REDUCED-RANK ADAPTIVE FILTERING AND APPLICATIONS

Michael D. Zoltowski (Part I by J. Scott Goldstein)

ICASSP 2001 Tutorial: Part II

7 May 2001 Research supported by Signals Communication and Surveillance Program AFOSR Program Director: Dr. Jon Sjogren

Importance of Reduced-Rank Adaptive Filtering

- Wiener filter (WF) estimate of $d_0[n]$ from observation $\mathbf{x}_0[n]$ is MMSE optimal, Bayesian optimal if $d_0[n]$ and $\mathbf{x}_0[n]$ are jointly Gaussian
- WF is employed in many applications because it is easily implemented and only relies on second order statistics
- \bullet However, WF depends upon inverse of covariance matrix, $\mathbf{R_{x_0}}$
- If $\mathbf{x}_0[n]$ is high dimensional, reduced-rank approach is needed to reduce computational complexity and lessen sample support requirements
- Current strong need for reduced-rank adaptive filtering arises from growing disparity between number of degrees of freedom in 3G/4G wireless systems and limitations on sample support due to high mobility and/or high sensitivity to small perturbations

MSNWF vs Principal Components Reduced-Rank Filtering

• Principal Components (PC) method: observation vector $\mathbf{x}_0[n]$ transformed to lower dimensionality via a matrix composed of eigenvectors belonging to principal eigenvalues

– principal eigenvectors need to be estimated and tracked

- PC method only takes into account statistics of $\mathbf{x}_0[n]$
- Cross-Spectral Metric (CSM) of Goldstein and Reed: selects those eigenvectors maximizing metric involving $\mathbf{r}_{\mathbf{x}_0,\mathbf{d}_0}$

- does not choose the principal eigenvectors, in general

- Goldstein, Reed, & Scharf ultimately presented the *Multi-Stage Nested Wiener Filter* (MSNWF):
 - showed that rank reduction based on eigenvectors is suboptimum
 - MSNWF does not require computation of eigenvectors and is thus computationally advantageous as well

Highly Successful Applications of MSNWF

- Goldstein and Reed have sucessfully applied MSNWF to broad spectrum of radar signal processing problems
- Honig applied MSNWF to Multi-User Access Interference (MAI) suppression for asynchronous CDMA operating in code-space where weight vector dimensionality can be quite high
 - showed number of MSNWF stages needed under heavy loading is mere fraction of subspace dimension required by eigen-space based methods
- Zoltowski has applied the MSNWF to interference suppression for GPS receivers and equalization for the forward-link CDMA with long code
- Willsky has not applied MSNWF per se, but has applied Krylov subspace estimation principles to the problem of error variance estimation in multi-resolution image processing

Full-Rank Wiener Filtering

(A) Weiner Filter

(B) Same but with Full Rank (Square) Matrix Pre-Filtering. $\mathbf{T}_1 = \begin{bmatrix} \mathbf{h}_1^H \\ \mathbf{B}_1 \end{bmatrix}$, where \mathbf{B}_1 is Blocking Matrix: $\mathbf{B}_1\mathbf{h}_1 = \mathbf{0}$.

Foundational Development of MSNWF

• \mathbf{h}_1 is Matched-Filter under AWGN assumption:

$$\mathbf{h}_1 = \frac{\mathbf{r}_{\mathbf{x_0}, \mathbf{d_0}}}{\|\mathbf{r}_{\mathbf{x_0}, \mathbf{d_0}}\|_2} \in \mathbf{C}^N$$

• \mathbf{B}_1 is blocking matrix:

$$\mathbf{B}_1\mathbf{h}_1 = \mathbf{0}$$
 or $\mathbf{B}_1 = \operatorname{null}(\mathbf{h}_1^H)^H$

