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Abstract

We show that theMulti-Stage Nested Wiener Filter
(MSNWF) can be identified to be the solution of theWiener-
Hopf equationin theKrylov subspaceof the covariance ma-
trix of the observation and the crosscorrelation vector of
the observation and the desired signal. This understanding
leads to the conclusion that theArnoldi algorithm which
arises from the MSNWF development can be replaced by
theLanczos algorithm.Thus, the computation of the under-
lying basis of the Krylov subspace can be simplified. More-
over, the foundation of the MSNWF in the Krylov subspace
framework helps to derive an alternative formulation of the
already presented MSNWF decomposition.
The new backward recursion is used to design a linear
equalizer filter in anEnhanced Data rates for GSM Evo-
lution (EDGE) system. Simulation results show the ability
of the MSNWF to reduce the receiver complexity while the
system performance is unchanged.

1. INTRODUCTION

The Wiener filter(WF) is a well known approach to esti-
mate the unknown signald0[n] from an observationx0[n]
and is optimal in theMinimum Mean Square Error(MMSE)
sense.

Since the resulting filter depends upon the inverse of the
covariance matrix of the observationx0[n] and the needed
filter length can be very large, if the observationx0[n] is of
high dimensionality, an alternative approach which operates
in a reduced space is of great interest to reduce computa-
tional complexity and the number of observations needed to
estimate the statistics.

The first approach to reduce the dimension of the es-
timation problem is the well establishedPrincipal Compo-
nent(PC) method [1]. The observation signal is transformed
by a matrix constituted by the eigenvectors belonging to
the principal eigenvalues, thus, a truncated Karhunen-Loeve
transform is applied. However, the PC method only takes

into account the statistics of the observation signal and does
not consider the relation to the desired signal. Therefore,
Goldstein et. al. [2] introduced theCross-Spectral(CS)
metric which evolved from theGeneralized Sidelobe Can-
celler (GSC) [3] and incorporates the similarity of the cross-
correlation vector of the observation and the desired signal
with the respective eigenvector.

Recently, Goldstein et. al. presented theMulti-Stage
Nested Wiener Filter(MSNWF) approach [4] which can be
seen as a chain of GSCs. This fundamental contribution
showed that the reduction of the dimension of the observa-
tions signal based on the eigenvectors as proposed by the
PC and CS methods is suboptimum. The MSNWF does not
need the eigenvectors of the covariance matrix of the obser-
vation signal and is, thus, computationally advantageous.

Our contribution is to show that theMulti-Stage Nested
Wiener Filter(MSNWF) can be seen as the solution of the
Wiener-Hopfequation in theKrylov subspaceof the covari-
ance matrix of the observation signal and the crosscorrela-
tion vector of the observation and the desired signal. This
conclusion follows from the results in [5] for theAuxiliary
Vector (AV) method and especially in [6], but we present
the consequences of this connection. First, theArnoldi al-
gorithmwhich is used to find the orthonormal basis for the
Krylov subspacecan be replaced by theLanczos algorithm
[7] since the covariance matrix is Hermitian. Second, we
develop a new formulation of the MSNWF algorithm which
gives an expression for the resultingMean Squared Error
(MSE), although it only works in the reduced dimensional
space.

In the next section, we briefly discuss the reduced rank
MSNWF and concentrate on the original MSNWF approach
in Section 2 to motivate our reasoning in Section 4, where
we show the close relationship between the MSNWF and
Krylov subspacebased methods. In Section 5 we present a
new formulation of the MSNWF algorithm.

Throughout the paper the covariance matrix of a vec-
tor x[n] is denoted byRx = Efx[n]xH[n]g and the cor-
relation between a vectorx[n] and a scalard[n] is rx;d =



Efx[n]d�[n]g.

2. MULTI-STAGE NESTED WIENER FILTER

The Multi-Stage Nested Wiener Filter(MSNWF) was de-
veloped by Goldstein et. al. [4] to find an approximate so-
lution of the Wiener-Hopf equation which does not need the
inverse or the eigenvalue decomposition of the covariance
matrix. The approximation for the Wiener filter is found by
stopping the recursive algorithm afterD steps, hence, the
approximation lies in aD-dimensional subspace ofCN .

