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Importance of Reduced-Rank Adaptive Filtering
o Wiener filter (WF) estimate of dg|n] from observation xg|n| is MMSE
optimal, Bayesian optimal if dy|n] and xy|n] are jointly Gaussian

e WF' is employed in many applications because it is easily implemented
and only relies on second order statistics

e However, WF depends upon inverse of covariance matrix, Ry,

e If xg[n] is high dimensional, reduced-rank approach is needed to reduce
computational complexity and lessen sample support requirements

e Current strong need for reduced-rank adaptive filtering arises from
growing disparity between number of degrees of freedom in 3G/4G
wireless systems and limitations on sample support due to high mobility
and /or high sensitivity to small perturbations
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MSNWF vs Principal Components Reduced-Rank Filtering

e Principal Components (PC) method: observation vector xg|n|
transtformed to lower dimensionality via a matrix composed of
eigenvectors belonging to principal eigenvalues

— principal eigenvectors need to be estimated and tracked
e PC method only takes into account statistics of xg|n|

o (Cross-Spectral Metric (CSM) of Goldstein and Reed: selects those
eigenvectors maximizing metric involving ry, 4,

— does not choose the principal eigenvectors, in general

e Goldstein, Reed, & Scharf ultimately presented the Multi-Stage Nested
Wiener Filter (MSNWEF):
— showed that rank reduction based on eigenvectors is suboptimum

— MSNWE does not require computation of eigenvectors and is thus
computationally advantageous as well
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Highly Successful Applications of MSNWF

e Goldstein and Reed have sucesstully applied MSNWEF to broad spectrum
of radar signal processing problems

e Honig applied MSNWF to Multi-User Access Interference (MAIT)
suppression for asynchronous CDMA operating in code-space where
weight vector dimensionality can be quite high

— showed number of MSNWF stages needed under heavy loading is mere
fraction of subspace dimension required by eigen-space based methods

e Zoltowski has applied the MSNWEF to interference suppression for GPS
receivers and equalization for the forward-link CDMA with long code

e Willsky has not applied MSNWF per se, but has applied Krylov
subspace estimation principles to the problem of error variance
estimation in multi-resolution image processing
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Full-Rank Wiener Filtering

dy [n] i@ =<0 [n]

xg|n| wy do|n]

(A) Weiner Filter

do|n] iqp - 0[]
N Z1 [n] A
CBO[H] . T1 w -, d()[n]
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Foundational Development of MSNWEF
e h; is Matched-Filter under AWGN assumption:

hy = Xode oV
HrXOadOHQ

e B, is blocking matrix:

Bh;=0 or B;=nulhi)?

e Solution to Wiener-Hopt equation associated with transformed system:

2 H
_ o5 T
w,, = R, 1I'Z1 dy € CN, where: R, = di Txpdy | e VXN
1 ’ I'x,.dy Rx1

e By design, cross-correlation between z;[n] and dy[n] is scalar multiple of
standard basis vector e;

— e; has a one in 7-th position: and zeroes elsewhere

Tzy,do = L1Txq,dg = HrXo,O'lo”2 € € R"
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Foundational Development of MSNWEF
e Thus, w,, = R 11rZ17d0 is first column of R 11:

e Applying matrix inversion lemma:

1

~ cCV
—R:1lr ’
X]_ X17d1

WZ1 — (1

e oy may be interpreted as scalar WF for estimating do[n] from error 1|n]

a1 = ||rX07d0||2<0-62ll T rg,leglerLdl)_l

e Scalar Wiener-Hopf equation is |E{|e1[n]|*}a1 = E{e&i[n]do[n]}|, where:

E{leanl’} = 04, — Ta, W1 = 04, — T 0, Reqy Txr .y

g{gﬂn]do[n]} — h{{rxlydl — ||rX0,do||2
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MSNWF After First Stage

do[n] iqp ~co[n]
xoln] = hy diln igfl[n] o do[n]
W Bl wl[n] w1 Czl [n]

e second stage of decomposition: output of WF wy with dimension N — 1
replaced by weighted error signal e5n] of WF that estimates output dy|n]
of MF hy from blocking-matrix output xs[n| = Box;|n]

e Following this through IV stages yields original formulation of MSNWF
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Original Structure of MSNWF
do
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e reduced-rank MSNWEF obtained by stopping decomposition after D — 1
steps and replacing last Wiener filter wp_1 by matched filter hp_;

e Note I: correlation matrix of d;[n|, ¢ =1,..., N, is tri-diagonal

e Note 2: correlation matrix of g;\n|,7 = 1,..., N, is diagonal = errors
are uncorrelated
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Filter Bank Implementation of MSNWF

— *jﬁ ay —dp[n]
TQ tQ dZ[n] 9 cil[n]