• Solution to Wiener-Hopf equation associated with transformed system:

$$\mathbf{w}_{\mathbf{z}_1} = \mathbf{R}_{\mathbf{z}_1}^{-1} \mathbf{r}_{\mathbf{z}_1, \mathbf{d}_0} \in \mathbf{C}^N, \quad \text{where:} \quad \mathbf{R}_{\mathbf{z}_1} = \begin{bmatrix} \sigma_{d_1}^2 & \mathbf{r}_{\mathbf{x}_1, \mathbf{d}_1}^H \\ \mathbf{r}_{\mathbf{x}_1, \mathbf{d}_1} & \mathbf{R}_{\mathbf{x}_1} \end{bmatrix} \in \mathbf{C}^{N \times N}$$

• By design, cross-correlation between $\mathbf{z}_1[n]$ and $d_1[n]$ is scalar multiple of standard basis vector \mathbf{e}_1

 $-\mathbf{e}_i$ has a one in *i*-th position: and zeroes elsewhere

$$\mathbf{r}_{\mathbf{z_1},\mathbf{d_0}} = \mathbf{T}_1 \mathbf{r}_{\mathbf{x_0},\mathbf{d_0}} = \|\mathbf{r}_{\mathbf{x_0},\mathbf{d_0}}\|_2 \ \mathbf{e}_1 \in \mathbf{R}^N$$

Foundational Development of MSNWF

- Thus, $\mathbf{w}_{\mathbf{z}_1} = \mathbf{R}_{\mathbf{z}_1}^{-1} \mathbf{r}_{\mathbf{z}_1, \mathbf{d}_0}$ is first column of $\mathbf{R}_{\mathbf{z}_1}^{-1}$:
- Applying matrix inversion lemma:

$$\mathbf{w}_{\mathbf{z}_{1}} = \alpha_{1} \begin{bmatrix} 1 \\ -\mathbf{R}_{\mathbf{x}_{1}}^{-1} \mathbf{r}_{\mathbf{x}_{1},\mathbf{d}_{1}} \end{bmatrix} \in \mathbf{C}^{N},$$

• α_1 may be interpreted as scalar WF for estimating $d_0[n]$ from error $\varepsilon_1[n]$

$$\alpha_1 = \|\mathbf{r}_{\mathbf{x_0}, \mathbf{d_0}}\|_2 (\sigma_{d_1}^2 - \mathbf{r}_{\mathbf{x_1}, \mathbf{d_1}}^H \mathbf{R}_{\mathbf{x_1}}^{-1} \mathbf{r}_{\mathbf{x_1}, \mathbf{d_1}})^{-1}$$

• Scalar Wiener-Hopf equation is $\mathcal{E}\{|\varepsilon_1[n]|^2\}\alpha_1 = \mathcal{E}\{\varepsilon_1^*[n]d_0[n]\}\}$, where: $\mathcal{E}\{|\varepsilon_1[n]|^2\} = \sigma_{d_1}^2 - \mathbf{r}_{\mathbf{x_1},\mathbf{d_1}}^H \mathbf{w}_1 = \sigma_{d_1}^2 - \mathbf{r}_{\mathbf{x_1},\mathbf{d_1}}^H \mathbf{R}_{\mathbf{x_1}}^{-1} \mathbf{r}_{\mathbf{x_1},\mathbf{d_1}}$ $\mathcal{E}\{\varepsilon_1^*[n]d_0[n]\} = \mathbf{h}_1^H \mathbf{r}_{\mathbf{x_1},\mathbf{d_1}} = \|\mathbf{r}_{\mathbf{x_0},\mathbf{d_0}}\|_2$

- second stage of decomposition: output of WF \mathbf{w}_1 with dimension N-1replaced by weighted error signal $\varepsilon_2[n]$ of WF that estimates output $d_2[n]$ of MF \mathbf{h}_2 from blocking-matrix output $\mathbf{x}_2[n] = \mathbf{B}_2\mathbf{x}_1[n]$
- \bullet Following this through N stages yields original formulation of MSNWF

Original Structure of MSNWF

- reduced-rank MSNWF obtained by stopping decomposition after D-1 steps and replacing last Wiener filter \mathbf{w}_{D-1} by matched filter \mathbf{h}_{D-1}
- Note 1: correlation matrix of $d_i[n], i = 1, ..., N$, is tri-diagonal
- Note 2: correlation matrix of $\varepsilon_i[n], i = 1, ..., N$, is diagonal \Rightarrow errors are uncorrelated