The first step of the MSNWF algorithm is to apply a full
rank pre-filtering matrix of the form

T 1 = [h1 B1] 2 C
N�N (1)

to get the new observation signal

z1[n] = T
H
1x0[n] =

�
h

H
1x0[n]

B
H
1x0[n]

�
=

�
d1[n]
x1[n]

�
2 C

N

(2)

which does not change the estimated̂0[n] as postulated in
[4, 8]. The columns ofB1 are chosen to be orthogonal to
h1, therefore,

B
H
1h1 = 0 or B1 = null(hH

1 ): (3)

The intuitive choice for the first columnh1 is the matched
filter [4] or the vector which, when applied tox0[n], gives
a scalar signald1[n] that has maximum correlation with the
desired signald0[n] [5, 8]:

h1 =
rx0;d0

krx0;d0k2
and rx0;d0 = Efx0[n]d�0[n]g 2 C

N

(4)

Solving of the Wiener-Hopf equation of the new system
and employing the inversion lemma for partitioned matrices
(e. g. [9]) leads to the Wiener filter to estimated0[n] from
z1[n]:

wz1
= �1

�
1

�R�1
x1
rx1;d1

�
2 C

N ; (5)

where

�1 = krx0;d0k2(�
2
d1
� rH

x1;d1
R
�1
x1
rx1;d1)

�1 (6)

and the variance ofd1[n] reads as

�2d1 = Efjd1[n]j2g = h
H
1Rx0

h1: (7)

The expression in brackets in Equation (5) motivates the
next step in the MSNWF development. SinceR�1

x1
rx1;d1

is a Wiener filter, the new observationx1[n] can be pre-
filtered with T 2 = [h2 B2] again leading to a splitting

into a matched filter and a Wiener filter of lower dimension.
Performing this splittingN�1 times leads to a set of signals
di[n]; i = 1; : : : ; N which are the outputs of the lengthN
filters

ti = (

i�1Y
k=1

Bk)hi 2 C
N : (8)

This interpretation of the MSNWF will be used in the fol-
lowing sections. Note that all following stages are orthogo-
nal to the first stage, i.e.,tH

1 ti = �1;i, i=2, : : : ,N, and�k;i
denotes the Kronecker delta function which is 1 fork = i
and 0 fork 6= i.

3. REDUCED RANK MSNWF

The reduced rank MSNWF of rankD is easily obtained by
stopping the development of the MSNWF afterD� 1 steps
and replacing the last Wiener filterwD�1 by the respective
matched filter.

For D < N we get the lengthD observation with a
tri-diagonal covariance matrix [4, 8]

d
(D)[n] = T

(D);H
x0[n] 2 C

D ; (9)

where the superscript(�)(D) indicates that we use a rankD
approximation and the transformation matrix

T
(D) = [t1; : : : ; tD] 2 C

N�D (10)

comprises the firstD filters which were already defined in
Equation (8). Therefore, we have to find the Wiener filter
w
(D)
d

which estimatesd0[n] from d
(D)[n]. Obviously, this

Wiener filter reads as

w
(D)
d

=
�
T
(D);H

Rx0
T
(D)
�
�1

T
(D);H

rx0;d0 (11)

and the MSNWF rankD approximation of the Wiener filter
w0 can be expressed as

w
(D)
0 = T

(D)
w
(D)
d

: (12)

4. MSNWF AND KRYLOV SUBSPACE

In the following we restrict the filtersti to be orthogo-
nal. Moreover, without loss of generality we assume that
ktik2 = 1. Recall that the first column of the pre-filtering
matrix T i at stepi was chosen to be the matched filter or
the filter which maximizes the correlation to the output of
the previous matched filter. Together with the orthogonality
conditions this leads to following optimization:

ti = argmax
t

EfRe(di[n]d�i�1[n])g or

ti = argmax
t

1

2
(tHRx0

ti�1 + t
H
i�1Rx0

t) (13)

s.t.: t
H
t = 1 and t

H
tk = 0; k = 1; : : : ; i� 1:



The result reads as (cf. [8])

ti =

�Qi�1
k=1 P k

�
Rx0

ti�1

k
�Qi�1

k=1P k

�
Rx0

ti�1k2
; (14)

whereP k denotes the projector onto the space orthogonal
to tk, i.e.,

P k = 1N � tkt
H
k (15)

and1N denotes theN � N identity matrix. Note that the
recursive algorithm described in Equation (14) is the well
known Gram-SchmidtArnoldi algorithm[7]. The Arnoldi
recursion is the basic algorithm to compute the orthonor-
mal basis of the Krylov subspaceK(D) of the square matrix
A 2 CM�M and the column vectorb 2 CM . The Krylov
subspace of dimensionD is defined as follows [7]:

K(D) = span
�
[b;Ab; : : : ;AD�1

b]
�
: (16)

Honig et. al. [10] made this observation and proved that
for the choiceBi = P i the filtersti are an orthonormal
basis of the Krylov subspace. However, they did not see the
fundamental implications of this result which can be found
in following theorem [7].

