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1.1 Introduction

The technologies associated with radar signal processing have developed and

advanced at a tremendous rate over the past sixty years. This evolution is

driven by the desire to detect more stealthy targets in increasingly challenging

noise environments. Two fundamental requirements on signal processing have

developed as advanced radar systems strive to achieve these detection goals: 1)

The dimensionality of the signal space is increased in order to �nd subspaces in

which the targets can be discriminated from the noise; and 2) The bandwidth

of each of these dimensions is increased to provide the degrees of freedom and

resolution that are needed to accomplish this discrimination when the competing

noise and the target are in close proximity. To be more precise, radar has

developed from having only a spatial dimension to the utilization of a Doppler

frequency (or slow-time) dimension to combat monostatic clutter, to a signal

frequency (or fast-time) dimension to defeat terrain scattered interference, to
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multiple polarization dimensions for target discrimination, etc. The number of

degrees of freedom required to separate the target from nearby competing noise

within any one of these signal dimensions (i.e., the resolution or bandwidth in

that dimension) grows as the target becomes smaller and the noise becomes

more challenging. The total number of degrees of freedom for the radar is then

given by the Cartesian product of the degrees of freedom for each individual

dimension.

As radar signal processing evolved, it quickly became clear that one needed

an estimate of the noise environment in order to realize detectors that worked

well in the real-world. This concept led simultaneously to the development of

adaptive radar signal processing and adaptive constant false-alarm rate (CFAR)

detectors. The theory of adaptive arrays [1, 2] was developed at a time when

the spatial dimension was predominantly used alone. The theory of adaptive

radar was next advanced to simultaneously apply adaptivity to the spatial and

Doppler dimensions [3], introducing the popular �eld called space-time adap-

tive processing (STAP). These adaptive techniques for radar signal processing

were based upon second-order statistics for wide-sense stationary (WSS) ran-

dom processes. The idea that the noise was Gaussian, as well as independent

and identically distributed (IID) over range, served as fundamental assumptions

which were embedded in these theoretical developments. These same assump-

tions were used in the tools which evaluated the performance of radar systems.

The estimation of the noise environment, with the above assumptions, re-

quires a training region composed of a number of samples which are at least on

the order of twice the number of the radar's degrees of freedom1 [4]. This famous

\2N" rule means that, for N degrees of freedom, the Gaussian noise �eld esti-

mation requires a minimum of 2N IID samples. Where does this training data,

or sample support for noise �eld estimation, come from? In radar, one tries to

detect a target within some speci�ed range cell. If there are N total degrees of

1More formally, a training region consisting of at least twice the number of the radar's
degrees of freedom is required to obtain a statistical estimate of the noise which results in an
output signal-to-interference plus noise ratio that is within 3 dB of that obtained with the
true statistics.
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freedom, then a data-cube consisting of at least 2N+1 range cells is processed

coherently. The group of 2N or more range cells which exclude the test cell are

termed auxiliary range cells. The auxiliary range cells are used to estimate the

statistics of the noise within the test range cell, thereby providing a target-free

training set. The statistical estimate of interest here is the covariance matrix,

which contains all of the second-order information that is needed when the un-

derlying assumptions are satis�ed. This estimate of the noise statistics is then

used to compute an adaptive weight vector, or Wiener �lter, which maximizes

the output signal-to-interference plus noise ratio (SINR). This Wiener �lter is

equivalent to a normalized colored-noise matched �lter.

The advancement of sensor technology easily allows radars to be constructed

with large numbers of degrees of freedom in the spatial, Doppler, fast-time

and polarization dimensions. The new fundamental problem for radar signal

processing is that this large number of degrees of freedom makes it impossible for

the IID, WSS, second-order assumptions embedded in adaptive signal processing

to be valid. A moderate STAP radar design includes a minimum of a few

hundred degrees of freedom. For example, the DARPA Mountain Top radar

uses 16 Doppler pulses and 14 receive channels for a total of N=224 degrees of

freedom. This implies a requirement for at least 448 range cells that contain

noise which is IID with respect to that present in the range cell of interest. The

IID assumption accompanies a spatial ergodicity argument with respect to the

stationarity of the noise. However, with the parameters given above, the range

extent of the sample support would cover approximately 338 kilometers. Given

the topography of the earth, it is unreasonable to assume homogeneity over a

region of this size or larger, and therefore the stationarity assumption on the

data received at the radar cannot, in general, be valid for advanced radars.

The proposed solution to this problem requires intelligent signal processing

for both subspace compression and training region selection. It is necessary to

greatly enlarge the signal space in order to �nd that subspace which permits

target detection. This drives the requirement for large numbers of antenna

elements, large sets of tapped-delay-lines (at the relevant frequency spacing),
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many polarization channels, etc. However, this signal space enlargement also

drives the need for large sample support and, as a consequence, stresses or breaks

the underlying statistical assumptions. Since the space is enlarged, the true

noise subspace is generally overmodeled in order to guarantee that a subspace

for detection can be found. It is therefore necessary to perform intelligent signal

representation so that the smallest possible subspace that contains the majority

(if not all) of the noise power can be determined. This representation must

take into account some information about the manifold of the noise subspace

that it is desirable to estimate rather than to blindly estimate the entire noise

subspace. This representation would of necessity allow optimal compression of

the noise subspace, permit both rapid convergence and tracking of the noise

statistics, and reduce the size of the required data region for statistical sample

support.

It is also necessary to introduce intelligent training methods in order to

determine which data in the auxiliary training set is most similar, in some

appropriate statistical measure, to that present in the range gate of interest.

Finally, intelligent signal processing approach should also be capable of utilizing

prior or additional knowledge to incorporate information about the structure

of roads or other man-made objects and geospatial information such as the

U.S. National Imagery and Mapping Agency's digital terrain elevation database

(DTED).

This chapter introduces a new method of intelligent signal representation and

compression. This theory is presented in an application-independent manner

since the concepts are valid in nearly every statistical signal processing problem.

The radar application is then revisited to demonstrate the principles developed

herein.

1.2 Background

Consider the representation of discrete-time, wide-sense stationary signals, which

is fundamental in the many applications of statistical detection and estimation
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theory. For the purposes of this work, the eÆciency of a signal representation

is evaluated by its ability to compact useful signal energy as a function of rank.

This criterion is equivalent to optimal signal compression.

The multiple-signal problem is considered herein, where a non-white signal of

interest is only observed in the presence of at least one other generally non-white

process2. Signal processing for multiple signals, under the above conditions, is

described within the general framework of the discrete-time, �nite-impulse re-

sponse Wiener �lter. The Wiener �lter is a fundamental component in the

solution to virtually every problem that is concerned with the optimality of lin-

ear �ltering, detection, estimation, classi�cation, smoothing and prediction in

the framework of statistical signal processing in the presence of stationary ran-

dom processes. This same approach provides the least-squares solution for the

processing of collected data either in a deterministic framework or by invoking

some form of ergodicity.

The fundamental issue in signal representation and compression is the de-

termination of an optimal coordinate system. It is well-known that the eigen-

vectors associated with the covariance matrix of an N -dimensional WSS signal

provide the basis-set for the Karhunen-L�oeve expansion of that signal. The min-

imax theorem establishes that this set of eigenvectors represent the particular

basis for an N -dimensional space which is most eÆcient in the energy sense.

This autocorrelation-based energy maximization for a single process satis�es

the stated representation criterion, and the eigenvectors form the best basis

representation for this single process. If the eigenvectors are ordered to cor-

respond with the magnitude of the eigenvalues in a descending manner, then

this enumeration is termed ordering by principal-components. Optimal signal

representation and compression as a function of rank (or dimension) is then ob-

tained by a truncation of the principal-components. In other words, the rule for

optimal rank M basis selection (M < N) and compression is to choose those M

eigenvectors which correspond with the largest M eigenvalues of the observed

2This scenario is very common; even if a true white noise �eld is observed by a sensor, for
example a radar or a sonar receiver, the output from the sensor is a �ltered process which, in
general, will not be white.
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signal covariance matrix.

However, there are many statistical decision problems where the criterion of

interest is more general. This fact is readily veri�ed by considering the popular

problems of detection, estimation, or any of the many other statistical signal

processing applications. Here, for the problem to be non-trivial, there are a min-

imum of two additive non-white signal processes: the signal process of interest

and a process of colored-noise. If one now speaks of signal representation or

compression of one process, the solution must take both processes into account

in order to determine an optimal basis.