Filter Bank Implementation of MSNWF

• each "desired" signal $d_i[n], i = 1, ..., N$, is output of length N filter

$$\mathbf{t}_i = \begin{pmatrix} i - 1 \\ \prod \\ k = 1 \end{pmatrix} \mathbf{B}_k^H \mathbf{h}_i \in \mathbf{C}^N.$$

- \bullet don't need to form covariance matrix $\mathbf{R}_{\mathbf{x}_0}$
- at *i*-th stage, WF is replaced by normalized matched filter equal to cross-correlation between $\mathbf{x}_i[n]$ and $d_i[n]$

Drawbacks of Original MSNWF Structure

- requires a *forward recursion* to determine \mathbf{h}_i 's
- backwards recursion then executed to determine scalar WF w_i 's
- Drawback 1: computational burden of forming blocking matrices
- Drawback 2: scalar Weiner weights w_i change completely each time a new stage is added

Example: Forward Link Equalization for 3G CDMA

Output SINR vs Time for Adaptive Chip-level Equalizers for CDMA Downlink.

Example: Forward Link Equalization for 3G CDMA

Recent fundamental advances on MSNWF

- Ricks and Goldstein showed that the MSNWF can be implemented without blocking matrices
 - further reduces computational complexity of MSNWF relative to full-rank RLS or PC based reduced-rank adaptive filtering
- Ricks and Goldstein developed a lattice/modular MSNWF structure facilitating efficient data-level implementation, alternative to covariance level processing. Advantages of avoiding formation of covariance matrix:
 - reduces computationally complexity
 - facilitates real-time implementation
 - there may not be enough sample support to form a reliable covariance matrix estimate, especially when data vector is high-dimensional and/or the signal statistics are rapidly time-varying
- Honig and Xiao have proven that stopping MSNWF at stage D constrain \mathbf{w}_0 to lie in D-dimensional Krylov subspace

$$\mathbf{w_0} \in range\{\mathbf{r_{x_0,d_0}}, \mathbf{R_{x_0}r_{x_0,d_0}}, ..., \mathbf{R_{x_0}^{D-1}r_{x_0,d_0}}\}$$

Data-Level Lattice Implementation of MSNWF

Forward Recursion:
for
$$i = 1, ..., D$$

 $\mathbf{t}_i = \sum_{n=0}^{M-1} d_{i-1}^*[n] \mathbf{x}_{i-1}[n], \quad \mathbf{t}_i = \mathbf{t}_i / ||\mathbf{t}_i||_2$
 $d_i[n] = \mathbf{t}_i^H \mathbf{x}_{i-1}[n], \quad n = 0, ..., M - 1$
 $\mathbf{x}_i[n] = \mathbf{x}_{i-1}[n] - d_i[n] \mathbf{t}_i, \quad n = 0, ..., M - 1$
 $\epsilon_D[n] = d_D[n]$
Backwards Recursion:
for $i = (D - 1), ..., 1$
 $w_{i+1} = \left\{\sum_{n=0}^{M-1} d_i[n] \epsilon_{i+1}^*[n]\right\} / \left\{\sum_{n=0}^{M-1} |\epsilon_{i+1}[n]|^2\right\}$
 $\epsilon_i[n] = d_i[n] - w_{i+1} \epsilon_{i+1}[n], \quad n = 0, ..., M - 1$
 $\mathbf{w}_0^{(D)} = \sum_{i=1}^{D} (-1)^{i+1} \left\{\prod_{\ell=1}^{i} w_i\right\} \mathbf{h}_i$

Recent Advances on MSNWF by Zoltowski/Goldstein I

- Developed computationally efficient scheme for generating *orthogonal* basis for Krylov subspace spanned by $\{\mathbf{r}_{\mathbf{x}_0,\mathbf{d}_0}, \mathbf{R}_{\mathbf{x}_0}\mathbf{r}_{\mathbf{x}_0,\mathbf{d}_0}, ..., \mathbf{R}_{\mathbf{x}_0}^{D-1}\mathbf{r}_{\mathbf{x}_0,\mathbf{d}_0}\}$:
- each successive member of basis is generated by multiplying previous member by $\mathbf{R}_{\mathbf{x}_0}$ and subtracting off from resulting vector its components onto only last two members of basis:

– At *i*-th stage, first compute: $\mathbf{u}_i = \mathbf{R}_{\mathbf{x}_0} \mathbf{t}_{i-1}$

– next basis vector then computed as:

$$\mathbf{t}_i = \mathbf{u}_i - (\mathbf{t}_{i-1}^H \mathbf{u}_i) \mathbf{t}_{i-1} - (\mathbf{t}_{i-2}^H \mathbf{u}_i) \mathbf{t}_{i-2}$$

– scale \mathbf{t}_i to have unit norm

- resulting orthogonal basis is identical to that generated via original forward recursion of MSNWF
 - tri-diagonalizes $\mathbf{R}_{\mathbf{x_0}}$ at any stage,
 - computed without need for forming blocking matrices

Recent advances on MSNWF by Zoltowski/Goldstein II

- Developed simple order-recursion for updating weight vector and MSE as each new stage is added
- *recall* original MSNWF composed of two parts: forward recursion followed by backward recursion
- Important to monitor Mean Square Error (MSE) as each new stage is added (new stage \equiv additional basis vector from forward recursion)
 - sample support may be insufficient to support an additional stage such that addition of such may cause MSE to increase
- Since backwards recursion coefficients completely change each time a new basis vector is added, evaluation of its impact on MSE previously required a backwards recursion for each new added stage
- Order-recursive MSNWF allows MSE to be updated at each stage along with backwards-recursion coefficients via a simple recursion
 - facilitates development of statistically based stopping rules

Order-Recursive MSNWF

• At stage D, the orthogonal basis $\mathbf{T}^{(D)} = [\mathbf{t}_1, \dots, \mathbf{t}_D] \in \mathbf{C}^{N \times D}$ from forward recursion yields length D observation

$$\mathbf{d}^{(D)}[n] = \mathbf{T}^{(D),H} \mathbf{x}_0[n] \in \mathbf{C}^D,$$

• $\mathbf{d}^{(D)}[n]$ has $D \times D$ tri-diagonal covariance matrix: $\mathbf{R}^{(D)}_{\mathbf{d}} = \mathcal{E}\{\mathbf{d}^{(D)}[n]\mathbf{d}^{(D),H}[n]\} = \mathbf{T}^{(D),H}\mathbf{R}_{\mathbf{x}_0}\mathbf{T}^{(D)}.$

• Terminating at stage D, backwards recursion coefficients are components of WF $\mathbf{w}_{\mathbf{d}}^{(D)}$ that estimates $d_0[n]$ from $\mathbf{d}^{(D)}[n]$:

$$\mathbf{w}_{\mathbf{d}}^{(D)} = \left(\mathbf{R}_{\mathbf{d}}^{(D)}\right)^{-1} \mathbf{r}_{\mathbf{d},\mathbf{d}_{\mathbf{0}}}^{(D)} = \left(\mathbf{T}^{(D),H}\mathbf{R}_{\mathbf{x}_{\mathbf{0}}}\mathbf{T}^{(D)}\right)^{-1} \mathbf{T}^{(D),H}\mathbf{r}_{\mathbf{x}_{\mathbf{0}},\mathbf{d}_{\mathbf{0}}}$$

• Rank D MSNWF WF:

$$\mathbf{w}_{0}^{(D)} = \mathbf{T}^{(D)} \mathbf{w}_{\mathbf{d}}^{(D)} = \mathbf{T}^{(D)} \left[\left(\mathbf{T}^{(D),H} \mathbf{R}_{\mathbf{x_{0}}} \mathbf{T}^{(D)} \right)^{-1} \mathbf{T}^{(D),H} \mathbf{r}_{\mathbf{x_{0},d_{0}}} \right]$$

• MSE at stage D:

$$MSE^{(D)} = \sigma_{d_0}^2 - \mathbf{r}_{\mathbf{x_0},\mathbf{d_0}}^H \mathbf{w}_0^{(D)}$$

