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Abstract. Computing the linear least-squares estimate of a high-dimensional random quantity
given noisy data requires solving a large system of linear equations. In many situations, one can
solve this system e�ciently using a Krylov subspace method, such as the conjugate gradient (CG)
algorithm. Computing the estimation error variances is a more intricate task. It is di�cult because
the error variances are the diagonal elements of a matrix expression involving the inverse of a given
matrix. This paper presents a method for using the conjugate search directions generated by the CG
algorithm to obtain a convergent approximation to the estimation error variances. The algorithm
for computing the error variances falls out naturally from a new estimation-theoretic interpretation
of the CG algorithm. This paper discusses this interpretation and convergence issues and presents
numerical examples. The examples include a 105-dimensional estimation problem from oceanography.
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1. Introduction. The goal of �nite-dimensional linear least-squares estimation
(LLSE) is to estimate an l-dimensional random vector x with a linear function of
another m-dimensional random vector y so as to minimize the mean squared error [6].
That is, one desires a linear function x̂(y) that minimizes E[kx� x̂(y)k2].

Write the relationship between x and y as y = z+n, where n is noise uncorrelated
with x and

z = Cx (1.1)

for a matrix C reecting the type of measurements of x. In the Bayesian framework, x,
z, and n have known means and covariances. The covariance matrices are denoted by
�x, �z, and �n, respectively, and, without loss of generality, the means are assumed
to be zero. The best linear estimate of x given y is

x̂(y) = �xC
T��1y y (1.2)

where �y = �z +�n = C�xC
T +�n is the covariance of y.

Direct computation of x̂(y) is di�cult if x and y are of high dimension. In
particular, the work in this paper was motivated by problems in which x represents
a spatially-distributed phenomenon and y, measurements encountered in applications
ranging from image processing to remote sensing. For example, when x and y represent
natural images, they typically consist of 256� 256 = 65536 pixels. In problems from
physical oceanography, the dimensions of x and y are typically upwards of 105 and
104, respectively (e.g. see [2]). Furthermore, in applications such as remote sensing
in which the measurement sampling pattern is highly irregular, �z is typically a full
matrix that is far from Toeplitz. This prevents one from solving the linear system
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(1.2) by spectral or sparse matrix methods. However, �y often has a considerable
amount of structure. For example, the covariance, �x, of the full spatial �eld, is often
either Toeplitz or well-approximated by a very sparse matrix in an appropriate basis,
such as a local cosine basis [7]. The measurement matrix C is often sparse, and the
noise covariance �n is often a multiple of the identity. Thus, multiplying vectors by
�y is often e�cient, and an iterative method for solving linear systems that makes
use of �y-multiplies, such as a Krylov subspace method, could be used to compute
x̂(y).

For LLSE problems, one is interested not only in computing the estimates but
also some portion of the estimation error covariance matrix. The covariance of the
estimation error, �ex(y) = �x � �xC

T��1y C�x, is the di�erence between the prior
covariance and the error reduction. The terms on the diagonal of this matrix are
the estimation error variances, the quantities most sought after for characterizing the
errors in the linear estimate. A natural question to ask is whether a Krylov subspace
method for computing the linear estimate x̂(y), such as the method of conjugate
gradients, could be adapted for computing portions of the error covariance matrix.
This paper presents an interpretation of the conjugate gradient method in the context
of LLSE that leads to a new algorithm for computing estimation error variances.

Paige and Saunders [8] and Xu, Kailath, et al. [13{16] have developed Krylov
subspace methods for solving statistical problems that are closely related to LLSE.
The LSQR algorithm of Paige and Saunders solves a regression problem and can com-
pute approximations to the standard errors. The regression problem is a more general
version of LLSE in which a prior model is not necessarily speci�ed. In the special
case of LLSE, the standard errors of the regression problem are the estimation error
variances. Thus, LSQR can compute approximations to the error variances. The
novelty of our work is that it focuses speci�cally on LLSE and takes advantage of the
structure inherent in many prior models for image processing problems. In particular,
many such prior models imply a covariance of the data, �y = �z + �n, in which the
signal covariance matrix, �z, has eigenvalues that decay rapidly to zero and the noise
covariance matrix, �n, is a multiple of the identity. Such properties are exploited
by our algorithm. These assumptions were also made in the work of Xu, Kailath, et
al. for signal subspace tracking. For that problem, one is interested in computing
the dominant eigenvectors and eigenvalues of �z. Although computing the dominant
eigenvectors and eigenvalues of �z is su�cient to compute an approximation to the
estimation error variances, it is not necessary. We do not explicitly compute eigenvec-
tors or eigenvalues. This provides us with the opportunity to exploit preconditioning
techniques in a very e�cient manner.

Section 2 discusses our interpretation of the conjugate gradient method as used
to compute linear least-squares estimates. This naturally leads to the presentation
of a new iterative algorithm for computing estimation error variances. Section 3
proposes two alternative stopping criteria. Convergence properties are analyzed in
Section 4. Techniques for accelerating convergence, including preconditioned and
block algorithmic forms, are discussed in Section 5. Finally, Section 6 illustrates the
proposed techniques with various numerical examples.

2. The Estimation Algorithm. The primary di�culty in computing the linear
estimate x̂(y) in (1.2) is the large dimension of the data y. The signal in the data,
however, typically lies in a much lower dimensional subspace. One can take advantage
of this fact to compute an approximation to x̂(y) by computing, instead of x̂(y),
the best linear estimate of x given a small number of linear functionals of the data,
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pT1 y; p
T
2 y; : : : ; p

T
k y. For a particular sequence of linearly independent linear functionals,

pT1 ; p
T
2 ; : : : ; p

T
k , let x̂k(y) denote the best linear estimate of x given pT1 y; p

T
2 y; : : : ; p

T
k y.

If most of the signal components in y lie in the span of p1; p2; : : : ; pk, then one would
expect that the covariance of the di�erence between x̂(y) and x̂k(y), Cov(x̂� x̂k(y)),
would be small. Now, the covariance of the error in the estimate x̂k(y), �ex;k(y), is
related to the optimal error covariance, �ex(y), by

�ex;k(y)� �ex(y) = Cov(x̂k(y)� x̂(y)): (2.1)

Thus, one can approximate �ex(y) by �ex;k(y) provided p1; p2; : : : ; pk span the dom-
inant components of the signal subspace.

The algorithm described in this paper uses linear functionals which form bases
for Krylov subspaces. A Krylov subspace of dimension k, generated by a vector s
and the matrix �y, is the span of s;�ys; : : : ;�

k�1
y s and is denoted by K(�y; s; k) [3].

The advantage of using linear functionals that form bases for Krylov subspaces is
twofold. One reason is theoretical. Speci�cally, the angles between K(�y; s; k) and
the dominant eigenvectors of �y are rapidly decreasing as k increases [11]. Thus, lin-
ear functionals from Krylov subspaces will capture most of the dominant components
of the data. Another reason for using functionals from Krylov subspaces is compu-
tational. As discussed in the introduction, the structure of �y in many problems is
such that multiplying a vector by �y is e�cient. A consequence of this fact is that
one can generate bases for the Krylov subspaces e�ciently.