The goal of signal representation and compression for detection and esti-

mation is to �nd an optimal basis without prior knowledge of the inverse of

the covariance matrix. Optimal basis selection allows for signal compression,

rank reduction, and a lower computational complexity in order to obtain the

Wiener solution. Reduced sample support for estimating statistics and faster

convergence of �lter parameters are also obtained with rank reduction if the

Wiener �lter is implemented in an adaptive manner. Note that there is a sub-

tle information-theoretic idea embedded in this goal; if the covariance matrix

inverse is known a priori, then so is the Wiener �lter, and signal representation

is irrelevant.

Previous work in the area of signal representation has centered around princi-

pal component analysis for the single process case [5, 6] or canonical correlation

analysis for the multiple process case [7, 8, 9, 10]. The vector Wiener �lter

is unique because, while it is amongst the most common �ltering structures,

neither of these analysis tools applies in this case to the optimization of perfor-

mance as a function of rank. The solution to the canonical correlation analysis

degenerates into the vector Wiener �lter itself, and therefore provides no insight

into the selection of an optimal basis. It is demonstrated explicitly in this paper

that the principal-components is not the correct enumeration of the eigenvectors

to achieve optimal representation for the Wiener �ltering problem. Once this

fact is established, it is shown herein that the standard Karhunen-L�oeve decom-

position no longer provides a solution to optimal basis selection, and that a new
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basis set must be derived that takes into account the presence of other signals;

it is called here a generalized joint-process Karhunen-L�oeve transformation.

Previous attempts to solve the rank reduction problem for the vector Wiener

�lter only result in solutions which, at best, dictate the computation of the

Wiener �lter itself [11, 12, 13]; they do not provide a basis set for the vector

Wiener �lter problem. A new approach is now presented that provides an op-

timal basis set through the natural extension of the Karhunen-L�oeve transform

(KLT) for the Wiener �lter.

Classical Karhunen-L�oeve analysis is brie
y reviewed next in Sect. 1.3. The

vector Wiener �ltering model is then introduced in Sect. 1.4. The necessary

modi�cations to the KLT are addressed in Sect. 1.5 to obtain an optimal Wiener

�lter with an eigenvector basis. In Sect. 1.6 a new method is developed to

obtain an optimal basis without having the need for knowledge of the covariance

matrix, its inverse, or the Wiener �lter. Concluding remarks and a summary

are presented in Sect. 1.8.

1.3 Karhunen-L�oeve Analysis

This section presents a review of the Karhunen-L�oeve transformation and signal

expansion. These preliminaries set the stage for an analysis of signal represen-

tation and compression when multiple signals are present and the goal is to

perform detection, estimation, classi�cation or prediction of a signal of interest.

1.3.1 The Karhunen-L�oeve Transformation

Consider an N -dimensional, complex, WSS signal x0 with an N�1 mean-vector

�x (assumed without loss in generality to be the zero-vector) and a nonnegative

de�nite, Hermitian, N �N covariance matrix Rx0 . Let the covariance matrix

Rx0 be represented by its Karhunen-L�oeve transformation,

Rx0 = V�VH =

NX
i=1

�iviv
H
i ; (1.1)
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where (�)H denotes the complex Hermitian transpose operator, theN�N matrix

V is composed of the N -unitary eigenvectors fvigNi=1 and the diagonal matrix

� is composed of the corresponding eigenvalues f�igNi=1. It is assumed that

the eigenvectors are ordered in a descending manner in accordance with the

magnitude of the corresponding eigenvalues and, for convenience, that all of the

eigenvalues are distinct.

The KLT of the covariance matrix Rx0 , with the assumptions presented

above, yields N orthonormal eigenvectors vi. Now denote the complex N -

dimensional space spanned by the columns of Rx0 as C
N . Then these eigenvec-

tors form a basis for the space CN , and any vector x0 2 C
N can be represented

by a linear combination of any basis vectors for CN .

1.3.2 The Karhunen-L�oeve Expansion

The Karhunen-L�oeve expansion of the N -vector x0 is obtained by its represen-

tation in terms of the basis generated by the eigenvectors of Rx0 ; that is,

x0 =
NX
i=1

�ivi; where �i = vHi x0: (1.2)

It is easily veri�ed that

E [�i] = 0 8i; (1.3)

and

E
�
�i�

�
j

�
=

�
�i; i = j

0; i 6= j
; (1.4)

where (�)� is the complex conjugation operator.

A k-dimensional subspace Ck � C
N is formed by any arbitrary

�
N
k

�
collection

of basis vectors for the space spanned by the columns ofRx0 . The k-dimensional

principal-components subspace is de�ned to be that subspace spanned by the

k principal eigenvectors and denoted C
k
pc
. A new reduced-rank N -dimensional

vector, denoted z0, is given by the truncated series representation of x0 in (1.2)

using only the k principal-components,

z0 =
kX

j=1

�jvj : (1.5)
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Figure 1.1: The representation of the vector x0 in <3 and its projection z0 in
<2.

Note that in the k-dimensional subspace Ck
pc
, this same vector has the k-dimensional

representation,

z0 = VH
pc
x0; (1.6)

whereVpc is theN�k matrix composed of the k principal eigenvectors3. Finally,
from (1.5) and (1.6), it is seen that z0 is the projection of x0 onto the k-

dimensional principal-components subspace Ck
pc
� C

N , and therefore represents

the compression of the N -dimensional vector to k coeÆcients. This geometrical

relationship is depicted in Fig. 1.1 for <3, the 3-dimensional vector space of real

numbers. The principal-components method of compression and representation

is optimal for a single signal in the sense that it provides the best representation

of the full-rank space in terms of autocorrelation energy retained as a function

of rank [5, 6].

3For this reason, the terms dimension and rank are used interchangeably in the rest of this
paper.
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1.3.3 Implementing the KLT

The KLT of the covariance matrix associated with discrete-time random pro-

cesses is most often calculated by a two-step process which yields the eigen-

decomposition of the covariance matrix Rx0 . The �rst step is a tridiagonaliza-

tion, achieved through the use of Householder reduction. The second step is a

QR, zero-chasing, iterative method which completes the diagonalization upon

convergence [14, 15].

To visualize this process, consider the following N�N Hermitian covariance

matrix,

Rx0 =

2
6664

r1;1 r�2;1 r�3;1 � � � r�N;1

r2;1 r2;2 r�3;2 � � � r�N;2
...

. . .
...

rN;1 rN;2 rN;3 � � � rN;N

3
7775 : (1.7)

De�ne the (N -1)-dimensional vector s1 to be the �rst column of Rx0 excluding

the top element,

s1 =
�
r2;1 r3;1 � � � rN;1

�T
: (1.8)

Next the vector h1 is given by

h1 =
s1

jjs1jj ; (1.9)

where jj(�)jj represents the Euclidean norm and an orthonormal (N -2)�(N -1)

matrix B1 is computed such that its nullspace is h1. Then the �rst Householder

re
ection is given by the N �N unitary matrix operator T1,

T1 =

2
4 I1 0HN�1;1

0N�1;1

�
hH1
B1

� 3
5 ; (1.10)

which initializes the tridiagonalization. The notation Ik is used to represent

the rank-k identity matrix and 0p;k is the p � k zero matrix. The �rst-stage

quadratic transformation of the covariance is then given by

T1Rx0T
H
1 =

2
666664

r1;1 ~r�2;1 0 � � � 0
~r2;1 ~r2;2 ~r�3;2 � � � ~r�N;2

0 ~r3;2 ~r3;3 � � � ~r�N;3
...

. . .
...

0 ~rN;2 ~rN;3 � � � ~rN;N

3
777775 ; (1.11)
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Table 1.1: Unitary KLT Decomposition Recursion

Rt = Rx0

h = Rt(2:N;1)
jjRt(2:N;1)jj

for k=1:N-2
B = null(h)

Tk =

2
4 Ik 0k;N�k

0N�k;k

�
hH

B

� 3
5

Rt = TkRtT
H
k

h = Rt(k+2:N;k+1)
jjRt(k+2:N;k+1)jj

end

and it is easily veri�ed from (1.7)-(1.11) that ~r2;1 = jjr2;1jj.

