6)

At each subsequent stage ROCK MUSIC projects the
data onto two subspaces. One subspace points in the di-
rection of a normalized cross-correlation vector hi and the
other subspace spans the space orthogonal to that cross-
correlation vector, created by projecting the data with the
operator Bi, where Bi = null(hi) (see Fig. 1). The recur-
sions used are as follows:

hi+1 =
rxidi

k rxidi k
; i � 1; (7)

rxidi = BiRxi�1hi; i � 2: (8)

These �rst subspace projections are represented by the rank
N unitary operator LN ,

LN =

2
666666666664

hH1
hH2 B1

...

hHN�1

1Y
i=N�2

Bi

1Y
i=N�1

Bi

3
777777777775

: (9)

The matrix LN tri-diagonalizes Rx. This is only the �rst
half of the transformation. The matrix UN is now de�ned
to complete the diagonalization of Rx,

UN =

2
6666664

1 �w�1 � � � (�1)N+1
QN�1

i=1
w�i

0 1 � � � (�1)N
QN�1

i=2
w�i

...
. . .

...
0 0 � � � �w�N�1
0 0 � � � 1

3
7777775
: (10)

The generally non-unitary operator UN is applied to the
output of LN to yield a diagonalization which retains the
composite directional preference of the incident signals. If
this operator were unitary, then the eigenvectors and eigen-
values would again be obtained via the uniqueness theorem.
The scalar �lter weights wi in Eq. (10) are found using a
backwards recursion of the scalar Wiener-Hopf equation,

wi = ��1i+1r"i+1di ; (11)
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where

�i = E[j"ij
2] = �2di �

jÆi+1j
2

�i+1
; (12)

de�nes the minimum mean square error (MMSE) at each
stage, �2di is the variance of the \desired" signal di, r"i+1di
is the scalar cross-correlation computed between the error
from stage i+1 and the desired signal at stage i, and Æi+1 =
jjr"i+1di jj. The last stage MMSE is given by �N = �2dN =

�2xN�1 where, by de�nition, "N = dN = xN�1:
The matrix operator LN is intentionally constructed to

be unitary while the matrix operator UN is generally non-
unitary. Thus, the matrix operator QN = (UNLN )

H is
generally non-unitary and diagonalizes Rx:

�� =

2
664

�1 0 0 0
0 �2 0 0

0 0
. . . 0

0 0 0 �N

3
775 = Q

H
NRxQN : (13)

The columns of the matrix QN create a new non-unitary
basis which span the data space and can be partitioned
into signal and noise subspaces. For a more complete de-
scription of the decomposition of Rx see [4-6] on the mul-
tistage Wiener �lter. Finally, the reduced-order matrix
QM = (UMLM)H is obtained by truncating LN in Eq.
(9) to keep the �rst M out of N rows (forming the M �N
matrix LM ) and then computing the M �M matrix UM

in exactly the manner described in Eq. (10).

3. SIMULATION RESULTS

The performance of ROCK MUSIC and the classical MU-
SIC technique are compared for the problem of estimat-
ing the angles of arrival for multiple plane waves impinging
upon a uniform line array whose elements are equispaced
at half-wavelength. The robustness of these algorithms in
terms of angle classi�cation performance are evaluated with
respect to the signal rank. To quantify the results, let any
peak above 30dB at a true angle of arrival be counted as
a correct identi�cation. Due to the �nite resolution of the
sensor array multiple angles may be identi�ed in the same
peak. The angles of arrival are selected from a uniform ran-
dom distribution between �90 and 90 degrees. The sensor
array is composed of 128 elements and there are 40 signals
which impinge the array. A total of 150 data snapshots are
used to estimate Rx.

