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Importance of Reduced-Rank Adaptive Filtering

�Wiener �lter (WF) estimate of d0[n] from observation x0[n] is MMSE

optimal, Bayesian optimal if d0[n] and x0[n] are jointly Gaussian

� WF is employed in many applications because it is easily implemented

and only relies on second order statistics

� However, WF depends upon inverse of covariance matrix, Rx0

� If x0[n] is high dimensional, reduced-rank approach is needed to reduce

computational complexity and lessen sample support requirements

� Current strong need for reduced-rank adaptive �ltering arises from

growing disparity between number of degrees of freedom in 3G/4G

wireless systems and limitations on sample support due to high mobility

and/or high sensitivity to small perturbations
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MSNWF vs Principal Components Reduced-Rank Filtering

� Principal Components (PC) method: observation vector x0[n]

transformed to lower dimensionality via a matrix composed of

eigenvectors belonging to principal eigenvalues

{ principal eigenvectors need to be estimated and tracked

� PC method only takes into account statistics of x0[n]

� Cross-Spectral Metric (CSM) of Goldstein and Reed: selects those

eigenvectors maximizing metric involving rx0;d0

{ does not choose the principal eigenvectors, in general

� Goldstein, Reed, & Scharf ultimately presented the Multi-Stage Nested

Wiener Filter (MSNWF):

{ showed that rank reduction based on eigenvectors is suboptimum

{ MSNWF does not require computation of eigenvectors and is thus

computationally advantageous as well
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Highly Successful Applications of MSNWF

� Goldstein and Reed have sucessfully applied MSNWF to broad spectrum

of radar signal processing problems

� Honig applied MSNWF to Multi-User Access Interference (MAI)

suppression for asynchronous CDMA operating in code-space where

weight vector dimensionality can be quite high

{ showed number of MSNWF stages needed under heavy loading is mere

fraction of subspace dimension required by eigen-space based methods

� Zoltowski has applied the MSNWF to interference suppression for GPS

receivers and equalization for the forward-link CDMA with long code

� Willsky has not applied MSNWF per se, but has applied Krylov

subspace estimation principles to the problem of error variance

estimation in multi-resolution image processing
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Full-Rank Wiener Filtering
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Foundational Development of MSNWF

� h1 is Matched-Filter under AWGN assumption:

h1 =

rx0;d0

krx0;d0k2
2 CN :

� B1 is blocking matrix:
B1h1 = 0 or B1 = null(hH1 )
H

� Solution to Wiener-Hopf equation associated with transformed system:

wz1

= R�1
z1
rz1;d0 2 C
N ; where: Rz1

=
2

664 �2d1 rHx1;d1

rx1;d1 Rx1

3
775 2 CN�N

� By design, cross-correlation between z1[n] and d1[n] is scalar multiple of

standard basis vector e1

{ ei has a one in i-th position: and zeroes elsewhere

rz1;d0 = T1rx0;d0 = krx0;d0k2 e1 2 R
N
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Foundational Development of MSNWF

� Thus, wz1

= R�1
z1
rz1;d0 is �rst column of R�1
z1
:

� Applying matrix inversion lemma:

wz1

= �1
2

664 1

�R�1
x1
rx1;d1

3
775 2 CN ;

� �1 may be interpreted as scalar WF for estimating d0[n] from error "1[n]

�1 = krx0;d0k2(�
2

d1
� rHx1;d1R
�1

x1
rx1;d1)
�1

� Scalar Wiener-Hopf equation is Efj"1[n]j
2g�1 = Ef"�1[n]d0[n]g , where:

Efj"1[n]j
2g = �2d1 � rHx1;d1w1 = �2d1 � rHx1;d1R
�1

x1
rx1;d1

Ef"�1[n]d0[n]g = hH1 rx1;d1 = krx0;d0k2
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MSNWF After First Stage

"0[n]

^d0[n]�1

x1[n]

B1 w1

h1x0[n]

d0[n]

"1[n]d1[n]

^d1[n]

� second stage of decomposition: output of WF w1 with dimension N � 1

replaced by weighted error signal "2[n] of WF that estimates output d2[n]

of MF h2 from blocking-matrix output x2[n] = B2x1[n]

