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Abstract into account the statistics of the observation signal and does
not consider the relation to the desired signal. Therefore,
We show that theMulti-Stage Nested Wiener Filter Goldstein et. al. [2] introduced th&ross-Spectra(CS)
(MSNWF) can be identified to be the solution of iMener-  metric which evolved from th&eneralized Sidelobe Can-
Hopf equatiorin theKrylov subspacef the covariance ma-  celler (GSC) [3] and incorporates the similarity of the cross-
trix of the observation and the crosscorrelation vector of correlation vector of the observation and the desired signal
the observation and the desired signal. This understandingyith the respective eigenvector.
leads to the conclusion that tienoldi algorithm which Recently, Goldstein et. al. presented talti-Stage
arises from the MSNWF development can be replaced byNested Wiener Filte(MSNWF) approach [4] which can be
theLanczos algorithmThus, the computation of the under- seen as a chain of GSCs. This fundamental contribution
lying basis of the Krylov subspace can be simplified. More- showed that the reduction of the dimension of the observa-
over, the foundation of the MSNWF in the Krylov subspace tions signal based on the eigenvectors as proposed by the
framework helps to derive an alternative formulation of the pC and CS methods is suboptimum. The MSNWF does not

already presented MSNWF decomposition. ~ need the eigenvectors of the covariance matrix of the obser-
The new backward recursion is used to design a linearyation signal and is, thus, computationally advantageous.
equalizer filter in anEnhanced Data rates for GSM Evo- Our contribution is to show that tHdulti-Stage Nested

lution (EDGE) system. Simulation results show the ability wiener Filter(MSNWF) can be seen as the solution of the
of the MSNWF to reduce the receiver complexity while the Wiener-Hopfequation in th&rylov subspacef the covari-

system performance is unchanged. ance matrix of the observation signal and the crosscorrela-
tion vector of the observation and the desired signal. This
1. INTRODUCTION conclusion follows from the results in [5] for thuxiliary

Vector (AV) method and especially in [6], but we present
The Wiener filter (WF) is a well known approach to esti- the consequences of this connection. First,Aheoldi al-

mate the unknown signal[n] from an observatiom[n| gorithmwhich is used to find the orthonormal basis for the
and is optimal in thélinimum Mean Square ErrdiMMSE) Krylov subspacean be replaced by tHeanczos algorithm
sense. [7] since the covariance matrix is Hermitian. Second, we

Since the resulting filter depends upon the inverse of thedevelop a new formulation of the MSNWF algorithm which
covariance matrix of the observatian[n] and the needed gives an expression for the resultipan Squared Error
filter length can be very large, if the observatieg[n] is of (MSE), although it only works in the reduced dimensional
high dimensionality, an alternative approach which operatesspace.
in a reduced space is of great interest to reduce computa- In the next section, we briefly discuss the reduced rank
tional complexity and the number of observations needed toMSNWF and concentrate on the original MSNWF approach

estimate the statistics. in Section 2 to motivate our reasoning in Section 4, where
The first approach to reduce the dimension of the es-we show the close relationship between the MSNWF and
timation problem is the well establish&ttincipal Compo- Krylov subspacéased methods. In Section 5 we present a

nent(PC) method [1]. The observation signal is transformed new formulation of the MSNWF algorithm.

by a matrix constituted by the eigenvectors belonging to ~ Throughout the paper the covariance matrix of a vec-
the principal eigenvalues, thus, a truncated Karhunen-Loevetor z[n] is denoted byR, = E{z[n]z"[n]} and the cor-
transform is applied. However, the PC method only takes relation between a vectat[n] and a scalatl[n] is 5.4 =



E{z[n]d*[n]}. into a matched filter and a Wiener filter of lower dimension.
Performing this splittingV — 1 times leads to a set of signals