The speci�c linear functionals used in this paper are the search directions gen-
erated by the conjugate gradient method for solving a linear system of equations
involving the matrix �y. These linear functionals are speci�ed by the following recur-
sion [3]

gk = y � �y

 
kX

i=1

pip
T
i y

!
(2.2)

vk = gk �
�
gTk �ypk

�
pk (2.3)

pk+1 =
vkq

vTk �yvk

: (2.4)

We initialize p1 with a random vector s whose statistics satisfy certain properties, as
discussed in Section 4. The conjugate search directions, p1; : : : ; pk, form a basis for
K(�y; s; k) and are �y-conjugate [3]. The �y-conjugacy of the search directions im-
plies that Cov(pTi y; p

T
j y) = �ij ; so, these linear functionals of the data are white. The

whiteness of the linear functionals of the data allows one to use simple recursions to
compute both x̂k(y) and the associated error variances (�ex;k(y))ii. The recursions re-
quire the computation of the �ltered backprojected search directions, by;k = �xC

T pk.
Fortunately, by;k is computed in the process of computing pk+1 since, as can be seen
in (2.2), this latter computation involves multiplying pk by �y = C(�xC

T ) + �n.
Thus, the recursions have the following form:

x̂k(y) = x̂k�1(y) + by;kp
T
k y (2.5)

(�ex;k(y))ii = (�ex;k�1(y))ii � ((by;k)i)
2 (2.6)

with initial conditions

x̂0(y) = 0 (2.7)

(�ex;0(y))ii = (�x)ii (2.8)
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where i = 1; : : : ; l. Unfortunately, the vectors p1; p2; : : : generated by the standard
conjugate gradient method are not �y-conjugate to a reasonable degree of precision
because of the numerical properties of the method.

The numerical di�culties associated with the standard conjugate gradient method
can be circumvented using a Lanczos iteration to generate the conjugate search di-
rections [3]. The Lanczos iteration generates a sequence of vectors according to the
following recursion:

�k = qTk �yqk (2.9)

hk = �yqk � �kqk � �k�1qk�1 (2.10)

�k+1 = khkk (2.11)

qk+1 =
hk
�k+1

(2.12)

which is initialized by setting q1 equal to the starting vector s, q0 = 0, and �1 = 0.
The Lanczos vectors, q1; q2; : : : , are orthonormal and such that�

q1 q2 � � � qk
�T

�y

�
q1 q2 � � � qk

�
(2.13)

is tri-diagonal for all k. Let Ty;k denote this tri-diagonal matrix and Ly;k the lower
bi-diagonal Cholesky factor. Then, the vectors de�ned by�

p1 p2 � � � pk
�
=
�
q1 q2 � � � qk

�
L�Ty;k (2.14)

are equal, up to a sign, to the conjugate search directions generated by the conjugate
gradient method in exact arithmetic. That Ly;k is lower bi-diagonal allows one to
use a simple one-step recursion to compute the pi from the qi. One of the main
advantages of using the Lanczos iteration followed by Cholesky factorization is that
one can use a variety of reorthogonalization schemes to ensure that the Lanczos vectors
remain orthogonal and, in turn, that the associated conjugate search directions are
�y-conjugate [3, 10].

A summary of the steps outlined above to compute an approximation to the
optimal linear least-squares estimate and associated estimation error variances is as
follows.

Algorithm 2.1.

1. Initialize x̂0(y) = 0, (�ex;0(y))ii = (�x)ii for i = 1; : : : ; l.
2. Generate a random vector s to initialize the Lanczos iteration.
3. At each step k,

(a) compute the conjugate search direction pk and �ltered backprojection by;k
using a reorthogonalized Lanczos iteration, and

(b) update

x̂k(y) = x̂k�1(y) + by;kp
T
k y (2.15)

(�ex;k(y))ii = (�ex;k�1(y))ii � ((by;k)i)
2 for i = 1; : : : ; l. (2.16)

3. Stopping Criteria. A stopping criterion is needed to determine when a suf-
�cient number of iterations has been run to obtain an adequate approximation to the
error variances. Two alternative stopping criteria are proposed in this section. The
�rst is a simple scheme that we have found works well. However, there is no system-
atic method for setting the parameters of the criterion to guarantee that a speci�ed
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level of accuracy is achieved. The second stopping criterion is a more complicated
scheme for which one can establish bounds on the approximation error. However,
the criterion tends to be overly conservative in establishing the number of iterations
needed to achieve a speci�ed level of accuracy.

3.1. Windowed-Maximal-Error Criterion. Under this �rst criterion, the al-
gorithm stops iterating after k steps if

�k;"min
, max

k�Kwin�j�k
max
i

((by;j)i)
2

max((�ex;k(y))ii; "min)
< "tol (3.1)

where Kwin, "min, and "tol are parameters. This criterion guarantees that no compo-
nents of the error variances have been altered over the lastKwin+1 iterations by more
than "tol relative to the current approximation to the error variances. The motivation
for this criterion is the analysis in Section 4 which suggests that the vectors by;k,
representing the contribution to error reduction from pTk y, get smaller as k increases.
However, this behavior is not always monotone; so, the criterion takes into account
gains over a window of the last few iterations.

3.2. Noiseless-Estimation-Error Criterion. The second stopping criterion
examines how well the Krylov subspace at the kth step, K(�y; s; k � 1), captures
the signi�cant components of the signal z, as de�ned in (1.1). The motivation for
such a criterion is the convergence analysis of Section 4. The analysis indicates that
as �ez ;k(y) � �ez (y) gets smaller, the di�erence between �ex;k(y) and �ex(y) also
decreases, albeit possibly at a slower rate. So, a relatively small di�erence between
�ez;k(y) and �ez (y) implies a relatively small di�erence between �ex;k(y) and �ex(y).
This fact motivates the interest in e�ciently computable bounds for �ez;k(y)��ez(y).
One such bound can be written, as follows, in terms of the error covariance for the
noiseless estimation problem of estimating x from z.

Proposition 3.1. Suppose �n = �2I for �2 > 0. Let �ez;k(z) be the optimal
estimation error covariance for estimating z from pT1 z; : : : ; p

T
k z. Then, the di�erence

between the error covariance for estimating z from y and z from pT1 y; : : : ; p
T
k y is

bounded by:

�ez;k(y)� �ez (y) � �ez;k(z) + fkf
T
k (3.2)

where

kfkk
2 � k�zpk�1k2 + k�zpkk

2 + k�zpk+1k
2 + k�zpk+2k

2: (3.3)

Proof. The proof makes use of the Lanczos vectors qi discussed at the end of
Section 2. The Lanczos vectors are useful because they form bases for the Krylov
subspaces, and they tri-diagonalize both �y and �z since �n = �2I , by assumption.
The Lanczos vectors tri-diagonalizing �y implies that qTi y is correlated with qTj y if
and only if i and j di�er by at most one. Let �rz;k+1(y) denote the error reduction
obtained from estimating z with qTk+2y; q

T
k+3y; : : : . Furthermore, let �

?
rz;k+1

(y) denote
the error reduction obtained from estimating z with the random variable formed by
making qTk+1y uncorrelated with qTi y for i 6= k + 1. Then,

�ez (y)� �ez;k(y) = �rz;k+1(y) + �?rz;k+1(y): (3.4)
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Since y is simply a noisy version of z, �rz;k+1(y) � �rz;k+1(z), where �rz;k+1(z)
is the error reduction obtained from estimating z with qTk+2z; q

T
k+3z; : : : . Furthermore,

�rz;k+1(z) � �ez;k(z) because �ez (z) = 0 and qTi z is uncorrelated with qTj z if i and j
di�er by more than one. Combining the last two inequalities with (3.4) yields

�ez;k(y)� �ez(y) � �ez;k(z) + �?rz;k+1(y): (3.5)

The matrix �?rz;k+1(y) in (3.5) is bounded above by the optimal error reduction

for estimating z from qTk y, q
T
k+1y, and qTk+2y since �?rz;k+1(y) is the error reduction

for an estimator that is linear in these three functionals of y. Furthermore, �?rz;k+1(y)
is bounded above by the optimal error reduction for estimating z from pTk�1y, : : : ,
pTk+2y since qk, qk+1, and qk+2 are linear combinations of pk�1; : : : ; pk+2. Now, write
the rank-one matrix �?rz;k+1(y) as fkf

T
k . Then, the latter bound on �

?
rz;k+1

(y) implies
(3.3).