� Following this through N stages yields original formulation of MSNWF
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Original Structure of MSNWF
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� reduced-rank MSNWF obtained by stopping decomposition after D � 1

steps and replacing last Wiener �lter wD�1 by matched �lter hD�1

� Note 1: correlation matrix of di[n]; i = 1; : : : ; N; is tri-diagonal

� Note 2: correlation matrix of "i[n]; i = 1; : : : ; N; is diagonal ) errors

are uncorrelated
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Filter Bank Implementation of MSNWF

x0[n]

t2
t1

d1[n]

d2[n]

�2

^d2[n]

^d1[n]

^d0[n]�1

tN

dN [n]
�N

^dN�1[n]

� each \desired" signal di[n]; i = 1; : : : ; N; is output of length N �lter

ti =
0

B@i�1Y
k=1
BH
k

1
CAhi 2 CN :

� don't need to form covariance matrix Rx0

� at i-th stage, WF is replaced by normalized matched �lter equal to

cross-correlation between xi[n] and di[n]
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Drawbacks of Original MSNWF Structure

h1

B2

h2

�0

d0

d2

x0

x2

P

�2

wN�1

B1

x1

�1

d1

xN�3

BN�2

xN�2 = dN�1 = �N�1
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� requires a forward recursion to determine hi's

� backwards recursion then executed to determine scalar WF wi's

� Drawback 1: computational burden of forming blocking matrices

� Drawback 2: scalar Weiner weights wi change completely each time a

new stage is added
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Example: Forward Link Equalization for 3G CDMA
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Example: Forward Link Equalization for 3G CDMA
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Example: Forward Link Equalization for 3G CDMA
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Example: Forward Link Equalization for 3G CDMA
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Recent fundamental advances on MSNWF

� Ricks and Goldstein showed that the MSNWF can be implemented

without blocking matrices

{ further reduces computational complexity of MSNWF relative to

full-rank RLS or PC based reduced-rank adaptive �ltering

� Ricks and Goldstein developed a lattice/modular MSNWF structure

facilitating e�cient data-level implementation, alternative to covariance

level processing. Advantages of avoiding formation of covariance matrix:

{ reduces computationally complexity

{ facilitates real-time implementation

{ there may not be enough sample support to form a reliable covariance

matrix estimate, especially when data vector is high-dimensional

and/or the signal statistics are rapidly time-varying

� Honig and Xiao have proven that stopping MSNWF at stage D constrain

w0 to lie in D-dimensional Krylov subspace

w0 2 rangefrx0;d0;Rx0
rx0;d0; :::;R
D�1

x0

rx0;d0g
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Data-Level Lattice Implementation of MSNWF

w2w1

P

-

+

x1[n]P+
-

t1t
H

1

P

-

�1

d0[n]

�2P

-

+

+

�0

x0[n]

d1[n] d2[n]

P+
-

t2t
H

2

The �lter can be

truncated at any

stage

D �M � 1.
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Data-Level Lattice Implementation of MSNWF

Forward Recursion:

for i = 1; :::;D

ti =
M�1X

n=0
d�i�1[n]xi�1[n], ti = ti=ktik2

di[n] = tHi xi�1[n]; n = 0; ::;M � 1

xi[n] = xi�1[n]� di[n]ti; n = 0; ::;M � 1

�D[n] = dD[n]

Backwards Recursion:

for i = (D � 1); :::; 1

wi+1 =
8><

>:
M�1X

n=0
di[n]�
�

i+1[n]
9>=

>; =
8><

>:
M�1X

n=0
j�i+1[n]j
2

9>=
>;

�i[n] = di[n]� wi+1�i+1[n]; n = 0; ::; ;M � 1

w
(D)

0 =

DX
i=1
(�1)i+1

8><
>:

iY
`=1
wi

9>=
>;hi
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Recent Advances on MSNWF by Zoltowski/Goldstein I

� Developed computationally e�cient scheme for generating orthogonal

basis for Krylov subspace spanned by frx0;d0;Rx0
rx0;d0; :::;R
D�1

x0

rx0;d0g:

� each successive member of basis is generated by multiplying previous

member by Rx0

and subtracting o� from resulting vector its components

onto only last two members of basis:

{ At i-th stage, �rst compute: ui = Rx0
ti�1

{ next basis vector then computed as:

ti = ui � (tHi�1ui)ti�1 � (tHi�2ui)ti�2

{ scale ti to have unit norm

� resulting orthogonal basis is identical to that generated via original

forward recursion of MSNWF

{ tri-diagonalizes Rx0

at any stage,

{ computed without need for forming blocking matrices
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Recent advances on MSNWF by Zoltowski/Goldstein II

� Developed simple order-recursion for updating weight vector and MSE as

each new stage is added

� recall original MSNWF composed of two parts: forward recursion

followed by backward recursion

� Important to monitor Mean Square Error (MSE) as each new stage is

added (new stage � additional basis vector from forward recursion)

{ sample support may be insu�cient to support an additional stage

such that addition of such may cause MSE to increase

� Since backwards recursion coe�cients completely change each time a new

basis vector is added, evaluation of its impact on MSE previously

required a backwards recursion for each new added stage

� Order-recursive MSNWF allows MSE to be updated at each stage along

with backwards-recursion coe�cients via a simple recursion

{ facilitates development of statistically based stopping rules
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Order-Recursive MSNWF

� At stage D, the orthogonal basis T(D) = [t1; : : : ; tD] 2 C
N�D from

forward recursion yields length D observation

d(D)[n] = T(D);Hx0[n] 2 C
D;

� d(D)[n] has D �D tri-diagonal covariance matrix:

R
(D)

d = Efd(D)[n]d(D);H[n]g = T(D);HRx0
T(D):

� Terminating at stage D, backwards recursion coe�cients are components

of WF w
(D)

d that estimates d0[n] from d(D)[n]:

w
(D)

d =
 

R
(D)

d

!
�1

r
(D)

d;d0
=

 
T(D);HRx0
T(D)

!
�1

T(D);Hrx0;d0

� Rank D MSNWF WF:

w
(D)

0 = T(D)w
(D)

d = T(D)
2

4 T(D);HRx0
T(D)

!
�1

T(D);Hrx0;d0
3

5

� MSE at stage D:

MSE(D) = �2d0 � rH
x0;d0
w
(D)

0
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Order-Recursive MSNWF

� Rank D MSNWF WF:

w
(D)

0 = T(D)w
(D)

d = T(D)
 

T(D);HRx0
T(D)

!
�1

T(D);Hrx0;d0:

� MSE at stage D: MSE(D) = �2d0 � rH
x0;d0
w
(D)

0

� Goal: update both backwards recursion coe�cients w
(D)

d (change with

each new stage) and MSE(D) in terms of w
(D�1)

d and MSE(D�1)

� Recall: d(D)[n] = T(D);Hx0[n] has tri-diagonal covariance matrix:

R
(D)

d = T(D);HRx0
T(D) =

2
6666664

0

T(D�1);HRx0
T(D�1)

rD�1;D

0T r�D�1;D rD;D

3
7777775 2 C

D�D

� Given R
(D�1)

d from stage D � 1, new entries of R
(D)

d are:

rD�1;D = tHD�1Rx0
tD and rD;D = tHDRx0
tD:

� only �rst element of r
(D)

d;d0
is nonzero ) only �rst column of inverse of

R
(D)

d is needed ) use matrix inversion lemma
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t0 = 0; t1 = rx0;d0=krx0;d0k2

u = Rx0
t1

r0;1 = 0; r1;1 = tH1 u

c(1)
�rst

= r�11;1; c(1)
last

= r�11;1

MSE(1) = �2d0 � krx0;d0k
2

2c
(1)

�rst

v = u� ri�1;i�1ti�1 � ri�2;i�1ti�2

ri�1;i = kvk2

ti = v=ri�1;i

u = Rx0
ti

ri;i = tHi u

�i = ri;i � jri�1;ij
2c
(i�1)

last;i�1

c(i)
�rst

=
2

664 c
(i�1)