I o Oy I Y1)

e cach “desired” signal d;|n|,i =1,..., N, is output of length N filter
i—1
£ — (kn B;Z) h, € CV.
~1

e don’t need to form covariance matrix Ry,

e at i-th stage, WF is replaced by normalized matched filter equal to
cross-correlation between x;[n| and d;[n]
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Drawbacks of Original MSNWF Structure
do

X1 K €1 4_/

B = hy -
. e
€2 0w,
X

'BQ 20 -7

&) ‘ dN_Q &)
“ hyoo

B, Wyt

Xyoo = Ay = €y

e requires a forward recursion to determine h;’s
e backwards recursion then executed to determine scalar WE w;’s
e Drawback 1. computational burden of forming blocking matrices

e Drawback 2: scalar Weiner weights w; change completely each time a
new stage is added
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Example: Forward Link Equalization for 3G CDMA
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Average BER

Example: Forward Link Equalization for 3G CDMA
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Example: Forward Link Equalization for 3G CDMA
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Example: Forward Link Equalization for 3G CDMA
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Recent fundamental advances on MSNWEF
e Ricks and Goldstein showed that the MSNWEF can be implemented

without blocking matrices

— further reduces computational complexity of MSNWFEF relative to
full-rank RLS or PC based reduced-rank adaptive filtering

e Ricks and Goldstein developed a lattice/modular MSNWF structure
tfacilitating eflicient data-level implementation, alternative to covariance
level processing. Advantages of avoiding formation of covariance matrix:

— reduces computationally complexity

— facilitates real-time implementation

— there may not be enough sample support to form a reliable covariance
matrix estimate, especially when data vector is high-dimensional
and /or the signal statistics are rapidly time-varying

e Honig and Xiao have proven that stopping MSNWF' at stage D constrain
wo to lie in D-dimensional Krylov subspace

D—-1
Wo - Ta/nge{rxo’doy RXOrXO,d07 AR RXO rXo,do}
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Data-Level Lattice Implementation of MSNWEF

R I R 1 I s
}( %The filter can be:
~ truncated at any!
| | stage
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Data-Level Lattice Implementation of MSNWEF
Forward Recursion:
for 1 = 1 LD

ti = Zod nfxi-aln], 6 = t/|[til2
diln] = ti'x;_1[n], n=0,..,M —1
x;[n| = xz_l[n] dinlt;, n=0,..,. M —1
ép|n] = dp|n|

Backwards Recursz'on '

||3

fori = (D —1),..
M—1
Wit1 = {nzO z+1 }/{nZO |€i11[n ‘2}
ez[n] dz[n] — wz—|—1€z+1 n]a n=0,.,,M-—1

D
W(()D) _ Zl< 1 1+1 { I wz} hz
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Recent Advances on MSNWF by Zoltowski/Goldstein I

e Developed computationally efficient scheme for generating orthogonal
basis for Krylov subspace spanned by {rx, d,, RxoIxq.dgs - Rfo_lrxo,do}:

e cach successive member of basis is generated by multiplying previous
member by Ry, and subtracting off from resulting vector its components
onto only last two members of basis:

— At i-th stage, first compute: u; = Rg, ti—1
— next basis vector then computed as:

tz' = u; — (tﬁlui>ti_1 — (t£2u2‘>t2‘_2
— scale t; to have unit norm

e resulting orthogonal basis is identical to that generated via original
forward recursion of MSNWEF

— tri-diagonalizes Ry, at any stage,

— computed without need for forming blocking matrices
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Recent advances on MSNWF by Zoltowski/Goldstein 11

e Developed simple order-recursion for updating weight vector and MSE as
each new stage is added

e recall original MSNWF composed of two parts: forward recursion
followed by backward recursion

e [mportant to monitor Mean Square Error (MSE) as each new stage is
added (new stage = additional basis vector from forward recursion)

— sample support may be insufficient to support an additional stage
such that addition of such may cause MSE to increase

e Since backwards recursion coefficients completely change each time a new
basis vector is added, evaluation of its impact on MSE previously
required a backwards recursion for each new added stage

e Order-recursive MSNWF allows MSE to be updated at each stage along
with backwards-recursion coefficients via a simple recursion

— facilitates development of statistically based stopping rules
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Order-Recursive MSNWF

e At stage D, the orthogonal basis T(P) = t1,...,tp] € CY*P from
forward recursion yields length D observation

dP)[n] = TP xn] € CP,
e dP)[n| has D x D tri-diagonal covariance matrix:

R = £{dP)[n)]dP ¥ [p]} = TR, TD),

e Terminating at stage D, backwards recursion coeflicients are components
of WF w(?) that estimates do[n] from dP)[n):