Although Proposition 3.1 provides a bound on kfkk
2, the argument in the proof

suggests that the bound is very weak. Recall from the proof that fkf
T
k = �?rz;k+1(y),

the error reduction obtained for estimating z from the random variable formed by
making qTk+1y uncorrelated with qTk y and qTk+2y. As discussed in Section 4, both qk
and qk+2, as vectors from a Krylov subspace generated by �y, are such that qTk y and
qTk+2y are signi�cantly correlated with z. Thus, making q

T
k+1y uncorrelated with them

will often signi�cantly reduce the correlation with z. So, �?rz;k+1(y) is typically much
smaller than the error reduction for estimating z from qTk+1y, which, in turn, is smaller
than the right-hand side of (3.3). Thus, the bound on kfkk

2 is weak, and �ex;k(z),
the dominant term in (3.2), could be used alone as the basis of a stopping criterion.

One of the main advantages of the bound in Proposition 3.1 is that the diagonal el-
ements of �ez;k(z) are easily computable. As discussed in the proof of Proposition 3.1,
the Lanczos vectors q1; q2; : : : generated by Algorithm 2.1 not only tri-diagonalize �y,
they tri-diagonalize �z:�

q1 q2 � � � qk
�T

�z

�
q1 q2 � � � qk

�
= Tz;k: (3.6)

Let Lz;k be the lower bi-diagonal Cholesky factor of Tz;k, and let the vectors r1; r2; : : :
be de�ned by �

r1 r2 � � � rk
�
=
�
q1 q2 � � � qk

�
L�Tz;k : (3.7)

Then, the linear functionals of the signal, rT1 z; r
T
2 z; : : : are white. So, a simple recur-

sion can be used to compute �ez;k(z):

(�ez;k(z))ii = (�ez ;k�1(z))ii � ((bz;k)i)
2 (3.8)

with the initialization

(�ez;0(z))ii = (�z)ii (3.9)

where i = 1; : : : ;m and bz;k = �zrk. Note that bz;k can be computed without an
additional multiply by �z since Algorithm 2.1 computes �zqi. The computations for
calculating �ez;k(z) are summarized as follows:

Algorithm 3.2.

1. Initialize (�ez;0(z))ii = (�z)ii.
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2. At each iteration k:
(a) compute bz;k using qk and the one-step recursion speci�ed by LT

z;k, and
(b) update

(�ez ;k(z))ii = (�ez;k�1(z))ii � ((bz;k)i)
2: (3.10)

Stopping Algorithm 2.1 when a function of (�ez;k(z))ii falls below some threshold
has a variety of advantages and disadvantages. Although it may appear that one of
the main disadvantages is the requirement that �n must be a multiple of the identity,
this is not the case. There is an extension to the non-white case that makes use
of preconditioning ideas, as discussed in Section 5. In fact, the main disadvantage
stems from the bound in Proposition 3.1 being based on the noiseless estimation
problem (i.e. �n = 0). If �n is not small, the bound may not be tight. Thus, a
stopping criterion based on �ez;k(z) may be conservative in determining the number
of iterations needed to guarantee a speci�ed level of accuracy. On the other hand,
the bound is easy to compute and provides a good indication of the fraction of error
reduction that has been attained by a speci�c iteration.

4. Convergence Analysis. The goal of this section is to establish a rate at
which the approximation to the error variances, in exact arithmetic, converges to the
optimal estimation error variances given all the data y. There are two factors to
consider when establishing this rate. The �rst is the rate of growth in the number
of dominant components of �y that are almost contained in the increasingly larger
Krylov subspaces. The second is the rate at which the eigenvalues of �z are decaying.
This latter factor is important because it determines how many components of y are
needed to estimate x to a desired degree of accuracy.

Note that, for a given number of iterations k, we are not computing the best k
linear functionals of the data for estimating x. A consequence of this is that one may
need fewer iterations to obtain a good estimate of z than of x. Since z is often a
subsampled version of x, the rate of convergence of the error variances for estimating
z is of interest. Thus, many of the propositions contained in this section consist of
two statements, one concerning the estimation of x, the other concerning z.

The analysis in this section makes a few assumptions concerning the estimation
problem and starting vector for the algorithm. The �rst is that the starting vector
s is a zero-mean Gaussian random vector. This assumption is needed at one step to
guarantee the independence of uncorrelated components of s. The covariance matrix
of s, �s, is assumed to equal �y or be proportional to the identity. As regards the
estimation problem for the purposes of this section, �n is not necessarily a multiple
of the identity. However, we do assume that �y and �z have the same eigenvectors
u1; u2; : : : ; um and that the corresponding eigenvalues �y;1 � �y;2 � � � � � �y;m and
�z;1 � �z;2 � � � � � �z;m satisfy the inequality, �z;i=�y;i � ��i=�

2 for some �2 > 0
and sequence ��i. Note that both of these statements would hold for ��i = �z;i if �n

were �2I . The conditions are stated this generally because �n may not be a multiple
of the identity if some of the preconditioning techniques of Section 5.1 are used. We
also assume that the eigenvalues of �y are distinct and have a relative separation
(�y;i��y;i+1)=(�y;i+1��y;m) that is bounded below by a constant �sep > 0. Further-
more, the �y;i are assumed to decrease slowly enough (not faster than a geometric
decay) to satisfy a bound speci�ed later, (4.22). This last assumption is a very weak
assumption that is almost never violated. All of these assumptions concerning the
estimation problem are not restrictive because they can be guaranteed using appro-
priate preconditioning techniques, as described in Section 5. The assumptions are
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summarized as follows.
Assumptions
1. s is a zero-mean Gaussian random vector, and �s = �y or �s / I .
2. �y;i satisfy (4.22),
3. �y and �z have the same eigenvectors,
4. �z;i=�y;i � ��i=�

2 for �2 > 0 and a sequence ��i,
5. (�y;i � �y;i+1)=(�y;i+1 � �y;m) � �sep > 0

These assumptions lead to the main convergence result, as stated in Proposi-
tion 4.1.