Theorem 1 If the columns of the matrixTD = [t1; : : : ; tD]
were computed using the recursion

ti =

�Q1
k=i�1 P k

�
Ati�1

k
�Q1

k=i�1 P k

�
Ati�1k2

; t1 =
b

kbk2
; (17)

whereA 2 CN�N is an arbitrary square matrix and
b 2 CN is an arbitrary column vector, then the following
equality holds:

H
(D) = T

(D);H
AT

(D); (18)

whereH(D) is aD �D Hessenberg matrix.

To see the value of Theorem 1 we need to specializeA

to be Hermitian [7].

Corollary 1 Given an Hermitian square matrixA 2
CN�N , i.e.,A = A

H, the recursion in Equation (17) leads
to a transformation matrixT (D) which tri-diagonalizesA,
i.e.,

H
(D) = T

(D);H
AT

(D):

is a Hermitian tri-diagonal matrix.

Our conclusion is that the MSNWF approach, although
it is only motivated by statistical reasoning, is simply the
solution of the Wiener-Hopf equation by employing the

Krylov subspace of the matrix vector pair(Rx0
; rx0;d0), if

the filtersti are orthogonal. Furthermore, if a reduced rank
MSNWF with rankD is computed, this is fully equivalent
to solving the Wiener-Hopf equation in theD-dimensional
Krylov subspaceK(D). And more descriptively, the inverse
of the covariance matrixR�1

x0
is approximated by a matrix

polynomialq(Rx0
) of orderD � 1.

With Corollary 1 it is straightforward to understand that
the covariance matrixR(D)

d
of the pre-filtered observation

d[n] (cf. Equation 9) is tri-diagonal, because the covari-
ance matrix of the original observationx0[n] is Hermitian.
Moreover, the Hermitian property ofRx0

allows to use the
Lanczos algorithm[7] to compute the orthogonal basisti of
the Krylov subspaceK(D) of (Rx0

; rx0;d0):

ti =
P i�1P i�2Rx0

ti�1

kP i�1P i�2Rx0
ti�1k2

(19)

Note that theLanczos algorithmreduces the complexity to
compute the orthogonal basis. However, theLanczos al-
gorithm is sensitive to rounding errors, hence, the filtersti

are not orthogonal anymore for largei. In the sequel, we
assume that the necessary rankD to find an good approx-
imation of the Wiener filter is small enough to be able to
apply theLanczos algorithm.

5. A NEW MSNWF ITERATION

In this section, we develop a new algorithm which computes
the rankD MSNWF, but works only within the Krylov sub-
space of dimensionD. Therefore, we assume that the or-
thonormal basisT (D) 2 CN�D of the Krylov subspace
K(D) was found by theArnoldi algorithm(cf. Equation 14)
or by theLanczos algorithm(cf. Equation 19). The result-
ing rankD MSNWF is given in Equation (12) by the means
of the Wiener filterw(D)

d
which is applied to the pre-filtered

observation

d
(D)[n] = T

(D);H
x0[n] 2 C

D ; (20)

with the tri-diagonal covariance matrix

R
(D)
d

= T
(D);H

Rx0T
(D) =

2
4 0
T
(D�1);H

Rx0
T
(D�1)

rD�1;D
0

T r�D�1;D rD;D

3
5 2 C

D�D

(21)

and the crosscorrelation vector with respect to the desired
signald0[n]

r
(D)
d;d0

= T
(D);H

rx0;d0 =

�
krx0;d0k2

0

�
2 R

D : (22)

Using knowledge of the covariance matrixR(D�1)
d

, the new

entries ofR(D)
d

are simply

rD�1;D = t
H
D�1Rx0tD and rD;D = t

H
DRx0tD : (23)