�rst
0

3
775 + ��1i c
(i�1);�

last;1

2
664 jri�1;ij
2c(i�1)

last

�r�i�1;i

3
775

c(i)
last

= ��1i
2

664 �ri�1;ic
(i�1)

last

1

3
775

MSE(i) = �2d0 � krx0;d0k
2

2c
(i)

�rst;1

T(D) = [t1; : : : ; tD]

w
(D)

0 = T(D)c(D)
�rst

Table 1. Covariance-Level Order-Recursive MSNWF.
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Data-Level Order-Recursive MSNWF

� Proposed data-level, order-recursive MSNWF o�ers following bene�ts:

{ updates backwards recursion coe�cients and MSE at each stage

{ avoids computation of blocking matrices

{ avoids computation of a covariance matrix (for which there may not

be su�cient sample support)
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for i = 1; : : : ;D

ti =
M�1X

n=0
d�i�1[n]xi�1[n], ti = ti=ktik2

di[n] = tHi xi�1[n]; n = 0; ::;M � 1

xi[n] = xi�1[n]� di[n]ti; n = 0; ::;M � 1

ri�1;i =
M�1X

n=0
d�i�1[n]di[n]

ri;i =
M�1X

n=0
jdi[n]j
2

�i = ri;i � jri�1;ij
2c
(i�1)

last;i�1

c(i)
�rst

=
2

664 c
(i�1)

�rst
0

3
775 + ��1i c
(i�1);�

last;1

2
664 jri�1;ij
2c(i�1)

last

�r�i�1;i

3
775

c(i)
last

= ��1i
2

664 �ri�1;ic
(i�1)

last

1

3
775

MSE(i) = �2d0 � krx0;d0k
2

2c
(i)

�rst;1

T(D) = [t1; : : : ; tD]

w
(D)

0 = T(D)c(D)
�rst

Table 2. Data-Level Order-Recursive MSNWF.
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Recent advances on MSNWF by Zoltowski/Goldstein III

� Recently discovered connection between MSNWF and conjugate gradient

(CG) search method

� Inherent relationship between MSNWF and CG follows from connection

between MSNWF and Krylov subspace estimation

{ At each iteration, CG minimizes wHRx0
w +wHrx0;d0 + r
H

x0;d0
w over

Krylov subspace generated by Rx0

and rx0;d0

� The fact that an iterative search algorithm is related to a reduced-rank

adaptive �ltering scheme is surprising!

� Substituting expression for c(i)
�rst

into w
(i)

0 = T(i)c(i)
�rst
. where

T(i) = [t1; : : : ; ti], yields a stage to stage direct update of weight vector

w
(i)

0 = w
(i�1)

0 + 
igi + �iti

� where:

gi = T(i)c(i)
last

= �igi�1 + �iti
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Idea for Further Research: Reduced-Rank DFE

� Reduced-rank Decision Feedback Equalizer (DFE) based on MSWNF

� Finite alphabet constraint on information symbols has heretofore not

been exploited in the MSNWF

{ except in decision-directed mode, but even that is not straightforward

since MSWNF operates in block-processing mode.

� One proposed scheme for a reduced-rank DFE is a two-stage process:

{ a training sequence is �rst processed novelly by the MSNWF in such a

way as to produce a low-rank estimate of a sparse channel

{ covariance level version of the MSNWF is then used in the second

stage to e�ciently solve large dimension Wiener-Hopf equations,

where the \data" includes past symbol estimates
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Selected Idea for Further Research: MUD

� E�cient implementation of multiple MSNWF's running in parallel for

Multi-User Detection (MUD) employing parallel interference cancellation

� Each MSNWF provides a reduced-rank MMSE estimate of the respective

signal from one of the multiple users

� Enhance interference suppression capability of any one MSNWF by

subtracting estimates of the other users' signals based on either hard or

soft decisions on their respective symbols ) requires communication

amongst the multiple parallel MSNWF's

� Incorporate recent developments on iterative/Turbo MUD by Poor et al.

to diminish performance gap between single-user MMSE and multi-user

MMSE
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