Proposition 4.1. If Assumptions 1-5 hold, then

mX
j=1

(�ex;k(y)� �ex(y))jj �
�k�xkk�yk

�2(1� 1
2 )(1�

1
4
p
 )
�k=4 +

k�xk

�2

m�1X
i=k

(i� k + 4)��b i4c

(4.1)

and

mX
j=1

(�ez;k(y)� �ez(y))jj �
�k�yk

(1� 1
2 )(1�

1p
 )
�k=2 +

m�1X
i=k

(i� k + 4)min

 ��b i4c
�z;b i4c

�2
; ��b i

4c

!
; (4.2)

where

 , 1 + 2(�sep +
q
�sep + �2sep); (4.3)

and � is a random variable.
The bounds in Proposition 4.1 provide a useful characterization of the di�erence

between the optimal error variances and the computed approximation. The bounds
are a sum of two terms. The �rst terms on the right-hand sides of (4.1) and (4.2)
characterize how well the Krylov subspaces have captured the dominant components
of �y. The bigger �sep is, the larger  is, and the smaller the �rst terms in (4.1) and
(4.2) become. Thus, the more separated the eigenvalues (as measured by �sep), the
better the algorithm will perform. The second term is a sum of bounds ��i on the ratio
of eigenvalues �z;i=�y;i. The sum is over those ��i corresponding to eigenvectors of �z

that are not well-captured by the Krylov subspaces at step k. Note that the sum is
over the more rapidly decreasing ��i�z;i in (4.2). The bounds are useful because they
indicate how the errors will scale as �2, k�xk, k�yk, and the eigenvalues of �z change.
Furthermore, the bounds indicate that the rate of convergence can be increased by
transforming the estimation problem in order to make  big enough so that the second
terms in (4.1) and (4.2) dominate. Such transformations are discussed in Section 5.1.

The bounds in Proposition 4.1 are proved in the remainder of this section in several
steps. The �rst few steps place bounds on the norms of the �ltered backprojected
conjugate search directions, k�xC

T pik and kC�xC
T pik. The bounds are proved using

Saad's convergence theory for the Lanczos algorithm [11]. These bounds are stated
in terms of an extremum of independent random variables. The extremum arises
because the starting vector a�ects the angles between the Krylov subspaces and the
dominant components of �y. However, we prove that the extremum is part of a
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sequence of extrema that are converging in probability to a �nite random variable (�
in Proposition 4.1). Thus, the starting vector has no strong e�ect on the quality of
the approximation to the error variances. This result is the principle novelty of our
convergence analysis. After establishing the convergence of the extrema, we prove
Proposition 4.1.

4.1. Bounds on the �ltered backprojected search directions. One is in-
terested in bounding the norms of the �ltered backprojected search directions because
the quality of the approximation to the error variances depends on the norms as fol-
lows:

lX
j=1

(�ex;k(y)� �ex(y))jj =

lX
i=k+1

k�xC
T pik

2 (4.4)

lX
j=1

(�ez;k(y)� �ez(y))jj =

lX
i=k+1

kC�xC
T pik

2: (4.5)

Proposition 4.2. Write the conjugate search directions in the basis of eigenvec-
tors of �y, as follows:

pi = �i;1u1 + � � �+ �i;mum: (4.6)

Then

k�xC
T pik

2 � k�xk
mX
j=1

�z;j�
2
i;j ; (4.7)

and

kC�xC
T pik

2 =

mX
j=1

�2z;j�
2
i;j : (4.8)

Proof. k�xC
T pik

2 � k�xkk�
1=2
x CT pik

2 = k�xk
Pm

j=1 �z;j�
2
i;j . This proves the

�rst inequality. The second inequality follows from Parseval's Theorem.
As we now show, one can bound the coe�cients �i;j in terms of k(I � �i)ujk,

where �i is the operator that produces the orthogonal projection onto K(�y; y; i)
with respect to the standard inner-product.

Proposition 4.3. Write pi = �i;1u1+ � � �+�i;mum as in Proposition 4.2. Then,

j�i+1;j j �
k�yk

1=2

�y;j
k(I � �i)ujk: (4.9)

Proof. Note that

�y;j j�i+1;j j = jpTi+1�yuj j

= jpTi+1�y�iuj + pTi+1�y(I � �i)uj j

= jpTi+1�y(I � �i)uj j

(4.10)

since pi+1 is �y-conjugate to vectors in the range of �i. Thus, �y;j j�i+1;j j � k�ypi+1k�
k(I � �i)ujk � k�yk

1=2k(I � �i)ujk because of the Cauchy-Schwartz inequality and
the fact that pi+1 is �y-normal.
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A theorem due to Saad [11] implies the following result concerning k(I � �i)ujk,
which we state without proof.

Theorem 4.4. Let  be de�ned by (4.3) and Kj, by

Kj ,

( Qj�1
k=1

�y;k��y;m
�y;k��y;j ; if j 6= 1

1 if j = 1.
(4.11)

Then,

k(I � �i)ujk �
2Kj

i�j
1

k�1ujk
: (4.12)

One can now split the coe�cients �i;j into two groups: those that are getting
small by Proposition 4.3 and Theorem 4.4 and those that may be large but do not
signi�cantly a�ect k�xC

T pik because the corresponding eigenvalues of �z are small.
This idea leads to the following proposition.

Proposition 4.5.

k�xC
T pi+1k

2 � 4k�xkk�yk

b i4c�1X
j=1

K2
j

1

2(i�j)k�1ujk2
�z;j
�2y;j

+ k�xk

1X
j=b i4c

�z;j
�y;j

; (4.13)

and

kC�xC
T pi+1k

2 � 4k�yk

b i4c�1X
j=1

K2
j

1

2(i�j)k�1ujk2
�2z;j
�2y;j

+

1X
j=b i

4c

�2z;j
�y;j

: (4.14)

Proof. The �rst term in each of (4.13) and (4.14) follows immediately from Propo-
sitions 4.2 and 4.3 and Theorem 4.4. The second term follows from Proposition 4.2
and the fact that pTi+1�ypi+1 =

Pm
j=1 �y;j�

2
i+1;j = 1.

The �rst terms in the bounds of Proposition 4.5 may get large if 1=(ik�1ujk
2) or

Kj are not well-behaved. However, the standing assumptions concerning the eigen-
values of �y, �z, and �s imply that Kj and 1=(ik�1ujk

2) are bounded by quantities
of a reasonable magnitude, as we now show.

4.2. Convergence of in�nite products and extrema of independent se-

quences. The main result regarding the convergence of in�nite products and extrema
of independent sequences is the following.

Proposition 4.6. Let Fi(v), i = 1; 2; : : : , be a sequence of functions such that:
1. 1 � Fi(v) is a cumulative distribution function, i.e. right-continuous and

monotonically increasing from zero to one,
2. For every interval [V;1) over which 1 � Fi(v) are positive, there exists a

constant A(V ) and an absolutely summable sequence �Fi(V ) such that Fi(V ) � �Fi(V ) �
A(V ) < 1 8i; and

3. limv!1
P1

i=1 Fi(v) = 0.
Then, F (v) =

Q1
i=1(1� Fi(v)) is a distribution function. Moreover, F (v) is positive

over every interval such that 1� Fi(v) is positive 8i.
Proof. For F (v) to be a distribution function, it must be right-continuous and

monotonically increasing from zero to one.
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Consider the interval [V;1). Now,
PI

i=1 log(1 � Fi(v)) is right-continuous for
each I since each Fi(v) is right-continuous. Furthermore,

�����log(F (v)) �
IX

i=1

log(1� Fi(v))

����� =
�����

1X
i=I+1

log(1� Fi(v))

����� �
�����

1X
i=I+1

log(1� �Fi(V ))

�����
=

������
1X

i=I+1

1X
j=1

�F j
i (V )

j

������ �
�����

1X
i=I+1

�Fi(V )

1�A(V )

����� : (4.15)

Since �Fi(V ) is absolutely summable,
PI

i=1 log(1� Fi(v)) converges to log(F (v)) uni-
formly for v 2 [V;1). Thus, log(F (v)) and, in turn, F (v) are right-continuous.