Order-Recursive MSNWF

• Rank D MSNWF WF:

$$\mathbf{w}_{0}^{(D)} = \mathbf{T}^{(D)} \mathbf{w}_{\mathbf{d}}^{(D)} = \mathbf{T}^{(D)} \left(\mathbf{T}^{(D),H} \mathbf{R}_{\mathbf{x_{0}}} \mathbf{T}^{(D)} \right)^{-1} \mathbf{T}^{(D),H} \mathbf{r}_{\mathbf{x_{0},d_{0}}}.$$

• MSE at stage D: MSE^(D) = $\sigma_{d_0}^2 - \mathbf{r}_{\mathbf{x_0}, \mathbf{d_0}}^H \mathbf{w}_0^{(D)}$

- Goal: update both backwards recursion coefficients $\mathbf{w}_{\mathbf{d}}^{(D)}$ (change with each new stage) and $\mathrm{MSE}^{(D)}$ in terms of $\mathbf{w}_{\mathbf{d}}^{(D-1)}$ and $\mathrm{MSE}^{(D-1)}$
- Recall: $\mathbf{d}^{(D)}[n] = \mathbf{T}^{(D),H} \mathbf{x}_0[n]$ has tri-diagonal covariance matrix:

$$\mathbf{R}_{\mathbf{d}}^{(D)} = \mathbf{T}^{(D),H} \mathbf{R}_{\mathbf{x_0}} \mathbf{T}^{(D)} = \begin{bmatrix} \mathbf{T}^{(D-1),H} \mathbf{R}_{\mathbf{x_0}} \mathbf{T}^{(D-1)} & \mathbf{0} \\ r_{D-1,D} & r_{D,D} \end{bmatrix} \in \mathbf{C}^{D \times D}$$

- Given $\mathbf{R}_{\mathbf{d}}^{(D-1)}$ from stage D-1, new entries of $\mathbf{R}_{\mathbf{d}}^{(D)}$ are: $r_{D-1,D} = \mathbf{t}_{D-1}^{H} \mathbf{R}_{\mathbf{x_0}} \mathbf{t}_{D}$ and $r_{D,D} = \mathbf{t}_{D}^{H} \mathbf{R}_{\mathbf{x_0}} \mathbf{t}_{D}$.
- only first element of $\mathbf{r}_{\mathbf{d},\mathbf{d}_{\mathbf{0}}}^{(D)}$ is nonzero \Rightarrow only first column of inverse of $\mathbf{R}_{\mathbf{d}}^{(D)}$ is needed \Rightarrow use matrix inversion lemma