The above process is continued by de�ning the (N -2)-dimensional vector

s2 to be the second column of the covariance matrix T1Rx0T
H
1 excluding the

top two elements. The vector h2, the orthonormal matrix B2 and the unitary

matrix T2 are then calculated in a manner analogous to (1.9) and (1.10). This

second stage replaces all but the �rst element of s2 with zeros. This iteration

is repeated and at stage N -1 the covariance matrix is tridiagonalized by the

product of the N -1 unitary operators Tk. The algorithm which generates the

tridiagonal covariance matrix Rt is described in Table 1.1.

Note that this operation produces a representation of the signal powers at

di�erent lags on the main-diagonal and the cross-correlations between the lags,

compressed into positive scalars, on the upper and lower-diagonals. The tridiag-

onal matrixRt is diagonalized by an iterative procedure using the QR algorithm

which guarantees a unitary transfer function and results in the KLT due to the

uniqueness theorem for unitary matrices. One popular version of the QR al-
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Table 1.2: Unitary KLT QR Synthesis Recursion

�0 = Rt

for k=1,2,...
�k�1 = QkRk

�k = RkQk

end

gorithm is shown in Table 1.2. The QR factorization is �rst applied to the

tridiagonal covariance matrix to yield a unitary matrix Q1 and an upper trian-

gular matrix R1. These resulting factors are then multiplied in reverse order

to update the covariance matrix. It is easily veri�ed that, under suitable con-

ditions, the QR algorithm converges and the tridiagonal covariance matrix is

diagonalized via a sequence of unitary similarity transformations,

�k = QH
k �k�1Qk: (1.12)

Convergence is declared when the magnitude of the o�-diagonal elements are

within some acceptable tolerance of zero. Finally, let T represent the product of

the Tk generated in Table 1.1 and Q represent the product of the Qk generated

in Table 1.2. Then the KLT is computed as follows,

� = QH
N � � �QH

1 TN � � �T1Rx0T
H
1 � � �TH

NQ1 � � �QN

= QHTRx0T
HQ

= VHRx0V; (1.13)

where V = THQ is the unitary eigenvector matrix and the sequence �k con-

verges to the diagonal matrix of eigenvalues �.
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Figure 1.2: The Wiener �lter.

1.4 The Multiple Signal Model and Wiener Fil-

tering

In a more general setting, the classical problems of statistical signal processing

are concerned with joint signal representation and compression. These problems

are often characterized by the Wiener �lter, depicted in Fig. 1.2, where there are

two processes present. The N -dimensional process x0 is now considered to be

the composite of potentially many processes, while d0 is a scalar process which

is correlated with x0.

The process d0, normally termed a desired process, is representative of a sig-

nal of interest in some way, and the goal is to estimate d0 from x0. For example,

in the radar and sonar detection problem the \desired" signal is usually the out-

put of a beamformer or matched-�eld processor, and the observed data vector

x0 consists of data di�erent from this signal that is received at a sensor array. In

the communications application of multiuser detection and demodulation, the

process d0 may be generated by a known correlation with the signal of interest

such as the code of a user in a CDMA wireless network. As a �nal example, in

classi�cation for automatic target recognition the desired signal may be a tem-

plate image from training data, while the di�ering observed data is an image

received by the �elded sensor. In general, the mechanism which generates the

reference signal is application speci�c; however nearly every problem in linear

statistical signal processing may be represented by the use of this model.

The problem at hand is the determination of optimal signal representation
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and compression for the observed data vector x0. The resulting basis will still

span CN , the space spanned by the columns of Rx0 , but the energy, which must

be compactly represented, is now the estimation energy E[jd̂0j2] and not the

autocorrelation energy described by Rx0 .

The signal model, introduced in Sect. 1.3 is extended here to two jointly-

stationary zero-mean processes. The process d0 is a zero-mean scalar process

with variance �2d0 and x0 is an observed N -dimensional signal, which itself

may be a composite random process, with covariance Rx0 . The �lter to be

de�ned, w, processes the observed-data to form an estimate of the desired signal

d̂0 = wHx0. The error process "0,

"0 = d0 �wHx0; (1.14)

is the signal which characterizes the performance of the �lter, and the optimal

Wiener �lter minimizes the mean-square value of this error signal.

The minimum mean-square error (MMSE) optimization criterion is formally

stated as follows:

min
w

E[ j"0j2 ] = min
w

�
�2d0 �wHrx0d0 � rHx0d0w+wHRx0w

	
; (1.15)

where the N -vector rx0d0 = E[x0d
�
0] is the cross-correlation between the pro-

cesses d0 and x0. The well-known solution to (1.15) is the Wiener �lter, which

is computed as follows:

w = R�1
x0 rx0d0 : (1.16)

The MMSE is calculated by substituting (1.16) into the expression for the mean-

square value of the error,

�0 = �2d0 �wHRx0w (1.17)

where the far right-hand term in (1.17) is the optimal value of the estimation

energy, given by

E[jd̂0j2] = wHRx0w = rHx0d0R
�1
x0 rx0d0 : (1.18)
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It is now apparent that the optimal basis vector to select is the Wiener �lter.

However, this result requires the solution to the full-rank problem and provides

no insight with respect to the selection of an optimal basis set when the Wiener

�lter (or the inverse of the covariance matrix) is unknown a priori. The desired

information-theoretic goal is to achieve optimal basis selection, and therefore

optimal compression, without complete prior knowledge. Previous attempts to

solve this problem for the vector Wiener �lter only resulted in a solution which,

at best, dictated the computation of the Wiener �lter itself [11, 12, 13]. This

previous work is also related to canonical correlation analysis, the solution to

which degenerates into the vector Wiener �lter in this case as well (see, for

example, [7, 8, 9, 10]). Therefore these previous attempts to extend the KLT

and the related canonical correlation analysis are not further discussed. Instead,

in Sect. 1.5, the necessary modi�cations to the KLT are addressed to obtain

optimality with an eigenvector basis, which is the natural extension to the KLT

previously sought by other researchers. A method to obtain an optimal basis

without complete knowledge of the covariance matrix, its inverse, or the Wiener

�lter is then developed in Sect. 1.6.

1.5 The Signal-Dependent KLT for Statistical

Signal Processing

The role of the KLT and the principal-components in signal representation and

compression is now examined within the framework of Wiener �ltering for sta-

tistical signal processing, detection and estimation. The result developed in this

section demonstrates that the principal-components procedure is a suboptimal

basis selection rule for detection and estimation problems. This fact motivates

the question of whether the KLT and its eigenvector basis are optimal for these

statistical signal processing applications, and the answer to this question serves

as the topic of Sect. 1.6.
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1.5.1 The KLT and Principal-Components

A low-dimensional numerical example serves as a valuable tool for understanding

the behavior of the KLT and the principal-components in the statistical signal

processing framework. Consider a simple example in <2, where there is a 2-

dimensional observed-data vector x0 with covariance matrix Rx0 ,

Rx0 =

�
10 4
4 10

�
; (1.19)

and a desired signal d0 with a variance �2d0 = 10. The two processes, d0 and

x0, are assumed to be zero-mean, jointly stationary, and correlated. The cross-

correlation between the two processes is given by the vector rx0d0 ,

rx0d0 =

�
9
1

�
: (1.20)

The Wiener-Hopf equation in (1.16) may also be expressed in the form,

Rx0w = rx0d0 ; (1.21)

which explicitly demonstrates that the optimal �lter w is that particular linear

combination of the columns of Rx0 which yields rx0d0 . It also means that w is

in the space spanned by the columns of Rx0 , and therefore that eÆcient signal

representation is still equivalent to optimal basis selection in C
N . These facts

indicate that the KLT be considered.

The KLT provides the eigendecomposition of the matrix Rx0 :

Rx0 =

�
10 4
4 10

�
= V�VH

=
1

2

�
1 1
1 �1

� �
14 0
0 6

� �
1 1
1 �1

�

=
1

2

�
14

�
1
1

� �
1 1

�
+ 6

�
1

�1
� �

1 �1 ��
; (1.22)

which demonstrates that one eigenvalue is signi�cantly greater than the other.