Figs. 2 and 3 show the baseline performance when both
algorithms are given 40 basis vectors to span the signal
space. These �gures illustrates that, under these condi-
tions, both methods perform very well, correctly identify-
ing all 40 arrival angles of the plane waves. Figs. 4 and 5
show the performance when both algorithms are given 30
basis vectors to de�ne the signal space. In this case, MUSIC
fails to identify a single angle of arrival correctly, whereas
ROCK MUSIC's perfect performance is una�ected. This
example illustrates the limitations of the MUSIC algorithm
to classify the angles of arrival when the number of signals
impinging upon the array is underestimated. It also demon-
strates that MUSIC needs the full rank of the signal space
in order to adequately represent it. Figs. 6 and 7 show the
performance of the algorithms when only 3 basis vectors are

used to de�ne the signal space. Here again MUSIC fails to
classify a single angle of arrival correctly where as ROCK
MUSIC's performance is still 100% accurate.

4. CONCLUSIONS

One interesting requirement of the ROCK MUSIC algo-
rithm is the selection of a pivot or initial signal vector h1.
A signal is always found at the frequency determined by h1,
even if there is no signal actually present. However ROCK
MUSIC consistently identi�es the remaining arrival angles
correctly for the other plane waves impinging upon the ar-
ray. This represents an ambiguity of the ROCK MUSIC
algorithm with respect to its ability to identify the pres-
ence of a signal at that initial look angle. Solutions to this
situation include determining one true signal vector before-
hand (perhaps the most powerful), picking one frequency in
which it is known that no signal vector can be present and
then ignoring the false peak, or testing for the presence of
the pivot signal afterwards. Further research is underway
to resolve this ambiguity.

This paper introduces a new parametric frequency esti-
mation technique based on a novel non-unitary basis which
compresses the signal space. Simulation shows ROCK MU-
SIC is able to identify the angles of arrival without knowl-
edge of the exact rank of the signal space. Thus ROCK
MUSIC overcomes a fundamental limitation of convention-
al parametric frequency estimation methods which require
that the signal subspace size be known exactly in order to
operate. The compressed signal space created by the novel
non-unitary basis also promises to need less data samples
to estimate Rx. Finally, the reduced signal space allows
computational savings gained from only having to calculate
a few basis vectors to de�ne the signal space.
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Figure 2: Baseline performance of MUSIC algorithm, given 40 basis vectors to represent the signal space created by 40 plane
waves impinging upon the array. The solid line is the pseudo-spectrum, and the vertical dashed lines are the true angles of
arrival. This �gure demonstrates that under these conditions, MUSIC correctly identi�es all 40 angles of arrival.
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Figure 3: Baseline performance of ROCK MUSIC algorithm, given 40 basis vectors to represent the signal space created by
40 plane waves impinging upon the array. The solid line is the pseudo-spectrum, and the vertical dashed lines are the true
angles of arrival. This �gure demonstrates that under these conditions, ROCK MUSIC correctly identi�es all 40 angles of
arrival.
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Figure 4: Performance of MUSIC algorithm, given 30 basis vectors to represent the signal space created by 40 plane waves
impinging upon the array. The solid line is the pseudo-spectrum, and the vertical dashed lines are the true angles of arrival.
This �gure demonstrates that under these conditions, MUSIC fails to identify any of the 40 angles of arrival.
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Figure 5: Performance of ROCK MUSIC algorithm, given 30 basis vectors to represent the signal space created by 40 plane
waves impinging upon the array. The solid line is the pseudo-spectrum, and the vertical dashed lines are the true angles of
arrival. This �gure demonstrates that under these conditions, ROCK MUSIC continues to correctly identify all 40 angles of
arrival.
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Figure 6: Performance of MUSIC algorithm, given 3 basis vectors to represent the signal space created by 40 plane waves
impinging upon the array. The solid line is the pseudo-spectrum, and the vertical dashed lines are the true angles of arrival.
This �gure demonstrates that under these conditions, MUSIC continues to misclassify all 40 angles of arrival.
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Figure 7: Performance of ROCK MUSIC algorithm, given 3 basis vectors to represent the signal space created by 40 plane
waves impinging upon the array. The solid line is the pseudo-spectrum, and the vertical dashed lines are the true angles of
arrival. This �gure demonstrates that under these conditions, ROCK MUSIC continues to correctly identify all 40 angles of
arrival.
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