—1 —1
W((iD) _ (R((jD)> 1'511,20 _ (T(D),HRXOT(D)> T(D),ero’do

e Rank D MSNWF WF:
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Order-Recursive MSNWF
e Rank D MSNWF WF:
W(()D) _ T(D)W((jD) _ (D) (T(D),HRXOT(D)>_1 T(D),ero’do.

e MSE at stage D: MSEP) = 030 _ r%,doWéD)

e (Goal: update both backwards recursion coeflicients W((jD) (change with

each new stage) and MSE™®) in terms of W((jD_l) and MSE(P—1

e Recall: dP)[n] = TW)Hx[n] has tri-diagonal covariance matrix:

0
T(D—l),HRX T(D—l)
RiiD) = T(D)’HRXOT(D) — 0 rp_1p| € CDXD
OT T}k)_l’D TD,D
e GGiven RSD_D from stage D — 1, new entries of R((jD) are:

TD—l,D = tg_lRXOtD and TD,D = ththD.
(D)

e only first element of ry 4, is nonzero = only first column of inverse of

D) . . .
R((j ) is needed = use matrix inversion lemma
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to =0, t1=rxydo/|[Txodoll2
u = Rxotl
_ _ +H
7“071—0, 7“171—13111
1) _ .—1 1) _ .—1
cll 71,15 ctV 11

first last
MSE(D = 0-30 — HrXO,dngcfgit)

v=u—riq1;1ti1—"ri2;1ti o

ri-1i = ||Vl
ti=v/ri-1;
u = Rxotz’
7“2"2' = tf{u

(i-1)

B = Tis — \7“2'—1,2‘|201ast,z'—1

—1) . 2c(i-1)
1) rs -1 (Z )7* ? 172 as
Cfgrsz - |: ﬁOt —|_ /BZ Clast,l o k o
- Vi 1,
i1
7 _ —1 _?ni_laiclast
Cl(ast) T /B’L 1

MSEY = 03 — |Ir.a 2

T(D) — [t17 ce 7tD]
Wil = T}

first

Table 1. Covariance-Level Order-Recursive MSNWE .
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Data-Level Order-Recursive MSNWF

e Proposed data-level, order-recursive MSNWE offers following benefits:

— updates backwards recursion coeflicients and MSE at each stage
— avoids computation of blocking matrices

— avoids computation of a covariance matrix (for which there may not
be sufficient sample support)
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d;[n] n::(i):ZHXZ_l[n], n=0,.,M-—1

x;|n| = x;_1|n| — di[n]t;;, n=0,..,.M —1
ri= X di [l

ra= 5 ldinll

Bi = Tii — \Ti—1,2|2cgt,—¢1—)1

=[5 [+ grrdigie [Irabel ™
cl) = g1 Tz—l,lz'cl(aﬁfl)

Table 2. Data-Level Order-Recursive MSNWF.
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Recent advances on MSNWF by Zoltowski/Goldstein III

e Recently discovered connection between MSNWEF and conjugate gradient

(CG) search method

e Inherent relationship between MSNWEF and CG follows from connection
between MSNWEF and Krylov subspace estimation

H H

— At each iteration, CG minimizes w” Ry, w + W X0

Krylov subspace generated by Ry, and ry, q,

Ixg,dg T TxydgW OVEr

e The fact that an iterative search algorithm is related to a reduced-rank
adaptive filtering scheme is surprising!

e Substituting expression for ¢V into w(()é) = T0cl) where

first

T = [t1,...,t;], vields a stage to stage direct update of weight vector

W(()i) = W(()i_l) + g + it

e where: -
g = TVcl) = nigi 1 + (it

las
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Idea for Further Research: Reduced-Rank DFE
e Reduced-rank Decision Feedback Equalizer (DFE) based on MSWNF

e Finite alphabet constraint on information symbols has heretofore not
been exploited in the MSNWF

— except in decision-directed mode, but even that is not straightforward
since MSWNEF' operates in block-processing mode.

e One proposed scheme for a reduced-rank DFE is a two-stage process:
— a training sequence is first processed novelly by the MSNWPEF in such a

way as to produce a low-rank estimate of a sparse channel

— covariance level version of the MSNWTF is then used in the second
stage to efficiently solve large dimension Wiener-Hopf equations,
where the “data’ includes past symbol estimates
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Selected Idea for Further Research: MUD

e Efficient implementation of multiple MSNWE’s running in parallel for
Multi-User Detection (MUD) employing parallel interference cancellation

e Fach MSNWF provides a reduced-rank MMSE estimate of the respective
signal from one of the multiple users

e Enhance interference suppression capability of any one MSNWE' by
subtracting estimates of the other users’ signals based on either hard or
soft decisions on their respective symbols = requires communication
amongst the multiple parallel MSNWE’s

e Incorporate recent developments on iterative/ Turbo MUD by Poor et al.
to diminish performance gap between single-user MMSE and multi-user

MMSE
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