The KLT takes into account this self-directional preference of the signal. The

Rayleigh quotient [16],

	 = eHRx0e =

NX
i=1

�i j vHi e j2; (1.23)
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Figure 1.3: The Rayleigh quotient ellipsoid.

Figure 1.4: The transform domain Wiener �lter.

mathematically describes this self-directional preference, where e is a unit-norm

direction-varying vector. The Rayleigh quotient is maximized when e = vmax,

the eigenvector corresponding with the largest eigenvalue. The Rayleigh quo-

tient values form an ellipsoid, where the eigenvectors serve as the principal axes

and the length of the ellipsoid along each eigenvector is proportional to the mag-

nitude of the corresponding eigenvalue. For the example under consideration,

this ellipsoid is depicted in Fig. 1.3. It is evident that the KLT provides the

most eÆcient representation of the autocorrelation energy in the signal.

The question at hand, however, is the determination of the best basis repre-

sentation for x0 in terms of estimating d0. To explore whether the KLT and

the principal-components are the best basis choice, consider preprocessing the

observed process x0 with a �lter composed of the eigenvectors of Rx0 . This
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situation is depicted in Fig. 1.4, where the new process z0,

z0 = VHx0; (1.24)

has a diagonal covariance matrix given by�. Also, the cross-correlation between

z0 and d0 is now given by,

rz0d0 = VHrx0d0 : (1.25)

The MMSE performance of the eigenvector-basis as a function of rank is now

evaluated. The full-rank solution is identical regardless of basis representation

since the performance measure is invariant to invertible transformations of the

observed signal x0,

�0 = �2d0 � rHz0d0R�1
z0 rz0d0 = �2d0 � rHx0d0R�1

x0 rx0d0 ; (1.26)

whereRz0 = VHRx0V. However the results are di�erent for this example in the

rank-1 case, where one of the two eigenvectors which compose V is discarded.

The principal-components algorithm states that the eigenvector corresponding

with the largest eigenvalue should be retained, and that the eigenvector cor-

responding with the smaller eigenvalue should be discarded. Here, the largest

eigenvalue magnitude corresponds with the �rst eigenvector, and the MMSE for

this case is given by,

�PC = �2d0 � rHx0d0v1�
�1
1 vH1 rx0d0 : (1.27)

The MMSE performance, converted to decibels, for the full-rank Wiener �lter is

0:3951 dB and that for the rank-1 principal-components Wiener �lter is 8:0811

dB. Thus, there is a loss of 7:6860 dB in reducing the rank from 2 to 1.

To answer the question of whether the principal-components is optimal for

signal representation in this problem, �rst evaluate the MMSE which results if

the smaller eigenvector is retained in this example:

�test = �2d0 � rHx0d0v2��12 vH2 rx0d0 ; (1.28)

yielding an MMSE of 6:6901 dB. Here the MMSE loss is approximately 1:4

dB less than that experienced by the principal-components selection; that is, a

18



performance enhancement is obtained by selecting a di�erent eigenvector than

that indicated by the principal-components.

1.5.2 The Cross-Spectral Metric: An Intelligent and Signal-

Dependent KLT

It is necessary to explain what, at �rst exposure, appears to be a breakdown

in theory. Thus far it may seem strange that the selection of the principal-

components is not optimal for signal representation and compression in detection

and estimation problems. An insight is now developed to demonstrate why the

principal-components is the wrong performance measure for these problems. It

is also shown that the result of this example is not an anomaly. Finally, the nec-

essary modi�cation to the principal-components algorithm is provided so that

optimal signal representation and compression is again gained if one restricts

signal representation to an eigenvector basis: an intelligent KLT which takes all

available statistical information into account to select the best eigenvectors.

The optimal solution for the performance measure of interest4 in (1.17) is

given by

�0 = �2d0 � rHx0d0R�1
x0 rx0d0 = �2d0 �

NX
i=1

��vHi rx0d0��2
�i

: (1.29)

The expression in (1.29) demonstrates that the presence of d0 induces another

directional preference through rx0d0 in the spectrum of x0. This induced direc-

tional preference must be taken into account to achieve the optimal subspace

selection for detection and estimation. Here it is evident that minimizing the

performance measure requires maximizing the summation on the right-hand

side of (1.29). This is accomplished by evaluating the square of a normalized

projection of the cross-correlation vector upon the KLT basis vectors and, by

(1.18), retaining those eigenvectors which maximize the estimation energy. Note

that the result in the middle term of (1.29) may be interpreted as the di�erence

between the desired signal variance and the mean-squared value of the whitened

4The MMSE performance measure is actually very general, for example under many condi-
tions it is also equivalent to the maximum likelihood, maximum output signal-to-interference
plus noise ratio and maximum mutual information performance measures, amongst others.
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cross-correlation (or whitened matched-�lter replica vector), jR�1=2
x0 rx0d0 j2.

This new metric chooses those eigenvectors which correspond with the largest

values of a ratio which takes into account both the directional preference of the

process x0 and the impact of the correlated portion of the spectrum due to the

process d0, namely the projection of the cross-correlation along the i-th basis

vector, ��vHi rx0d0��2
�i

: (1.30)

Accordingly, consider a di�erent enumeration of the eigenvectors, in a descend-

ing order based upon the largest magnitude of those N terms in (1.30). This

ranking is called the cross-spectral metric [17], and keeping those k eigenvectors

which maximize this cross-spectral metric provide the lowest mean-square error

as a function of k, the dimension of the eigenvector basis. The subspace spanned

by the eigenvectors selected by the cross-spectral metric is denoted C
k
csm

, and

is in general di�erent from the subspace Ck
pc
; especially for small k. The cross-

spectral metric is the magnitude-squared value of a direction-cosine in CN which

measures the `closeness' of the basis vector vi to the cross-correlation vector [17].

Recall from (1.21) that the Wiener-Hopf equation yields the optimal coeÆcient

vector for linearly combining the basis vectors to obtain this cross-correlation

vector.

An interesting fact is realized by constraining the vector w in (1.18) to

be unit-norm and allowing it to vary over all possible values. The quadratic

form of the Rayleigh's quotient in (1.23) is again obtained, with the optimal

solution not being an eigenvector but the Wiener �lter in (1.16). This is another

interpretation of the change in directional preference induced by the observation

of multiple signals.

The example concerned with the selection of rank-1 Wiener �lters is now

revisited in order to complete the KLT analysis. The magnitude of the cross-

spectral metric for the �rst eigenvector, corresponding with the larger eigenvalue

of magnitude 14, is 3.5714. The magnitude of the cross-spectral metric for the

second eigenvector, corresponding with the smaller eigenvalue of magnitude 6,
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Table 1.3: The eÆciency of KLT-based signal representation.

j�ij jvHi rx0d0 j
2

�i
�PC �CSM

i=1 14 3.5714 8.0811 dB
i=2 6 5.3333 6.6901 dB

is 5.3333. Thus, �test = �CSM in (1.28), and it is veri�ed that the cross-spectral

metric provides the better solution. A summary of the KLT analysis for this

example is provided in Table 1.3.

1.6 Intelligent Signal Representation for Statis-

tical Signal Processing

The above results demonstrate that the principal-components method is not

the optimal metric for signal representation and compression in Wiener �lter-

ing problems. From a pedagogical perspective, it has now been demonstrated

that the principal-components must be modi�ed to take into account the direc-

tional preference induced by other signals to retain optimality (with respect to

the KLT basis) for signal representation in detection and estimation problems.

However, it is reasonable to argue that knowledge of the eigen-structure of Rx0

is equivalent to knowledge of R�1
x0 , and therefore a di�erent solution is desired.

This section derives a generalization of the KLT which naturally includes

this cross-spectral information to generate a new basis for signal representation

with optimal properties when the covariance matrix inverse is unknown. In

particular, the generalized joint-process KLT is demonstrated to be optimal

with respect to a maximization of the `cross-correlation' energy, subject to a

unity response �lter gain. This may be directly interpreted as a matched �lter

criterion which maximizes the signal response energy.
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Figure 1.5: The �rst two stages of a matched �lter decomposition.

1.6.1 A New Criterion for Signal Representation and its

Implementation

A multistage Wiener �lter, which derives a signal-dependent basis for com-

pression [18, 19, 20, 21, 22, 23, 24, 25], is seen in this section to achieve the

joint-process KLT from a \whitening" or innovations perspective [26]. The ob-

jective here is to sequentially optimize each rank-one basis selection so as to

both further whiten the error residue and compress (compactly represent) the

colored portion of the observed-data subspace, thereby achieving the desired

signal-dependent rank-reduction.