2. MULTI-STAGE NESTED WIENER FILTER dz[n],z =1,...,N which are the outputs of the |engﬂ7\
filters
The Multi-Stage Nested Wiener FiltdMSNWF) was de- i—1
veloped by Goldstein et. al. [4] to find an approximate so- t; = (H By)h; € CV. (8)
lution of the Wiener-Hopf equation which does not need the k=1

inverse or the eigenvalue decomposition of the covariancerps interpretation of the MSNWF will be used in the fol-

matrix. The approximation for the Wiener filter is found by  |ying sections. Note that all following stages are orthogo-

stopping the recursive algorithm aftér steps, hence, the 5 to the first stage, i.eti't; = 0,4, =2, ... N, anddy.;

approximation lies in &-dimensional subspace @f". denotes the Kronecker delta function which is 1 fot= i
The first step of the MSNWF algorithm is to apply afull - 54 0 fork "

rank pre-filtering matrix of the form

T, = [h, By]e VN (1) 3. REDUCED RANK MSNWF
to get the new observation signal The reduced rank MSNWF of ranR is easily obtained by
" stopping the development of the MSNWF affer- 1 steps
21[n] = THaoln] = [ thwo[n] } _ [ di[n] ] ccN and replacing the last Wiener filter,_, by the respective
Bi'zo[n] @ [n] matched filter.
(2) For D < N we get the lengthD observation with a
tri-diagonal covariance matrix [4, 8]

which does not change the estimaltgn] as postulated in
[4, 8]. The columns ofB; are chosen to be orthogonal to
h,, therefore,

dP[n] = TP Hgyn] € CP, 9)

where the superscrig#)(”) indicates that we use a rak
B?hl —0 or B, = null(h['). 3) approximation and the transformation matrix

_— . . . TP =[t,... .t NxD 10
The intuitive choice for the first columh; is the matched [t t0] € C (10)
filter [4] or the vector which, when applied tey[n], gives comprises the firsD filters which were already defined in
a scalar signal; [»] that has maximum correlation with the Equation (8). Therefore, we have to find the Wiener filter
desired signadiy[n] [5, 8]: w'”) which estimatesl[n] from d‘P)[n]. Obviously, this
Wiener filter reads as

Te *
= ﬁ and 7g,.4, = E{wo[n]dj[n]} € C¥
Zo,a0
(4)

Solving of the Wiener-Hopf equation of the new system
and employing the inversion lemma for partitioned matrices

-1
wEiD) _ (T(D)’HR,;DT(D)) T e a0 (11)

and the MSNWF ranl® approximation of the Wiener filter
wy can be expressed as

(e. g. [9]) leads to the Wiener filter to estimaign] from w? = TP ). (12)
zl[n]:
1 N 4. MSNWF AND KRYLOV SUBSPACE
Wz, =0 |: —R;ET'wl,dl j| € C ) (5)

In the following we restrict the filterg; to be orthogo-
where nal. Moreover, without loss of generality we assume that
[|t:|| = 1. Recall that the first column of the pre-filtering
o1 = [|Pagd,ll2(0, — rghle;jrwl,dl)*l (6) matrix T'; at stepi was chosen to be the matched filter or
. the filter which maximizes the correlation to the output of
and the variance af; [n] reads as the previous matched filter. Together with the orthogonality
031 = E{|di[n]]?} = hl;Rmohl- 7 conditions this leads to following optimization:
o . ) ) t; = argmax E{Re(d;[n]d}_,[n])} or
The expression in brackets in Equation (5) motivates the t
next step in the MSNWF developmgnt. SinBg 'rs, 4, t; = arg maxl(tHRwoti,l +t Rgt) (13)
is a Wiener filter, the new observatian [n] can be pre- t 2
filtered with T, = [hy B,] again leading to a splitting st: t't=1 and tt, =0,k=1,...,i—1.