That F (v) is monotonic follows from the monotonicity of the 1 � Fi(v). Now,
limv!�1 F (v) = 0 since limv!�1(1� F1(v)) = 0. Moreover,

lim
v!1

log(F (v)) � lim
v!1

1X
i=1

�Fi(v)

1�A(V )
= 0; (4.16)

where V is such that 1� Fi(v) is positive over [V;1) 8i. So, limv!1 F (v) = 1.
Furthermore, if 1� Fi(v) is positive 8i over an interval [V;1), then

log(F (v)) �

1X
i=1

� �Fi(V )

1�A(V )
> �1: (4.17)

Hence, F (v) is positive over every interval such that 1� Fi(v) is positive 8i.
A particular example of such a sequence of a sequence of functions Fi(v) satisfying

the assumptions of Proposition 4.6 is

Fi(v) =

8<
:

1 v < 0
(1� v)i 0 � v � 1

0 v > 1:
(4.18)

Thus, any product of numbers converging geometrically fast towards one is bounded
away from zero, and the product is continuously varying from zero to one as the
geometric rate changes from one to zero. This fact is used in the proof of the following
proposition, which bounds the constants Kj .

Proposition 4.7. There exists a function K(v) which is continuous and mono-
tonically decreasing from in�nity to one as v ranges from zero to in�nity and satis�es

Kj � K(�sep): (4.19)

Proof.

1

Kj
=

j�1Y
k=1

�y;k � �y;j
�y;k � �y;m

�

j�1Y
k=1

 
1�

�
1

1 + �sep

�k
! (4.20)



12 M. K. SCHNEIDER AND A. S. WILLSKY

where the inequality follows from Assumption 5. By Proposition 4.6, the product is
monotonically decreasing to a limit as j tends to in�nity. The limit is a continuous
function of �sep that varies monotonically from zero to one as �sep increases from zero
to in�nity. Denote the limit by 1=K(�sep). Then, Kj � K(�sep), as desired.

The bound on 1=(ik�1ujk
2) is stochastic because �1 = sT =ksk, where s is the

starting vector. By Assumption 1, one can write k�1ujk
2 = �s;j jwj j

2=ksk2, where
�s;j are eigenvalues of �s and wj are independent, zero mean, unit variance Gaussian
random variables. Thus,

1

ik�1ujk2
� ksk2 max

1�k�m
1

�s;kkjwkj2
; (4.21)

for m � i � j. Suppose that the �y;k satisfy

1

�y;kk
< ��k (4.22)

for constants � > 0 and 0 < � < 1. Then, (4.22) holds for �s;k for the same � and �
if �s = �y and for a di�erent � and � = 1 if �s / I . Let

�k = max
1�j�k

��j

jwj j2
: (4.23)

The quantity �k is an extremum of an independent, non-identically distributed se-
quence of random variables. Bounding the rate at which extrema grow is a classic
problem in statistics [5]. The following result states that the �k don't grow without
bound but converge in probability.

Proposition 4.8. Suppose w1; w2; w3; : : : is an independent sequence of zero
mean, unit variance Gaussian random variables. Let �k be as in (4.23). Then, the
�k converge in probability to a �nite-valued random variable.

Proof. First, we show the �k converge in distribution.

Pf�k �Mg =

kY
i=1

P

(
jwij �

r
��i

M

)
: (4.24)

Let

Fi(M) = P

(
jwij �

r
��i

M

)
: (4.25)

Then,

Fi(M) �

r
2

�

r
��i

M
; (4.26)

which satisfy the conditions of Proposition 4.6. Thus, limk!1 Pf�k �Mg = F (M),
for some distribution function F .

To show that the �k converge in probability, consider the following. For n > k
and " > 0,

Pf�n � �k > "g =

Z
Pf�n > "+ vj�k = vgdGk(v) (4.27)
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where Gk is the distribution of �k. Now,

Pf�n > "+ vj�k = vg = P

�
max

1�j�n�k+1
��j

jwj j2
>

"+ v

�k�1

�

� 1� F

�
"+ v

�k�1

�
:

(4.28)

Let V be such that 1� F (V ) < "=2 and N such that

1� F

�
"+ v

�k�1

�
<

"

2
for k � N . (4.29)

For n > k � N ,Z
Pf�n > "+ vj�k = vgdGk(v) =

Z V

0

Pf�n > "+ vj�k = vgdGk(v) +Z 1

V

Pf�n > "+ vj�k = vgdGk(v)

�

Z V

0

"

2
dGk(v) +

Z 1

V

dGk(v) < ":

(4.30)

Thus, the �k satisfy the Cauchy criterion and converge in probability to a random
variable whose distribution function is F [1].

4.3. Proof of Proposition 4.1. The results of the preceding two subsections
combine to form a proof of Proposition 4.1, as follows.

Proof. By Propositions 4.5 and 4.7,

mX
j=1

(�ex(p
T
1 y; : : : ; p

T
k y))jj � (�ex(y))jj =

mX
i=k+1

k�xC
T pik

2

� 4k�xkk�ykkyk
2K2(�sep)�m

m�1X
i=k

b i4c�1X
j=1

�z;j
�2y;j

1

(i�2j)
+ k�xk

m�1X
i=k

mX
j=b i4c

�z;j
�y;j

;

(4.31)

and

mX
j=1

(�ez (p
T
1 y; : : : ; p

T
k y))jj � (�ez (y))jj =

mX
i=k+1

k�xC
T pik

2

� 4k�ykkyk
2K2(�sep)�m

m�1X
i=k

b i4c�1X
j=1

�2z;j
�2y;j

1

(i�2j)
+

m�1X
i=k

mX
j=b i

4c

�2z;j
�y;j

: (4.32)

By Assumptions 4 and 2, �z;j=�y;j � ��j=�
2 and ��j=(

j�y;j) � � for a constant �.
Moreover, �z;i=�y;j � 1, in general. Thus

mX
j=1

(�ex(p
T
1 y; : : : ; p

T
k y))jj � (�ex(y))jj =

mX
i=k+1

k�xC
T pik

2

�
4k�xkk�ykkyk

2K2(�sep)�m�

�2(1� 1
2 )

m�1X
i=k

1

i=4
+
k�xk

�2

m�1X
i=k

(i� k + 4)��b i4c
; (4.33)
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and

mX
j=1

(�ez (p
T
1 y; : : : ; p

T
k y))jj � (�ez (y))jj =

mX
i=k+1

kC�xC
T pik

2

�
4k�ykkyk

2K2(�sep)�m

(1� 1
2 )

m�1X
i=k

1

i=2
+

m�1X
i=k

(i� k + 4)min

 ��b i
4c
�z;b i4c

�2
; ��b i4c

!
;

(4.34)

The increasing �m converge in probability to a random variable � by Proposition 4.8.
Thus, kyk2�m converge in probability to kyk2�. Equations (4.1) and (4.2) follow
immediately from (4.33) and (4.34).

The analysis presented here predicts actual convergence behaviors, as illustrated
in Section 6, and suggests practical methods for improving convergence, as described
in the next section.

5. Techniques for improving convergence properties. This section presents
two di�erent techniques for improving the convergence properties of the proposed al-
gorithm for computing error variances. These techniques can be used to guarantee
convergence in the case that a given estimation problem violates any of the assump-
tions of the convergence analysis. One can also use these techniques to increase  so
as to improve the theoretical convergence rates.