Consider the selection of the �rst stage of the multistage Wiener �lter de-

picted in Fig. 1.5a. At each stage, a rank-one basis is chosen to both reduce

the mean-square error and compactly represent the correlated portion of the
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observed random process. In so doing, however, it is desired to avoid the ob-

vious Wiener solution, which requires knowledge of the full-rank covariance

matrix associated with the observed process x0. Note that, in general, this

requirement also eliminates the usual KLT-based methods. However, in order

to contribute to a reduction of the mean-square error, the basis selection pro-

cess should produce signals which are, in some appropriate measure, maximally

correlated with the desired process d0. Therefore consider the following basis

selection procedure: At stage 1 (see Fig. 1.5a), select that rank-one subspace

h1 2 CN , which is maximally correlated with the desired signal d0. More specif-

ically, since d1 = hH1 x0, the following optimization problem is obtained,

max
h1

E
h��hH1 x0d�0��2i subject to hH1 h1 = 1: (1.31)

A direct application of Schwarz's inequality with Rx0 unknown readily yields

the selection, viz.,

h1 =
rx0d0
jjrx0d0 jj

: (1.32)

Note that, as desired, the solution does not depend on full knowledge of Rx0 .

Since h1 is not, in general, colinear with the Wiener solution (unless Rx0 is

white), further mean-square error reduction (whitening) is possible by adding

additional stages. Thus, consider the error residue, e1, that results from the

�rst stage basis selection:

e1 = d0 � g�1d1 = d0 � g�1h
H
1 x0 (1.33)

where g1 2 C, is the optimal scalar Wiener weight (�lter) for linearly estimating

d0 from d1.

All of the information required for estimating d0 from x0 which is not in the

direction of rx0d0 is contained in its (N -1)-dimensional nullspace. The second

stage, therefore, is introduced by �rst �ltering x0 with the operator B1, an (N -

1)�N matrix whose rows form an orthonormal basis for the nullspace of rx0d0 .

This operator is again easily realized by one stage of a Householder re
ection.

Now, h2 is chosen by an optimization which is identical in form to (1.31), thereby
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Figure 1.6: The multistage Wiener �lters for N=4.

resulting in the selection,

h2 =
rx1e1

jjrx1e1 jj
; (1.34)

which is the matched �lter for estimating the error residual from the remaining

information available in x0 (see Fig. 1.5b). This decomposition is continued and

a new basis is constructed that is based on maximal correlation.

In general, the objective at the i-th stage, 2 � i � N -1, is to select that hi 2
CN�i+1 which is maximally correlated with the residue ei�1 from all previous

stages, i.e.,

max
hi

E
h��hHi xi�1e�i�1��2i subject to hHi hi = 1; (1.35)

without knowledge of Rx0 , where

ei = d0 � gHi di; (1.36)

di =
�
d1 d2 : : : di

�T 2 Ci, and gi 2 C
i is the optimal weight vector in

the transformed coordinates. For example, Fig. 1.5b shows �ltering structure

for the case where i=2.

A signi�cant simpli�cation in solving for hi, which eliminates the need for

explicitly computing the weight vector gi in the basis selection process, results

by recognizing that rxiei is colinear with rxidi . Thus,

hi =
rxiei
jjrxiei jj

=
rxidi
jjrxidi jj

; (1.37)

and the equivalent �lter structure can be represented in the form of a multistage

Wiener �lter [18, 19, 21]. This �lter, depicted in Fig. 1.6 for the N=4 case, is
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readily interpreted as a nested chain of scalar Wiener �lters following a bank

of white-noise matched �lters whose composite form solves the colored-noise

matched �ltering problem. De�ne �i = E[j"ij2] to be the error variance for the

i-th stage and ÆN = rxNdN . Then the scalar weights in Fig. 1.6 are computed

as follows:

wi = ��1i Æi; 1 � i � N; (1.38)

where

Æi = hHi rxi�1di�1 ; 1 � i < N: (1.39)

Note that the error signal for the last stage "N is de�ned by

"N = dN = xN�1; (1.40)

as depicted in Fig. 1.6.

It is now emphasized that the �lterbank-based multistage Wiener �lter in

Fig. 1.6 does not require that the covariance matrix be estimated, inverted or

decomposed. This structure and the vector Wiener �lter yield identical solu-

tions, implying that the multistage Wiener �lter solves the colored-noise match

�ltering problem via a sequence of white noise match �lters which do not require

a matrix whitening operator or a matrix inversion. These white noise matched

�lters are determined by a sequence of correlation vectors, which may be esti-

mated directly. A signi�cant advantage of this structure, emphasized in Sect.

1.6.2, is that in general all stages of this �lter need not be computed to obtain

excellent performance.

1.6.2 A Generalized Joint-Process KLT: Nonunitary Di-

agonalization of the Covariance

The implementation of the KLT is now modi�ed to motivate its generalization

for the induced directional preference which occurs in detection and estimation.

The Householder reduction of a covariance matrix to tridiagonal form [14, 15] is

the �rst step for most algorithms which solve the eigenvalue problem, as noted in

Sect. 1.3.3. The second step is the diagonalization of the tridiagonal covariance
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matrix in a unitary manner, yielding the eigenvalues and eigenvectors. The use

of Householder re
ectors to tridiagonalize the N �N covariance matrix Rx is

again considered here, where a modi�cation to the presentation in Sect. 1.3.3

is introduced to provide the desired directional preference. It is seen that this

modi�cation to the KLT results directly in the multistage Wiener �lter.

The N �N re
ector T1 is now de�ned to satisfy the following relation [21],

T1rx0d0 =
�
Æ1 0 � � � 0

�T
; (1.41)

where Æ1 = jjrx0d0 jj. This re
ector is found by normalizing the cross-correlation

vector,

h1 =
rx0d0
jjrx0d0 jj

: (1.42)

and solving the relation,

B1 = null(h1): (1.43)

The matrix T1 in (1.41) is given by,

T1 =

�
hH1
B1

�
; (1.44)

and the operation of T1 on x0 yields a covariance matrix Rx1 ,

Rx1 = T1Rx0T
H
1 =

�
�2d1 rHx1d1
rx1d1 Rx2

�
; (1.45)

where the scalar �2d1 = hH1 Rx0h1, the (N � 1) � (N � 1)-dimensional matrix

Rx1 = B1Rx0B
H
1 , and the (N�1)�1 vector rx1d1 = B1Rx0h1. This operation

is then repeated as described in Table 1.1 of Sect. 1.3.3 and shown here in

Table 1.4. Note that the operations in Table 1.4 are identical to those in Sect.

1.3.3, with the exception that the �rst re
ection (or pivot) uses the directional

information from the desired process. Also note that available algorithms for

Householder re
ections can solve the tridiagonalization, initialized by the matrix

multiplications in (1.11) and (1.45), without explicitly forming the product of

the matrices Ti.

This unitary reduction of the covariance matrixRx0 results in the matrixRt

having a tridiagonal form. For example, the following decomposition is realized
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Table 1.4: Modi�ed Unitary Decomposition Recursion

Rt = Rx0

h =
rx0d0

jjrx0d0 jj

for k=1:N-1
B = null(h)

Tk =

2
4 Ik�1 0k�1;N�k+1

0N�k+1;k�1

�
hH

B

� 3
5

Rt = TkRtT
H
k

h = Rt(k+1:N;k)
jjRt(k+1:N;k)jj

end

for N = 3:

Rx0
T1=)

2
4 �2d1 rHx1d1

rx1d1 Rx1

3
5 T2=)

2
4 �2d1 Æ�2 0

Æ2 �2d2 Æ�3
0 Æ3 �2d3

3
5 = Rt; (1.46)

where h1 =
rx0d0

jjrx0d0 jj
, h2 =

rx1d1

jjrx1d1 jj
, Rx0 2 C

3�3, Rx1 2 C
2�2, rx1d1 2 C

2�1,

and the remaining variables are all scalars with Æ2 = jjrx1d1 jj, Æ3 = rx2d2 , and

�2d3 = Rx2 .