The result reads as (cf. [8]) Krylov subspace of the matrix vector paR,,, 7« ,4,), if
the filterst; are orthogonal. Furthermore, if a reduced rank

( o Pk) Ra i, MSNWEF with rankD is computed, this is fully equivalent
ti = — ; (14)  to solving the Wiener-Hopf equation in th-dimensional
[ ( k=1 Pk) Ratil2 Krylov subspacéC(?). And more descriptively, the inverse

] of the covariance matriR_, 01 is approximated by a matrix
where P}, denotes the projector onto the space 0rth090”3|polynomialq(R ) of orderD — 1.

. 0o
toty, e, With Corollary 1 it is straightforward to understand that
(15) the covariance matri)RfiD ) of the pre-filtered observation

d[n] (cf. Equation 9) is tri-diagonal, because the covari-

and1y denotes theV x N identity matrix. Note that the ~ ance matrix of the original observatian[n] is Hermitian.

recursive algorithm described in Equation (14) is the well Moreover, the Hermitian property @2, allows to use the
known Gram-Schmid@rnoldi algorithm[7]. The Arnoldi Lanczos algorithnfi7] to compute the orthogonal bagisof

recursionis the basic algorithm to compute the orthonor- the Krylov subspac&® of (Rq,, 7.d,):

mal basis of the Krylov subspa#&™) of the square matrix P,_1P; 3R, t;_,

A € CM*M gnd the column vectds € CM. The Krylov ti = [ Pi_ P; 2Ry ti1]I- (19)

subspace of dimensiab is defined as follows [7]: Ao tin iz

Py =1y — t;t!

Note that the_anczos algorithmmeduces the complexity to
k(D) — span([b, Ab, .. "ADflb]) ‘ (16) computg the o_rt_hogonal ba§is. However, thaenczos_ al-
gorithmis sensitive to rounding errors, hence, the filters
Honig et. al. [10] made this observation and proved that &€ not orthogonal anymore for large In the sequel, we
for the choiceB; = P; the filterst; are an orthonormal ~ aSsume that the necessary ranko find an good approx-
basis of the Krylov subspace. However, they did not see theiMation of the Wiener filter is small enough to be able to
fundamental implications of this result which can be found @PPly theLanczos algorithm

in following theorem [7].
5. ANEW MSNWEF ITERATION

Theorem 1 If the columns of the matrik” = [t;,...,tp]
were computed using the recursion In this section, we develop a new algorithm which computes
the rankD MSNWF, but works only within the Krylov sub-
(Hk:i_l Pk) At; b space of dimensio®. Therefore, we assume that the or-
ti t = ol (17)  thonormal basis'® e CN*P of the Krylov subspace

I (Hi:iq Pk) Ati—1]2 K(P) was found by thérnoldi algorithm(cf. Equation 14)
or by theLanczos algorithnfcf. Equation 19). The result-
where A € CV*N is an arbitrary square matrix and  ing rankD MSNWF is given in Equation (12) by the means
b € CY is an arbitrary column vector, then the following  of the Wiener filtero'”) which is applied to the pre-filtered

equality holds: observation
HD) = 7(D)HAT(D) (18) dP[n) = TP Hgon) € CP, (20)

whereH ™) is aD x D Hessenberg matrix. with the tri-diagonal covariance matrix

- T@P-HHp p(D-1) 0
To see the value of Theorem 1 we need to specialize R&D) =TPHR, TP = o rD-1.D
to be Hermitian [7]. o7 "op | DD
(21)

Corollary 1 Given an Hermitian square matrid ¢
CN*N je.,A = A" the recursion in Equation (17) leads and the crosscorrelation vector with respect to the desired

to a transformation matrig’®) which tri-diagonalizesA,  signaldy[n]
ie.,
(D) — p(D)H Ap(D) D) = TPy ||7'a306d0||2 } cRD. (22)

is a Hermitian tri-diagonal matrix. _ _ Do)
Using knowledge of the covariance matH)ﬁ, , the new