5.1. Preconditioning. In the estimation context, preconditioning consists of
determining an invertible transformation B such that estimating x from the trans-
formed data By can be theoretically done more e�ciently by the proposed algorithm
than estimating x directly from y. This will be the case if the covariances of the trans-
formed data, B�yB

T , and of the transformed signal, B�zB
T , satisfy Assumptions 3

and 5 of the convergence analysis but �y and �z don't. The convergence properties
will also be improved if  for the transformed problem is higher than for the untrans-
formed problem. The principal novelty of the preconditioning approaches described
here is that they focus on these particular goals, which are very di�erent than those
of standard CG preconditioning and di�er signi�cantly from those of preconditioning
for eigenvector algorithms [12]. Although the goals of the preconditioning discussed
here are di�erent than for standard CG, the implementation details are very similar.
In particular, explicit speci�cation of a transformation B is not necessarily required
for preconditioning techniques because preconditioning can be implemented in such a
way that only BTB-vector multiplies are needed instead of B- and BT -vector multi-
plies [3].

There are three di�erent implementations of preconditioning, each of which is
mathematically equivalent in exact arithmetic. Symmetric preconditioning simply
consists of applying the Krylov subspace algorithm to estimating x from By =
BCx + Bn. Essentially, x is estimated given linear functionals from Krylov sub-
spaces K(B�yB

T ; Bs; k) applied to By. There are also left and right preconditioning
techniques. The following discussion focuses on right preconditioning, and analogous
statements can be made concerning left preconditioning. Right preconditioning di�ers
from symmetric preconditioning in that it involves estimating x given linear function-
als from the Krylov subspaces K(�yB

TB; s; k) applied to BTBy. Note that this is
equivalent to the estimation performed in the case of symmetric preconditioning. Al-
though �yB

TB is not symmetric, it is self-adjoint with respect to the BTB inner
product. As in Algorithm 2.1, we do not compute the conjugate search directions
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for the preconditioned estimation problem using a standard preconditioned conju-
gate gradient iteration. Instead, we use Lanczos iterations that compute a series of
BTB-conjugate vectors that tri-diagonalize BTB�yB

TB, as follows:

�k = tTk �ytk (5.1)

hk = �ytk � �kqk � �k�1qk�1 (5.2)

dk = BTBhk (5.3)

�k+1 =
q
dTk hk (5.4)

qk+1 =
hk
�k+1

(5.5)

tk+1 =
dk
�k+1

(5.6)

where t1 = BTBs, q1 = s, q0 = 0, and �1 = 0. The qk are the B
TB-conjugate Lanczos

vectors that tri-diagonalize BTB�yB
TB, and the tk = BTBqk tri-diagonalize �y.

This latter tri-diagonal matrix can be factored, as in Algorithm 2.1, to compute the
�y-conjugate search directions pk. The only di�erence is that the tk replace the qk
in (2.13) and (2.14). Moreover, one can compute the �ltered backprojected search
directions by;k = �xC

T pk as a by-product. Overall, the steps of the preconditioned
Krylov subspace algorithm are the same as those in Algorithm 2.1 except that a
preconditioned Lanczos iteration replaces the normal Lanczos iteration. Note that
the Lanczos method for tri-diagonalizing a left-preconditioned system is the same
as the generalized Lanczos algorithm for solving generalized eigenvalue problems [9].
What follows are some examples of preconditioners in squared up form, BTB, that
one can consider using in various contexts.

One choice for a preconditioner when the noise covariance �n is not a multiple
of the identity but is invertible is to choose BTB = ��1n . This choice of precon-
ditioner will e�ectively shape the noise covariance to be a multiple of the identity.
The transformed data covariance, B�yB

T , and signal covariance, B�zB
T , will then

satisfy Assumption 3. Multiplying a vector by ��1n is often easy because �n is often
diagonal.

If the noise covariance is, or has been transformed to be, a multiple of the identity,
one can consider preconditioners that will maximally separate the eigenvalues of �y.
Such preconditioners can guarantee that the transformed data covariance, B�yB

T ,
satis�es Assumption 5 and can increase  to improve the bounds in Proposition 4.1.
Note that such preconditioning will do little to change the bound ��i on �z;i=�y;i in
Assumption 4 because the preconditioner will transform both �z;i and �y;i. The ideal
preconditioner would simply operate on the spectrum of �y and force a geometric
decay in the eigenvalues to the noise level �2. The geometric decay guarantees a
constant relative separation in the eigenvalues as measured by the ratio in Assump-
tion 5. However, operating on the spectrum is di�cult because one doesn't know the
eigendecomposition of �y. When the rows of C are orthogonal (which is often the
case in the applications mentioned in the introduction) and the eigendecomposition of
�x is known, one practical preconditioner is the following. Let �p be a matrix whose
eigenvectors are the same as those of �x and whose eigenvalues decay geometrically.
Then, let the preconditioner be given by BTB = C�pC

T . Although this precondi-
tioner has worked well in practice, as described in Section 6, we have no theoretical
results concerning the properties of the transformed estimation problem.
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One can use extensions of each of the stopping criteria of Section 3 in conjunction
with preconditioning; however, the preconditioner must satisfy certain assumptions
for the extension of the noiseless-estimation stopping criterion of Section 3.2 to be
used. What follows is a discussion of the extension and the underlying assumptions
concerning the preconditioner for the right-preconditioned case. Recall that the dis-
cussion in Section 3.2 assumes that the noise covariance is a multiple of the identity.
This assumption ensures that the Lanczos vectors tri-diagonalize both �y and �z so
that one can compute �ez;k(z) e�ciently. Now, suppose one is using a preconditioning
transformationB. Let �n0 = �n�(B

TB)�1. Assume that �n0 is positive semi-de�nite
so that it is a valid covariance matrix. Let n0 be a random vector with covariance �n0

and uncorrelated with z. Then, z0 = z + n0 has covariance �z0 = �z +�n0 . One can
compute �ez;k(z

0) e�ciently because the tk in (5.1)-(5.6) tri-diagonalize both �y and
�z0 . For �ez;k(z

0) to be useful, the pseudo-signal z0 should not have any signi�cant
components not in z. In particular, if one assumes that k�n0ukk � k�zukk for k large
enough that k�zukk is small, then �ez ;k(z

0) � �ez;k(z) for k reasonably large. Note
that an example of a preconditioner satisfying the above two assumptions is given by
BTB = ��1n . For this preconditioner, �n0 = 0; so, �ez;k(z) = �ez;k(z

0). Thus, one
can use �ez;k(z

0) as part of a stopping criterion in conjunction with preconditioning
provided that the preconditioner satis�es the two assumptions outlined above.

5.2. Using multiple starting vectors. Another technique for improving con-
vergence properties in the case where �y has repeated eigenvalues is to use a block
form of Algorithm 2.1. Speci�cally, consider the subspace spanned by the columns of�

S �yS �2
yS � � � �k�1

y S
�

(5.7)

where S is an m � r matrix of independent identically distributed random starting
vectors whose marginal statistics satisfy the restrictions for Algorithm 2.1 starting
vectors. Denote this subspace by K(�y; S; k). Then, one can consider forming m �
r matrices P1; : : : ; Pk whose columns form bases for K(�y; S; k) and which satisfy
P T
i �yPj = �ijI . Then, the linear least-squares estimate of x given the random vectors

P T
1 y; : : : ; P

T
k y and the associated error variances can be computing using the following

recursion:

x̂k(y) = x̂k�1(y) +By;kP
T
k y (5.8)

(�ex;k(y))ii = (�ex;k�1(y))ii �
rX

j=1

((By;k)ij)
2 (5.9)

with initial conditions

x̂0(y) = 0 (5.10)

(�ex;0(y))ii = (�x)ii (5.11)

where i = 1; : : : ; l and By;k = �xC
TPk.