The decomposition is equivalently represented as an analysis �lterbank,

shown in Fig. 1.6, which transforms the observed-data N -vector x0 to a new

N -vector dN ,

dN = Tx0 =
�
d1 d2 � � � dN

�T
; (1.47)

where T is the product of the matrices Ti from each stage [21]. The covariance

matrix associated with vector dN is tridiagonal, as shown in (1.46). Because

each of the Ti are unitary, the matrix T is unitary, and the MMSE is not

modi�ed. However, the basis vectors are now ordered in a manner based upon

the maximum correlation between the desired and observed processes. If this
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Table 1.5: Nonunitary Synthesis Recursion

�N = �2dN

for p=N-1:-1:1
�p = �2dp � ��1p+1jÆp+1j2

end

matrix is diagonalized using a unitary operator, then the KLT is obtained, the

ordering is lost, and the basis is altered. It is therefore necessary to consider the

diagonalization of the covariance matrix in a manner which is not restricted to

be unitary.

In particular, to minimize the residual and generate an innovations process

in cross-correlation, let the error-synthesis �lterbank minimize the mean-square

error recursively at each stage of the analysis �lterbank. This nonunitary error-

synthesis �lterbank generates the recursion described in Table 1.5 and depicted

in Fig. 1.6. The nonunitary diagonalization of Rx0 may be expressed in the

following matrix equation:

� =

2
6664

�1
�2

. . .

�N

3
7775 = QTRx0T

HQH = EHRx0E; (1.48)

where � is diagonal and the coeÆcients of the upper-triangular Gram matrix Q

are found directly from the recursion in Table 1.5. Matrix T is always unitary

when formed in this manner while matrix Q is not necessarily unitary. There-

fore matrix E = THQH in (1.48) is generally nonunitary and invertible. The

diagonalization of the covariance matrix in (1.48), using the algorithm described

in Tables 1.4 and 1.5, is obtained in a numerically stable manner. Furthermore,

the diagonalization of the tridiagonal covariance matrix in Table 1.5 is guaran-

teed to be complete in N -1 recursions, as opposed to the unknown and varying

convergence property of the QR algorithm (Table 1.2) used in the KLT.
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The rationale for developing this nonunitary diagonalization is that a correlation-

based ranking of the subspaces can be imposed, where the unitary diagonaliza-

tion would destroy the induced directional preference. Thus, reduced-rank signal

representation or compression can be obtained by pruning the decomposition.

This implies that the matrix Rt is reduced from N �N to k � k by discarding

the last N � k rows and columns (or never computing them). The recursion in

Table 1.5 is then implemented with the value for N replaced by the value for k.

Finally, the MMSE �0 is found by applying the recursion in Table 1.5 one last

time:

�0 = �2d0 � ��11 jÆ1j2: (1.49)

This solution has an interesting interpretation. The KLT results in a unitary

diagonalizing transformation for one process which most compactly represents

the modal or component signal energy for that process using the fewest spectral

coeÆcients. The generalized joint-process KLT produces a nonunitary diagonal-

ization, where the spectral coeÆcients are the modal mean-square error values

between the observed composite process and the selected reference process. Re-

call that the motivation for the joint-process KLT is to redirect the original

emphasis on the compaction of signal energy in x0 to the compaction of the es-

timation energy which minimizes the mean-square error. Therefore, this result

seems intuitively satisfying, and it is especially worth noting the fact that an a

priori knowledge of R�1
x0 is never used.

Now return to the previous numerical example in <2, with the 2� 2 matrix

Rx0 in (1.19), the 2 � 1 vector rx0d0 in (1.20), and �2d0 = 10. The vectors h1

and B1 are then de�ned by (1.20), (1.42) and (1.43) to yield,

T1 =

�
hH1
B1

�
=

1p
82

�
9 1
�1 9

�
: (1.50)

The correct tridiagonal form is then found after one application of the recursion:

Rt = T1Rx0T
H
1 =

�
�2d1 Æ�2
Æ2 �2d2

�
=

1

82

�
892 320
320 748

�
: (1.51)
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Table 1.6: The MMSE (dB) for each Wiener �lter.

�0 2 <2 �JKLT 2 <1 �CSM 2 <1 �PC 2 <1

0.3951 3.9127 6.6901 8.0811

The diagonal matrix � is then given by,

� =

�
�1 0
0 �2

�
=

"
�2d1 �

jÆ2j
2

�2
d2

0

0 �2d2

#
=

1

82

�
755:1 0
0 748

�
: (1.52)

It is simple in this case to verify (1.48),

� = QT1Rx0T
H
1 Q

H ; (1.53)

where the upper-triangular matrix Q is given by

Q =

"
1 � Æ�2

�2
d2

0 1

#
=

�
1 �0:4278
0 1

�
; (1.54)

is easily found from the recursion in (1.14) ,(1.16), (1.17) and Table 1.5. The

MMSE is now computed by,

�0 = �2d0 �
jÆ1j2
�1

; (1.55)

which yields 0:3951 dB in agreement with the previous full-rank MMSE result.

Finally, the rank-k joint-process KLT (JKLT) chooses a rank-k subspace Ck
jklt

with an associated MMSE �JKLT . Here, k=1, and

�JKLT = �2d0 �
jÆ1j2
�2d1

; (1.56)

which yields an MMSE of 3:9127 dB. As shown in Table 1.6, this represents an

improvement of nearly 3 dB over the cross-spectral metric and slightly over 4

dB compared to the principal-components.

1.6.3 Analysis of the JKLT

The basis vectors of the JKLT are determined as a function of both the self-

directional preference due to the eigenvectors that are associated with the observed-

data covariance matrix Rx0 and the induced directional preference due to the
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Figure 1.7: The angle representation of the cross-correlation and Wiener �lter
vectors in <2.

e�ect of the cross-correlation rx0d0 . This fact implies the ability to perform

low-rank subspace tracking in non-stationary signal environments and optimal

reduced-rank Wiener �ltering in stationary signal environments. Here optimal-

ity is with respect to the minimization of the average MMSE, as a function of

rank, over all possible signal environments without knowledge of the full-rank

Wiener solution (or of R�1
x0 ).

To demonstrate these facts, consider again revisiting the numerical 2 � 2

example. Here, the eigenvectors in (1.22) are vectors at 45Æ and �45Æ in the

x-y plane. Now let rx0d0 be a unit vector which varies from 0Æ to 360Æ in the

plane. The resulting Wiener �lter w maps out an ellipse as the cross-correlation

vector varies counter-clockwise in the plane. These mappings are depicted in

Fig. 1.7.

The optimal rank-2 Wiener �lter and the di�erent rank-1 solutions are com-

pared as the statistics vary in Fig. 1.8, where the angle associated with rx0d0

varies from � = 0Æ to � = 360Æ. Note that this experiment tells the entire
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Figure 1.8: The performance as a function of statistical variation.

story for <2; that is, the performance comparison is now made over all possible

desired signals via the inclusion of all possible induced cross-correlation unit

vectors.

The principal-components technique �xes the rank-1 basis vector as that

eigenvector which corresponds with the largest eigenvalue. This choice results

in poor performance except for in the small region where the Wiener �lter is

approximately colinear with that eigenvector. As seen in Fig. 1.8, the principal-

components MMSE obtains the full-rank optimum only twice over 360Æ, exactly

when the Wiener �lter is colinear.
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The cross-spectral metric introduces the ability to change eigenvectors de-

pending upon the optimal Wiener solution. It is seen in Fig. 1.8 that the

cross-spectral metric obtains the optimal solution twice as often, whenever the

Wiener �lter is colinear with either eigenvector. Thus the cross-spectral metric

\switches" between the eigenvectors to optimize the MMSE.

Interestingly, both the principal-components and the cross-spectral metric

require a priori knowledge of the eigenvectors. This is computationally on the

same order as calculatingR�1
x0 , and therefore the Wiener solution. However, nei-

ther of these techniques make very good use of this information. The JKLT has

no such requirement for prior knowledge, instead only using the cross-correlation

vector or its estimate. With this available information, a Wiener �lter and the

resulting MMSE for any rank can be computed eÆciently. However, the merit of

this method is realized in Fig. 1.8. It is seen that the JKLT represents the signal

environment using a basis set which tracks the Wiener solution (or converges

to it) very eÆciently as a function of rank. Note that this is done without ever

computing the full-rank Wiener solution. When the slope of the optimal weight

vector dynamics goes to zero, corresponding to the dynamics slowing down, the

JKLT becomes a unitary decomposition, the basis selection converges to the

eigenvectors, and all of the methods obtain the optimal MMSE.