$$\begin{split} \frac{\mathbf{t}_{0} = \mathbf{0}, \quad \mathbf{t}_{1} = \mathbf{r}_{\mathbf{x}_{0},\mathbf{d}_{0}} / \|\mathbf{r}_{\mathbf{x}_{0},\mathbf{d}_{0}}\|_{2}}{\mathbf{u} = \mathbf{R}_{\mathbf{x}_{0}} \mathbf{t}_{1}} \\ \hline \mathbf{u} = \mathbf{R}_{\mathbf{x}_{0}} \mathbf{t}_{1} \\ \hline \mathbf{r}_{0,1} = 0, \quad \mathbf{r}_{1,1} = \mathbf{t}_{1}^{H} \mathbf{u} \\ \hline \mathbf{c}_{irre}^{(1)} = \mathbf{r}_{1,1}^{-1}, \quad \mathbf{c}_{isc}^{(s)} = \mathbf{r}_{1,1}^{-1} \\ \hline \mathbf{MSE}^{(1)} = \sigma_{d_{0}}^{2} - \|\mathbf{r}_{\mathbf{x}_{0},\mathbf{d}_{0}}\|_{2}^{2} \mathbf{c}_{isc}^{(1)} \\ \hline \mathbf{v} = \mathbf{u} - \mathbf{r}_{i-1,i-1} \mathbf{t}_{i-1} - \mathbf{r}_{i-2,i-1} \mathbf{t}_{i-2} \\ \hline \mathbf{v}_{i-1,i} = \|\mathbf{v}\|_{2} \\ \hline \mathbf{t}_{i} = \mathbf{v} / \mathbf{r}_{i-1,i} \\ \hline \mathbf{u} = \mathbf{R}_{\mathbf{x}_{0}} \mathbf{t}_{i} \\ \hline \mathbf{r}_{i,i} = \mathbf{t}_{i}^{H} \mathbf{u} \\ \hline \beta_{i} = \mathbf{r}_{i,i} - |\mathbf{r}_{i-1,i}|^{2} \mathbf{c}_{iss,i}^{(i-1)} \\ \hline \mathbf{c}_{inst}^{(i)} = \begin{bmatrix} \mathbf{c}_{irss}^{(i-1)} \\ 0 \end{bmatrix} + \beta_{i}^{-1} \mathbf{c}_{iss,1}^{(i-1),*} \begin{bmatrix} |\mathbf{r}_{i-1,i}|^{2} \mathbf{c}_{iss}^{(i-1)} \\ -\mathbf{r}_{i-1,i}^{*} \end{bmatrix} \\ \hline \mathbf{c}_{iss}^{(i)} = \beta_{i}^{-1} \begin{bmatrix} -\mathbf{r}_{i-1,i} \mathbf{c}_{iss,1}^{(i-1)} \\ 1 \end{bmatrix} \\ \hline \mathbf{MSE}^{(i)} = \sigma_{d_{0}}^{2} - \|\mathbf{r}_{\mathbf{x}_{0},\mathbf{d}_{0}}\|_{2}^{2} \mathbf{c}_{iss,1}^{(i)} \\ \hline \mathbf{T}_{iss}^{(D)} = \begin{bmatrix} \mathbf{t}_{1}, \dots, \mathbf{t}_{D} \end{bmatrix} \\ \hline \mathbf{w}_{0}^{(D)} = \mathbf{T}_{0}^{(D)} \mathbf{c}_{iss}^{(D)} \\ \hline \mathbf{w}_{0}^{(D)} = \mathbf{T}_{0}^{(D)} \mathbf{c}_{iss}^{(D)} \\ \hline \mathbf{MSE}^{(I)} = \mathbf{J}_{iss}^{(D)} \mathbf{C}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{T}_{iss}^{(D)} \mathbf{C}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{T}_{iss}^{(D)} \mathbf{C}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{T}_{0}^{(D)} \mathbf{c}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{T}_{iss}^{(D)} \mathbf{C}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{T}_{iss}^{(D)} \mathbf{C}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{U}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{U}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} = \mathbf{U}_{iss}^{(D)} \\ \hline \mathbf{W}_{0}^{(D)} \\ \hline$$

Data-Level Order-Recursive MSNWF

• Proposed data-level, order-recursive MSNWF offers following benefits:

- updates backwards recursion coefficients and MSE at each stage
- avoids computation of blocking matrices
- avoids computation of a covariance matrix (for which there may not be sufficient sample support)

$$\begin{split} & \text{for } i = 1, \dots, D \\ & \mathbf{t}_{i} = \sum_{n=0}^{M-1} d_{i-1}^{*}[n] \mathbf{x}_{i-1}[n], \quad \mathbf{t}_{i} = \mathbf{t}_{i}/\|\mathbf{t}_{i}\|_{2} \\ & d_{i}[n] = \mathbf{t}_{i}^{H} \mathbf{x}_{i-1}[n], \quad n = 0, \dots, M-1 \\ & \mathbf{x}_{i}[n] = \mathbf{x}_{i-1}[n] - d_{i}[n] \mathbf{t}_{i}, \quad n = 0, \dots, M-1 \\ & \mathbf{r}_{i-1,i} = \sum_{n=0}^{M-1} d_{i-1}^{*}[n] d_{i}[n] \\ & \mathbf{r}_{i,i} = \sum_{n=0}^{M-1} |d_{i}[n]|^{2} \\ & \beta_{i} = r_{i,i} - |r_{i-1,i}|^{2} c_{\text{last},i-1}^{(i-1)} \\ & \mathbf{c}_{\text{first}}^{(i)} = \begin{bmatrix} \mathbf{c}_{\text{first}}^{(i-1)} \\ 0 \end{bmatrix} + \beta_{i}^{-1} c_{\text{last},1}^{(i-1),*} \begin{bmatrix} |r_{i-1,i}|^{2} \mathbf{c}_{\text{last}}^{(i-1)} \\ -r_{i-1,i}^{*} \end{bmatrix} \\ & \mathbf{c}_{\text{last}}^{(i)} = \beta_{i}^{-1} \begin{bmatrix} -r_{i-1,i} \mathbf{c}_{\text{last}}^{(i-1)} \\ 1 \end{bmatrix} \\ & \text{MSE}^{(i)} = \sigma_{d_{0}}^{2} - \|\mathbf{r}_{\mathbf{x}_{0},\mathbf{d}_{0}}\|_{2}^{2} c_{\text{first},1}^{(i)} \\ & \mathbf{T}^{(D)} = [\mathbf{t}_{1}, \dots, \mathbf{t}_{D}] \\ & \mathbf{w}_{0}^{(D)} = \mathbf{T}^{(D)} \mathbf{c}_{\text{first}}^{(D)} \\ & \text{Table 2. Data-Level Order-Recursive MSNWF. } \end{split}$$