The Pi and By;i can be computed using a block Lanczos algorithm [3]. The
block Lanczos iteration generates, according to the following recursions, a sequence
of orthogonal matrices Qi that are orthogonal to each other:

Ak = QT
k�yQk (5.12)

Hk = �yQk �QkAk �Qk�1Rk�1 (5.13)

Qk+1Rk+1 = Hk (QR factorization of Hk) (5.14)
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where Q1 and R1 are a QR factorization of the starting matrix S, and Q0 = 0. The
Qi block tri-diagonalize �y; so, one can write

�
Q1 � � � Qk

�T
�y

�
Q1 � � � Qk

�
= Ty;k (5.15)

where Ty;k is a block tri-diagonal matrix. Let Ly;k be the lower block bi-diagonal
Cholesky factor of Ty;k. Then, the Pi are de�ned by�

P1 � � � Pk
�
,
�
Q1 � � � Qk

�
L�Ty;k : (5.16)

Thus, the Pi can be computed from the Qi using a one-step recursion. Moreover, the
Bi = �xC

TPi can be computed as a by-product, as with a single starting vector. The
algorithm is summarized as follows.

Algorithm 5.1.

1. Initialize x̂0(y) = 0, (�ex;0(y))ii = (�x)ii for i = 1; : : : ; l.
2. Generate a random m� r matrix S to initialize the block Lanczos iteration.
3. At each step k,

(a) compute the block of search directions Pk and �ltered backprojections
By;k using a reorthogonalized block Lanczos iteration, and

(b) update

x̂k(y) = x̂k�1(y) + By;kP
T
k y (5.17)

(�ex;k(y))ii = (�ex;k�1(y))ii �
rX

j=1

((By;k)ij)
2 for i = 1; : : : ; l. (5.18)

The advantage of using the block form is that there may be small angles between
the subspaces K(�y; S; k) and multiple orthogonal eigenvectors of �y associated with
the same repeated eigenvalue, even in exact arithmetic. This is because each of the
columns of S may have linearly independent projections onto the eigenspace associated
with a repeated eigenvalue. Most of the analysis in Section 4 extends to the block
case. However, the proof in Section 4 regarding the convergence of extrema does not
extend to the block case. The following proposition is the main convergence result for
the block case. The proof is omitted.

Proposition 5.2. Suppose that
1. 1=(�y;i

i
r) < ��i for r de�ned in (5.19) and constants � and 0 < � < 1,

2. �y and �z have the same eigenvectors,
3. �z;i=�y;i � ��i=�

2 for �2 > 0 and a sequence ��i,
4. (�y;i��y;i+)=(�y;i+��y;m) is bounded away from zero, where i+ is the index

of the next smallest distinct eigenvalue of �y after i, and
5. (�y;i � �y;i+r)=(�y;i+r � �y;m) � �sep,r,

and let

r , 1 + 2(�sep,r +
q
�sep,r + �2sep,r): (5.19)

Then,

mX
j=1

(�ex;k(y)� �ex(y))jj �
�k�xkk�yk

�2(1� 1
2r
)(1� 1

4
p
r
)
�k=4r +

k�xk

�2

m�1X
i=k

(i� k + 4)��b i4c

(5.20)
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and

mX
j=1

(�ez;k(y)� �ez(y))jj �
�k�yk

(1� 1
2r
)(1� 1p

r
)
�k=2r +

m�1X
i=k

(i� k + 4)min

0
@ ��b i4c

�2
z;b i4c

�2
; ��b i4c

1
A ; (5.21)

where the random variable � depends on the starting matrix S.
There are a few di�erences between the statements of Propositions 4.1 and 5.2 that

address the possibility of repeated eigenvalues. Speci�cally, �sep,r measures the rela-
tive separation between eigenvalues whose indices di�er by r. Thus, the proposition es-
tablishes a convergence rate in the case where there may be groups of up to r repeated
or clustered eigenvalues. The additional assumption that (�y;i��y;i+)=(�y;i+ ��y;m)
is bounded away from zero is necessary to ensure that a product analogous to (4.11)
does not grow unbounded. One of the primary di�erences between Propositions 4.1
and 5.2 is that the term � in Proposition 4.1 is shown to be the limit of a sequence
of terms and, so, does not grow unbounded. We are not able to prove the analogous
result in Proposition 5.2. Thus, � may have a strong dependence on the starting
matrix S; although, our numerical results have not indicated that there is a strong
dependence on S.

One can use natural extensions of the preconditioning techniques and either of
the stopping criteria of Section 3 with Algorithm 5.1. Thus, Algorithm 5.1 is a
simple replacement for Algorithm 2.1 that can be used to obtain better convergence
properties when �y has repeated eigenvalues.

6. Numerical Examples. The following numerical examples illustrate the ac-
tual performance of the algorithm in relation to the theory of the previous sections.
There are four di�erent examples. Each one illustrates a di�erent aspect of the the-
ory. The estimation problems in each of the examples is di�erent. The breadth of
estimation problems provides a glimpse at the range of applicability of the Krylov
subspace estimation algorithm.

The results in Fig. 6.1 illustrate the relationship between the actual performance
of the algorithm and that predicted by Proposition 4.1. The estimation problem
consists of estimating 1024 samples of a stationary process, x, on a 1-D torus from
512 consecutive point measurements, y. The power spectral density (PSD) of x has a
geometric decay, Sxx(!) / (0:3)j!j and is normalized so that the variance of x is one.
Depicted in Fig. 6.1 are the fractions of error reduction obtained for estimating x,Pl

i=1(�ex;k(y)� �ex(y))iiPl
i=1(�x � �ex(y))ii

; (6.1)

and z, Pl
i=1(�ez;k(y)� �ez (y))iiPl

i=1(�z � �ez (y))ii
; (6.2)

where �n = �2I for �2 = 1 and �2 = 10�8. Note that the numerators in (6.1) and (6.2)
are the terms bounded in Proposition 4.1 and that the denominators are independent
of the iteration index, k. The reference values �ex(y) and �ez(y) are computed using
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A
B
C
D

Fig. 6.1. The results plotted here indicate that the convergence behavior is well-predicted by
Propositions 4.1 and 5.2. Curves A and C are the fractions of error reduction attained for estimating
x, as de�ned in (6.1), for measurement noise variances �2 of 1 and 10�8, respectively. Curves B
and D are the fractions of error reduction attained for estimating z, as de�ned in (6.2), for the
same measurement noise variances.

direct methods in MATLAB. The numerical errors in these direct methods tend to
dominate after several iterations especially for �2 = 10�8. Note that the eigenvalues
of �x and �z satisfy �x;i � �z;i � �x;l�m+i as a consequence of Cauchy's interlace
theorem [4] and the rows of the measurement matrix C being orthogonal. Since
the PSD (collection of eigenvalues) display a two-sided geometric decay, �z and, in
turn, �y = �z + �2I , may have eigenvalue multiplicities of order two. However, the
plots show a geometric rate of convergence consistent with a geometrical decay of �y

despite the fact that the block form of the algorithm is not used. A block form is
not necessary because roundo� error will introduce components of the eigenvectors of
�y into the Krylov subspaces that are not present in the starting vector [10]. Note
also that, as suggested by Proposition 4.1, the rate of convergence is di�erent for the
error variances at measurement locations, i.e. for estimates of z, (curves B and D in
Fig. 6.1) and away from measurement locations, i.e. for estimates of all of x (curves A
and C in Fig. 6.1). This proposition also suggest a dependence on �2 that is illustrated
in Fig. 6.1. Thus, Proposition 4.1 accurately predicts convergence behavior.