A few notes are now in order with respect to performance trends. First,

the cross-spectral metric is demonstrated to always perform as well or better

than the principal-components algorithm in terms of the resulting MMSE as

a function of rank. The JKLT always performs as well or better than the

principal-components and nearly always provides a better MMSE performance

than the cross-spectral metric. The case where the cross-spectral metric may

outperform the JKLT is over small regions where a relatively low-magnitude

cross-correlation vector is contained in a subspace spanned by the eigenvectors

that correspond with small eigenvalues. Here, the cross-spectral metric can take

advantage of the additional information it has due to knowledge of the domi-

nating self-directional preference. When this occurs, the cross-spectral metric

can \switch" to a subspace spanned by the low-magnitude eigenvectors faster
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Table 1.7: The approximate average MMSE loss (dB) for each Wiener �lter.

R 360Æ
0Æ j�0(!)� �JKLT (!)jd!

R 360Æ
0Æ j�0(!)� �CSM(!)jd!

R 360Æ
0Æ j�0(!)� �PC(!)jd!

3.58 6.68 30.00

than the JKLT can \learn" the correct subspace. Notice that this situation

does not a�ect the performance of the algorithms along a principal-components

subspace.

Finally, the performance from the numerical example used throughout the

manuscript may be exploited to demonstrate some general properties relative to

the optimality of the JKLT. The JKLT optimizes the MMSE performance on av-

erage over all possible signal environments. Here, the area between the full-rank

MMSE curve and the other reduced-rank MMSE curves in Fig. 1.8 represents

the average MMSE performance loss over all possible signal environments in <2,

and these measurements are presented in Table 1.7. These results depict that,

with a cross-correlation unit vector in <2, on average the JKLT outperforms the

principal-components by approximately 26:5 dB and the cross-spectral metric

by approximately 3 dB.

1.7 Radar Example

A radar detection example is now presented to demonstrate the application

of intelligent reduced-rank signal processing to a practical problem of interest.

Sensor signal processing introduces a unique sample support interpretation due

to the dependency of the training data on range. Ergodicity, in the context of

sensor signal processing, implies replacing the ensemble statistical average with

an average over range rather than time. Therefore the IID and stationarity

assumptions on the joint statistics of the training and test data are replaced

with clutter and noise homogeneity assumptions throughout the data collected

by the radar. Intelligent rank reduction o�ers the opportunity to reduce the

sample support requirements without greatly degrading performance. Intelli-

34



Figure 1.9: The 3-D STAP data cube.

gent training methods allow the statistical estimation to concentrate on the

clutter and noise which are most correlated with that present in the test data

set, thereby optimizing the detection problem. The intelligent subspace selec-

tion also reduces the sample support requirements when the stationary and IID

assumptions are valid, allowing rapid adaptation.

1.7.1 Radar Signal Processing

Consider now the use of an airborne space-time adaptive processing (STAP)

radar for the detection of a target at a particular range. The STAP radar

collects angle-Doppler data over multiple range cells, as shown in Fig. 1.9. The

use of STAP is required because the two-dimensional extent of ground clutter

exhibits both spatial and Doppler dependency, as further explained in Sect.

1.7.3. A STAP processor is composed of K antenna elements which provide

spatial degrees of freedom and a J-tap Doppler �lterbank with time lags that

correspond to the radar pulse repetition interval (PRI) in order to provide the

spectral degrees of freedom. The total number of adaptive space-time degrees
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of freedom is then N=KJ .

The N � 1 space-time steering vector s forms a beam at an angle-Doppler

location where target presence or absence is going to be tested. The N�1 space-
time snapshot formed from the radar data collected at the range gate of interest

is denoted xp. Assume for the moment that the (unavailable) clairvoyant clutter

and noise covariance matrix R is known a priori. Then the optimal STAP

weight vector for Gaussian colored noise detection (simultaneous detection and

clutter/noise mitigation) is given by [3, 27],

wa =
R�1s

sHR�1s
= s�BHw; (1.57)

where the full row-rank matrix B is the nullspace of vector s such that Bs = 0.

The weight vector w is the optimal weight vector for estimating the clutter

and noise present in the beamformer output, d0 = sHxp, from that present

in the data outside the radar look-direction, x0 = Bxp. This weight vector is

computed by the Wiener-Hopf equation,

w = R�1
x0 rx0d0 ; (1.58)

where Rx0 = BRBH and rx0d0 = BRs. The weight vector in the center of

Eq. (1.57) is termed the direct form, while the weight vector on the far right is

called the �ltered-data form.

The STAP �lter output is given by,

"0 = wH
a xp =

sHR�1xp

sHR�1s
=
�
sH �wHB

�
xp: (1.59)

The direct form output noise power (under the null hypothesis) is computed as

follows,

P = wH
a Rwa =

1

sHR�1s
: (1.60)

This may also be expressed in the �ltered-data form,

P = �2d0 �wHRx0w = �2d0 � rHx0d0R�1
x0 rx0d0 ; (1.61)

where the STAP beamformer output noise power is �2d0 = sHRs. It is now

seen via Fig. 1.10 that these STAP variables are directly related to the Wiener
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Figure 1.10: The �ltered-data form of the STAP processor.

�lter studied extensively earlier in this text. It is also of interest to note that

the beamforming prepocessor in Fig. 1.10 represents the �rst stage of the JKLT

which accounts for directional preference, as presented earlier. This structure

therefore �ts naturally within the theoretical framework of Wiener �ltering and

the JKLT algorithm.

The detection problem can be evaluated using these Wiener �lter variables.

One popular adaptive constant false alarm rate (CFAR) detection test, called

the adaptive matched �lter (AMF) [28, 29], is given by,

� =
j"0j2
P

=
jsHR�1xpj2
sHR�1s

H1
>
<
H0

�; (1.62)

where H1 and H0 are the target present and target absent hypotheses, respec-

tively. The performance of the AMF CFAR test is a function of the SINR and

the false-alarm probability. The SINR is therefore the most frequently evalu-

ated performance measure in assessing STAP performance. The optimization

of the weight vector to maximize the SINR results in a locus of solutions with

the form wa = �R�1s. The Wiener �lters in Eqs. (1.57) and (1.58) represent

the operating point which provides a distortionless response of the target test

cell out of this locus of solutions. The optimal SINR is calculated as follows:

�o =
jwH

a sj2
wH
a Rwa

= sHR�1s =
1

�2d0 � rHx0d0R�1
x0 rx0d0

=
1

P
: (1.63)

The traditional method of applying rank reduction for STAP processing is to
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perform a KLT of the covariance matrix R and retain the principal components

[30, 31, 32, 33]. However, an analysis of the SINR in either the direct or the

�ltered-data form yields the relations,

�o = sHR�1s =

NX
i=1

jEH
i sj2
�i

; (1.64)

and

�o =
1

�2d0 � rHx0d0R�1
x0 rx0d0

=
1

�2d0 �
PN�1

i=1
jFH
i
rx0d0

j2

di

; (1.65)

respectively. The KLT of the two pertinent covariance matrices in Eqs. (1.64)

and (1.65) are R = E�EH , with diagonal matrix � composed of elements

�i, and Rx0 = FDFH , with diagonal matrix D composed of elements di. It is

evident that the cross-spectral metric directly maximizes the reduced-rank SINR

expression in Eq. (1.64) relative to the basis vectors Ei
5. The reduced-rank

maximization of the SINR in Eq. (1.65) requires the minimization of a mean-

square error expression in the denominator. The optimal KLT-based reduced-

rank solution here is also given by a cross-spectral metric with basis vectors

Fi.

Finally, the JKLT algorithm can be applied to this problem to introduce a

better type of intelligent rank reduction. As previously noted, that the �rst stage

of the JKLT is exactly the transformation from the direct form to the �ltered-

data form of the Wiener �lter using matrix �lters s and B. The implementation

of the JKLT algorithm is then identical to that presented earlier for the standard

Wiener �lter, as evident through the comparison of Figs. 1.2 and 1.10.