Becauserd;d0 has the property that only the first element is
not equal to0, only the first column of the inverse ofRd is
needed to compute

w
(D)
d

= R
(D);�1
d

r
(D)
d;d0

2 C
D : (24)

Consequently, we are only interested in the first column
c
(D)
1 2 C

D of

C
(D) = R

(D);�1
d

= [c
(D)
1 ; : : : ; c

(D)
D ] 2 C

D�D (25)

and the inversion lemma for partitioned matrices (e. g. [9,
11]) leads to

C
(D) =

�
C

(D�1)
0

0
T 0

�
+ ��1D b

(D)
b
(D);H; (26)

where the additional terms read as

b
(D) =

2
4 �C(D�1)

�
0

rD�1;D

�
1

3
5 =

�
�rD�1;Dc

(D�1)
D�1

1

�
2 C

D

(27)

and

�D = rD;D � [0T; r�D�1;D ]C
(D�1)

�
0

rD�1;D

�
= rD;D � jrD�1;Dj

2c
(D�1)
D�1;D�1

(28)

with c
(D�1)
D�1;D�1 being the last element of the last column

c
(D�1)
D�1 of C(D) at the previous step. Therefore, the new

first columnc(D)
1 can be written as

c
(D)
1 =

�
c
(D�1)
1

0

�
+ ��1D c

(D�1);�
1;D�1

"
jrD�1;D j

2
c
(D�1)
D�1

�r�D�1;D

#
2 C

D ;

(29)

wherec(D�1)1;D�1 denotes the first element ofc(D�1)D�1 . Obvi-

ously, the first column ofC(D) and, thus, the Wiener filter
w
(D)
d

at stepD depends upon the first columnc(D�1)1 at
stepD � 1 and the new entries of the covariance matrix
rD�1;D andrD;D. However, we also observe a dependency

on the previous last columnc(D�1)D�1 . Hence, we have to find

an expression for the last column ofC(D) and with Equa-
tion (26) we get

c
(D)
D = ��1D

�
�rD�1;Dc

(D�1)
D�1

1

�
(30)

which only depends on the previous last column and the new
entries ofR(D)

d
. So, we found an iteration that only updates

two vectorsc(D)
1 andc(D)

D at each step and, moreover, the

mean squared errorat stepD can be expressed with the first
entryc(D)

1;1 of c(D)
1 (cf. Equation??):

MSE(D) = �2d0 � krx0;d0k
2
2c
(D)
1;1 : (31)

The iteration in Equation (29) and (30) only operates
with scalars and vectors. However, the scalarsrD�1;D and
rD;D (cf. Equation 23) are needed which are quadratic
forms with theN � N covariance matrixRx0

. But the
matrix vector multiplicationRx0

ti with O(N2) which can
be found in the expression forri�1;i andri;i has already
been used for theLanczos algorithmin Equation (19) to find
the orthonormal basisT (i). Thus, it is worth to include the
Lanczos recursionand the resulting algorithm is shown in
Table 1, where we substitutedc(i)1 andc(i)i by c(i)first andc(i)last,
respectively. The resulting computational complexity for a
rankD MSNWF isO(N2D), since a matrix vector multi-
plication withO(N2) has to be performed at each step.

choose desired MSE:�2"
choose maximum dimension:D
t0 = 0; t1 = rx0;d0=krx0;d0k2
u = Rx0

t1

r0;1 = 0; r1;1 = t
H
1u

c
(1)
first = r�11;1; c

(1)
last = r�11;1

MSE(1) = �2d0 � krx0;d0k
2
2c
(1)
first

� = 1
for i = 2; : : : ; D

if MSE(i) < �2" then� = i� 1; break
v = u� ri�1;i�1ti�1 � ri�2;i�1ti�2
ri�1;i = kvk2
if ri�1;i = 0 then� = i� 1; break
ti = v=ri�1;i
u = Rx0ti

ri;i = t
H
i u

�i = ri;i � jri�1;ij
2c

(i�1)
last;i�1

c
(i)
first =

�
c
(i�1)
first
0

�
+ ��1i c

(i�1);�
last;1

�
jri�1;ij

2c
(i�1)
last

�r�i�1;i

�

c
(i)
last = ��1i

�
�ri�1;ic

(i�1)
last

1

�
MSE(i) = �2d0 � krx0;d0k

2
2c
(i)
first;1

T
(D) = [t1; : : : ; t�]

w
(D)
0 = krx0;d0k2T

(D)
c
(�)
first

Table 1. Lanczos MSNWF

Note that the algorithm in Table 1 is just a version of the
Conjugate Gradient algorithm[12, 7]. In fact it is a direct
version of theLanczos algorithm[7] for linear systems.
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