Fig. 6.2 depicts how the two stopping criteria relate to �ex;k(y) � �ex(y). The
process to be estimated is the same one previously described. The measurement
locations are chosen randomly. At any given location, the chance that there is a
measurement is 50% and is independent of there being a measurement at any other
sample point. The measurement noise covariance matrix is a diagonal matrix whose
elements vary according to the following triangle function:

(�n)ii =

(
9 i�1
bm=2c�1 + 1 for 1 � i � bm=2c

9 m�i
m�bm=2c�1 + 1 for bm=2c+ 1 � i � m:

(6.3)

A whitening preconditioner, ��1n , is used. The �gure contains plots of maxi(�ex;k(y)�
�ex(y))ii, maxi(�ez;k(z))ii, and �k;0 as de�ned in (3.1). Note that �ez;k(z) is a bound
on �ex;k(y)��ex(y), but the rates of convergence are di�erent. The �k;0, on the other
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Fig. 6.2. The results plotted here indicate how the computable quantities making up the two
stopping criteria of Section 3 relate to �ex;k(y) � �ex(y). Curve A is maxi(�ex;k(y) � �ex(y))ii,
curve B is maxi(�ez ;k(z))ii, and curve C is �k;0, as de�ned in (3.1), for Kwin = 0.

hand, are more erratic but decrease at a rate close to �ex;k(y) � �ex(y). Stopping
when �k;"min

falls below a threshold has been the most successful criterion because
the �k;"min

give a good indication of the rate of decrease of maxi(�ex;k(y)��ex(y))ii.
However, stopping when maxi(�ez;k(z))ii falls below a threshold is a preferable crite-
rion when the noise intensity is small primarily because maxi(�ez;k(z))ii provides a
tight bound on maxi(�ex;k(y)� �ex(y))ii.

A comparison among various techniques to accelerate convergence is provided in
Fig. 6.3. The estimation problem consists of estimating a stationary random �eld, x,
on a 32 � 32 toroidal grid from point measurements, y, of equal quality taken over
one 32� 16 rectangle. The PSD of x is proportional to 1=(j!j+1)3 and is normalized
so that the variance of x is one. The measurement noise covariance matrix, �n = 4I .
The plots are of the fraction of error reduction attained for estimating x, as de�ned
by (6.1), versus the Krylov subspace dimensions. Both a right-preconditioned and
block form are considered. The preconditioner has the form C�pC

T , as described in
Section 5.1. A simple block algorithm (BKSE) with a block size of 2 does not do much
better than the standard algorithm (KSE). However, a preconditioned block form
(PBKSE) requires considerably fewer iterations to achieve a given level of accuracy
than the standard algorithm. The error reduction attained by using the optimal
linear functionals of the data is also plotted in Fig. 6.3. The performance of PBKSE
is close to the optimal performance. Fig. 6.3 also shows the results of an experiment
to determine whether one can gain much by picking a good starting vector. A starting
vector with components in each of the �rst 60 eigenvectors of �y was used to start
a run. The results are plotted in Fig. 6.3 and are comparable to those of BKSE,
indicating that one does not gain much by picking a good starting vector. That the
choice of starting vector should have little impact on the results is a consequence of
Proposition 4.8.

Lastly, Fig. 6.5 shows how the number of iterations grows with the region size
for the problem of estimating deviations from mean sea surface temperature, x, from
the satellite data, y, in Fig. 6.4 [2]. The temperature deviations are estimated on a



KRYLOV SUBSPACE ESTIMATION 21

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Subspace Dimension

F
ra

ct
io

n 
of

 E
rr

or
 R

ed
uc

tio
n

Acceleration Techniques for a 2−D Process with Hyperbolic PSD
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Fig. 6.3. The results plotted here indicate that various acceleration techniques can be used to
achieve nearly optimal performance. The curves depict the fraction of error reduction for estimating
x for di�erent methods of choosing linear functionals of the data. The �gure shows the results for the
standard Krylov subspace estimation algorithm (KSE), a block form with a block size of 2 (BKSE),
and a preconditioned block form (PBKSE) also with a block size of 2. For comparison, the �gure
shows two additional curves. One (Start Vector) is of the results for Algorithm 2.1 modi�ed to start
with a linear combination of the �rst 60 eigenvectors of �y. The other (Bound on Gain) is of the
fraction of error reduction attained by using the optimal linear functionals of the data.
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Fig. 6.4. These data are satellite measurements of sea surface temperature. Measurements are
taken only along satellite tracks with no obscuring cloud cover.

rectangular grid and are assumed to be stationary with a Gaussian-shaped covariance
function. The width of the Gaussian is 60 pixels, and the height is 9 � 104. The
measurements are very scattered because they only exist along the satellite tracks
where there is no obscuring cloud cover (see Fig. 6.4). The measurement noise co-
variance, �n = 400I . Fig. 6.5 shows how the number of iterations needed to satisfy
�k;10�2 < 10�2 for Kwin = 8 grows as a region of interest grows. Note that the mea-
surement density in these regions varies from approximately 10� 20%. The growth
in the number of iterations is less than linear as the area of the region grows. One
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Fig. 6.6. The Krylov subspace estimation algorithm generated these error variances on a 1=6-
degree grid.

expects this behavior because one should need an increasing number of linear func-
tionals as the region grows, but the growth should be no more than linear in the
area, provided that the process is stationary (as it is in this case). Fig. 6.6 shows the
error variances for estimating sea surface temperature given all 42,298 measurements
in Fig. 6.4. Although the number of iterations is growing with problem size, the
number of iterations needed for this moderately large 320,400-dimensional estimation
problem is 249. That only a relatively small number of iterations were used indicates
that the algorithm has found a very low rank, but very good, estimator. Hence, the
algorithm described here can be used to solve high-dimensional, practical problems
with relatively few iterations.

7. Conclusion. In this paper, a statistical interpretation of CG has been used to
derive a Krylov subspace estimation algorithm. The algorithm computes a low-rank
approximation to the linear least-squares error reduction term which can be used to
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recursively compute linear least-squares estimates and error variances. An analysis of
the convergence properties explains behaviors of the algorithm. In particular, conver-
gence is more rapid at measurement locations than away from them when there are
scattered point measurements. Furthermore, the analysis indicates that a randomly
generated vector is a good starting vector. The theory also suggests preconditioning
methods for accelerating convergence. Preconditioning has been found to increase the
rate of convergence in those cases where convergence is not already rapid.

The low-rank approximation to the error reduction term is a very useful statisti-
cal object. The computation of estimates and error variances is just one application.
Another is the simulation of Gaussian random processes. Simulation typically re-
quires the computation of the square root of the covariance matrix of the process, a
potentially costly procedure. However, the Krylov subspace estimation algorithm can
be adapted to generate a low-rank approximation to the square root of the covari-
ance matrix. Yet another application is the fusion of existing estimates with those
generated by additional data. The resulting fusion algorithm can also be used as the
engine of a Kalman �ltering routine, thereby allowing the computation of estimates
of quantities evolving in time. This is the subject of ongoing research.
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