1.7.2 Estimation of the Statistics and Sample Support

The unknown N � N noise covariance matrix is estimated in practice by the

analysis of 
 = L�2g�1 auxiliary range gates, where g is the number of guard

range gates on each side of the test range gate as shown in Fig. 1.9. These guard

5This optimization for the direct form may, however, lead to a poor choice of subspaces for
estimating statistics with small sample support. This is due to the selection of a non-dominant
subspace associated with the noise. A modi�ed direct form cross-spectral metric is presented
in [34] which properly selects a stable subspace.
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cells are excluded to ensure that the target of interest does not extend into the

training region. The maximum likelihood estimate of the covariance matrix is

calculated from the 
 auxiliary range gates by evoking a Gaussian assumption

and the aforementioned range ergodicity condition:

R̂ =
1





X
k=1

xa(k)x
H
a (k); (1.66)

where xa(k) is the N � 1 space-time auxiliary data snapshot from range cell

k 2 f1; 2; :::;
g. The STAP �lter can then be calculated with Eqs. (1.57)

and (1.58), where the clairvoyant covariance R is replaced with the maximum

likelihood sample covariance R̂. Similarly, the AMF CFAR test can then be

calculated using either the �ltered-data variables or by the direct substitution

of the sample covariance matrix in Eq. (1.62).

It is assumed that 
 >> 2N to satisfy the sample support requirements for

the estimation of the covariance matrix in Eq. (1.66). This further assumes that

the range gate snapshots fxa(k)g
k=1 contain stationary and IID samples of the

clutter and noise present in the test snapshot xp. The earth is not, in general,

homogeneous over the large range extent required by STAP radars. This may

preclude the existence of 2N IID stationary samples in the auxiliary data set.

Therefore rank reduction and an intelligent signal processing measure, such as

the JKLT, are needed to provide both a lower sample support and a reasonable

amount of training data from the STAP data cube. It is also noted that anal-

ogous estimation issues are present even in the stationary Gaussian case with

�nite training data. Intelligent signal processing techniques are required under

these conditions to determine the smallest stable subspace which maximizes the

SINR. The reduced sample support requirements then map directly to rapid

convergence and the ability to track nonstationarities.

An SINR loss is de�ned by

� =
jŵH

a sj2
(ŵH

a Rŵa)(sHR�1s)
; (1.67)

where ŵa represents the weight vector formed by substituting Eq. (1.66) into

Eqs. (1.57) and (1.58). The SINR loss is the normalized SINR �rst presented in
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Figure 1.11: The Mountain Top radar system.

[4], and the interest here is in evaluating the loss due to reduced-rank versions of

the estimatedWiener �lter ŵa. The SINR loss is called the region of convergence

for adaptivity (ROC) when it is evaluated as a function of both the e�ective rank

(as determined by the signal representation) and the amount of training data

supplied for sample support [35]. This framework provides an informative way

to analyze the potential bene�t of intelligent signal processing methods for radar

detection.

1.7.3 Simulation

The DARPA Mountain Top radar is simulated to demonstrate the ROC perfor-

mance of the intelligent signal processing algorithms as a function of rank and

sample support. The Mountain Top radar employs the Radar Surveillance Tech-

nology Experimental Radar (RSTER) and the Inverse Displaced-Phase Center

Array (IDPCA), both colocated at the same site [36], as shown in Fig. 1.11. The

radar consists of K = 14 half-wavelength spaced elements and J = 16 pulses in

the PRI. The elevation angle is �xed (pre-beamformed) and the azimuth angle

represents the only free parameter. The dimension of the adaptive processor is

KJ = 224.

The scenario of interest consists of one target and returns from ground clut-
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Figure 1.12: The STAP power spectrum.
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Figure 1.13: The STAP Wiener �lter.

ter, as depicted in Fig. 1.12. The ground clutter has a normalized Doppler

frequency which is a linear function of the spatial frequency. The locus in angle-

Doppler space where the clutter is present is termed the clutter ridge. The slope

of the clutter ridge, whose value is denoted � [37], dictates the number of times

that the clutter Doppler spectrum aliases into the unambiguous Doppler space.

The parameters selected for this simulation correspond to the clutter exactly

�lling the Doppler space once, or � = 1. The portion of Doppler space that the

clutter ridge spans depends upon the platform velocity, the radar pulse repeti-

tion frequency and the radar operating wavelength. The two-dimensional extent

of the clutter means that the mainbeam target competes with mainbeam clutter

in the angle domain and the sidelobe clutter in the Doppler domain.

The optimal two-dimensional spectrum of the STAP weight vector, calcu-

lated using Eq. (1.57) for this example, is depicted in Fig. 1.13. It is readily seen

that the optimal �lter applies a unity gain at the angle-Doppler look-direction

while simultaneously placing a null on the clutter ridge.

A Monte Carlo analysis is now considered to analyze the region of conver-

gence for adaptivity which is obtainable using the principal-components, the

cross-spectral metric and the JKLT algorithms. The e�ective rank rc of the
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Figure 1.14: The ROC for the principal-components.
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Figure 1.15: The ROC for the cross-spectral metric.
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Figure 1.16: The ROC for the JKLT.
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clutter can be estimated by Brennan's rule [37],

rc = K + (J � 1)�: (1.68)

The Mountain Top radar system, with � = 1, results in rc = 29. It is therefore

expected that the principal-components algorithm would require a rank on the

order of 29, and that approximately 2rc = 58 samples would be required for

convergence. The Monte Carlo simulations consist of 50 independent realiza-

tions.

The principal-components ROC is shown in Fig. 1.14. The area of this plot

where the sample-support is less than the rank (the lower-left triangular region)

represents the region where the reduced-rank covariance matrix is numerically

unstable. The area where the SINR loss is negligible (the lower-right region

de�ned by high sample support and high rank) represents the region of con-

vergence for adaptivity with respect to the principal-components method. The

slope or roll-o� of the performance surface depicts both the robustness and the

sensitivity of the processor as a function of rank and sample support. It is

evident in Fig. 1.14 that the principal-components ROC does indeed require a

rank of approximately rc = 29, although the necessary sample support is only

a little greater than rc, or about half of the upper-bound calculated in [4]. The

reduction of rank is seen to result in a quick loss of performance. This is an

indication of a strong sensitivity to variations in rank and sample support.

The ROC for the cross-spectral metric is presented in Fig. 1.15. The cross-

spectral metric ROC covers a slightly greater area where the sample support is

high. This demonstrates that a greater rank reduction may be possible as long

as suÆcient sample support is available for adaptively estimating the statistics.

The robustness and sensitivity to reductions in rank and sample support is

nearly equivalent to that of the principal-components.

Finally, the ROC for the JKLT is depicted in Fig. 1.16. Here it is seen that

the area covered by the ROC is signi�cantly greater than that possible with the

principal-components or the cross-spectral metric . The JKLT ROC includes

the region of both lower sample support and signi�cantly lower rank. The
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importance of this result for radar detection in the real-world is readily apparent

when one considers the greatly reduced range homogeneity requirements for the

low-rank JKLT. The dominating area of convergence for adaptivity in Fig. 1.16

represents much better robustness and sensitivity properties in comparison with

the principal-components and cross-spectral metric algorithms.

1.8 Conclusions

This paper addresses intelligent signal representation and basis selection for

detection and estimation problems. The Karhunen-L�oeve transformation and

expansion are examined with emphasis on the relevant conditions of optimal-

ity. It is demonstrated that the principal-components do not provide the best

enumeration of the eigenvectors corresponding with the pertinent covariance

matrix for Wiener �ltering. The use of intelligent subspace selection with the

KLT results in the cross-spectral metric. The cross-spectral metric corrects

the signal representation optimization relative to the eigenvector basis while si-

multaneously raising information-theoretic questions about the use of this basis

itself. It is then demonstrated that a consequence of the principal component's

lack of optimality results in the KLT not being optimal for those problems con-

cerned with signal representation for detection and estimation. Finally, a new

intelligent signal processing approach to signal representation, termed the joint

Karhunen-L�oeve transform, is derived that uses less prior knowledge than other

known techniques. The reduced-rank JKLT is demonstrated to be capable of

outperforming the eigen-based algorithms even though the algorithm complexity

and the amount of required information are both signi�cantly reduced.
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