Our conclusion is that the MSNWF approach, although entries ofRfiD> are simply
it is only motivated by statistical reasoning, is simply the H u
solution of the Wiener-Hopf equation by employing the "0-1.0 =tp_1Raitp and rpp =tpRetp. (23)

€ (CDX,



Becauser4 4, has the property that only the first element is
not equal ta), only the first column of the inverse @, is
needed to compute

(D

w'] ) _

R(D) ~1,.(D)

T €CP. (24)

Consequently, we are only interested in the first column

ch) € CP of

CP) — R (D) P e ePxD (25)

and the inversion lemma for partitioned matrices (e. g. [9,
11]) leads to

c(P-1)
o7

0

0 (26)

c® — { } +ﬁ51b(D)b(D)7H

where the additional terms read as

0

mean squared errmt stepD can be expressed with the first
entryc1 ) of c (cf. Equation??):

D)

MSE(D = U - ||Two7d0||201 1 (31)

The iteration in Equation (29) and (30) only operates
with scalars and vectors. However, the scalass; p and
rp,p (cf. Equation 23) are needed which are quadratic
forms with the N x N covariance matrixR,,. But the
matrix vector multiplicationR,, ¢; with O(N?) which can
be found in the expression fet_; ; andr; ; has already
been used for thieanczos algorithnn Equation (19) to find
the orthonormal basi?. Thus, it is worth to include the

Lanczos recursioand the resulting algorithm is shown in
Table 1, where we substitutedf’ andc!” by ¢!’ andc!?,
respectively. The resulting computational complexity for a
rank D MSNWF is O(N2D), since a matrix vector multi-

plication withO(N?) has to be performed at each step.

D-1 —1
O e P e
1 -
27) choose desired MSE?2
choose maximum dimensiof?
and th=0, t = vamdo/Hrwo,doH?
u = Rmotl
Bp =rp,p — [OTarBfl D]C(D_l) 0 =TD D — |T’D 91122&1%1) ', = tl
) k) TD717D ’ é’("l) _Ur llL/ lc(l) —r —1
(28) first 1,1» last 1,1 0
MSE! dn — 7 @0, do |5Cirst
. (D-1) . A=1
with ¢p_ p_, being the last element of the last column Y i)
PP of ) at the previous step. Therefore, the new T SED < ~ZthenA — i — 1; break
first columnc(D) can be written as v=u—r;i_1;1ti1 —Ti2;1ti_2
» ri—t,i = ||vll>
(D) _ CgD_l) 1 (D 1),* |T‘D 1 D| CD 1 ) D if ri—1,i = 0thenA =i — 1; break
¢ = +B8p ¢ p1 € Ch
0 ' —TD_1.D ti=v/ri_1;
(29) u = R t;
Tii = t'i"u
wherec{’, !} denotes the first element of;”,". Obvi- Bi=rii—|rivil’cogl
ously, the first column o€ and, thus, the Wiener filter o) { i } Bt { rical2el }
w'”) at stepD depends upon the first column” ") at frst 0 it T
stepD — 1 and the new entries of the covariance matrix o) = g —ri,ucl(azs—tl)
rp—1,p andrp_p. However, we also observe a dependency last ™ /%2
on the previous last columg):ll). Hence, we have to find MSE®) = o3 — ||r:,,0,do||§cf(ifStl
an expression for the last column 6f”) and with Equa- TP = [ty,...,ta]
tion (26) we get w(()D) = [|7ap dgHZT(D)cf('At)
Lo, II'S!

(D1
—TD-1,DCp_

P =gt (30)

Table 1. Lanczos MSNWF

which only depends onthe previous lastcolumnandthenew  ngte that the algorithm in Table 1 is just a version of the

entries ofR
two vectorse,

. So, we found an iteration that only updates

(D andc ) at each step and, moreover, the

Conjugate Gradient algorithrfiLl2, 7]. In fact it is a direct
version of the_anczos algorithnji7] for linear systems.
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