Recent advances on MSNWF by Zoltowski/Goldstein III

- Recently discovered connection between MSNWF and conjugate gradient (CG) search method
- Inherent relationship between MSNWF and CG follows from connection between MSNWF and Krylov subspace estimation
 - At each iteration, CG minimizes $\mathbf{w}^H \mathbf{R}_{\mathbf{x_0}} \mathbf{w} + \mathbf{w}^H \mathbf{r}_{\mathbf{x_0},\mathbf{d_0}} + \mathbf{r}_{\mathbf{x_0},\mathbf{d_0}}^H \mathbf{w}$ over Krylov subspace generated by $\mathbf{R}_{\mathbf{x_0}}$ and $\mathbf{r}_{\mathbf{x_0},\mathbf{d_0}}$
- The fact that an iterative search algorithm is related to a reduced-rank adaptive filtering scheme is surprising!
- Substituting expression for $\mathbf{c}_{\text{first}}^{(i)}$ into $\mathbf{w}_{0}^{(i)} = \mathbf{T}^{(i)}\mathbf{c}_{\text{first}}^{(i)}$. where $\mathbf{T}^{(i)} = [\mathbf{t}_{1}, \dots, \mathbf{t}_{i}]$, yields a stage to stage direct update of weight vector

$$\mathbf{w}_0^{(i)} = \mathbf{w}_0^{(i-1)} + \gamma_i \mathbf{g}_i + \phi_i \mathbf{t}_i$$

• where:

$$\mathbf{g}_i = \mathbf{T}^{(i)} \mathbf{c}_{ ext{\tiny last}}^{(i)} = \eta_i \mathbf{g}_{i-1} + \zeta_i \mathbf{t}_i$$

Idea for Further Research: Reduced-Rank DFE

- Reduced-rank Decision Feedback Equalizer (DFE) based on MSWNF
- Finite alphabet constraint on information symbols has heretofore not been exploited in the MSNWF
 - except in decision-directed mode, but even that is not straightforward since MSWNF operates in block-processing mode.
- One proposed scheme for a reduced-rank DFE is a two-stage process:
 - a training sequence is first processed novelly by the MSNWF in such a way as to produce a low-rank estimate of a sparse channel
 - covariance level version of the MSNWF is then used in the second stage to efficiently solve large dimension Wiener-Hopf equations, where the "data" includes past symbol estimates

Selected Idea for Further Research: MUD

- Efficient implementation of multiple MSNWF's running in parallel for Multi-User Detection (MUD) employing parallel interference cancellation
- Each MSNWF provides a reduced-rank MMSE estimate of the respective signal from one of the multiple users
- Enhance interference suppression capability of any one MSNWF by subtracting estimates of the other users' signals based on either hard or soft decisions on their respective symbols ⇒ requires communication amongst the multiple parallel MSNWF's
- Incorporate recent developments on iterative/Turbo MUD by Poor et al. to diminish performance gap between single-user MMSE and multi-user MMSE