CONJUGATE GRADIENT ADAPTIVE FILTERING WITH APPLICATION TO SPACE-TIME PROCESSING FOR WIRELESS DIGITAL COMMUNICATIONS

Michael D. Zoltowski
SAM 2002

6-8 July 2002, Burlington, VT

Linear MMSE and Wiener-Hopf Equations

$$
E\left\{\left|d[n]-\mathbf{w}^{H} \mathbf{x}[n]\right|^{2}\right\}=\sigma_{d}^{2}-\mathbf{w}^{H} \mathbf{r}_{d x}-\mathbf{r}_{d x}^{H} \mathbf{w}+\mathbf{w}^{H} \mathbf{R}_{x x} \mathbf{w}
$$

- Gradient: $f(\mathbf{w})=\mathbf{R}_{x x} \mathbf{w}-\mathbf{r}_{d x}$
- Wiener-Hopf Eqns: $\mathbf{R}_{x x} \mathbf{w}=\mathbf{r}_{d x}$
- with sample data: $\hat{\mathbf{R}}_{x x} \mathbf{w}=\hat{\mathbf{r}}_{d x}$, where:

$$
\hat{\mathbf{R}}_{x x}=\frac{1}{K} \sum_{n=0}^{K-1} \mathbf{x}[n] \mathbf{x}^{H}[n] \quad(N \times N) \quad \hat{\mathbf{r}}_{d x}=\frac{1}{K} \sum_{n=0}^{K-1} \mathbf{x}[n] d^{*}[n](N \times 1)
$$

- when weight vector dimension N is large, finite average performance can be enhanced via reduced-rank or reduced dimension subspace processing

$$
\mathbf{w}=\alpha_{1} \mathbf{t}_{1}+\alpha_{2} \mathbf{t}_{2}+\ldots+\alpha_{D} \mathbf{t}_{D} \quad \text { where } \mathrm{D} \ll \mathrm{~N}
$$

$-\left\{\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{D}\right\}$: data-adaptive reduced-dimension subspace

Cayley-Hamilton Theorem and Krylov Subspaces

- Cayley-Hamilton Theorem dictates $\mathbf{R}_{x x}^{-1}$ may be expressed as a linear combination of powers of $\mathbf{R}_{x x}$:

$$
\mathbf{R}_{x x}^{-1}=\sum_{i=0}^{N-1} \alpha_{i} \mathbf{R}_{x x}^{i}=\alpha_{0} \mathbf{I}+\alpha_{1} \mathbf{R}_{x x}+\alpha_{2} \mathbf{R}_{x x}^{2}+\ldots+\alpha_{N-1} \mathbf{R}_{x x}^{N-1}
$$

- Substituting into the closed-form solution for the optimum Wiener-Hopf weights $\mathbf{w}=\mathbf{R}_{x x}^{-1} \mathbf{r}_{d x}$:

$$
\begin{aligned}
\mathbf{w} & =\left\{\sum_{i=0}^{N-1} \alpha_{i} \mathbf{R}_{x x}^{i}\right\} \mathbf{r}_{d x} \\
& =\alpha_{0} \mathbf{r}_{d x}++\alpha_{1} \mathbf{R}_{x x} \mathbf{r}_{d x}+\alpha_{2} \mathbf{R}_{x x}^{2} \mathbf{r}_{d x}+\ldots+\alpha_{N-1} \mathbf{R}_{x x}^{N-1} \mathbf{r}_{d x}
\end{aligned}
$$

- thus, we see how the Krylov subspace basis $\left\{\mathbf{r}_{d x}, \mathbf{R}_{x x} \mathbf{r}_{d x}, \mathbf{R}_{x x}^{2} \mathbf{r}_{d x}, \ldots, \mathbf{R}_{x x}^{N-1} \mathbf{r}_{d x}\right\}$ naturally arises
- theory of power iteration reveals that $\mathbf{R}_{x x}^{i} \mathbf{r}_{d x}$ converges rapidly to "largest" eigenvector of $\mathbf{R}_{x x}$ as i increases \Rightarrow leads to very good approximation below where $D \ll N$

$$
\mathbf{w} \approx \sum_{i=0}^{D-1} \beta_{i} \mathbf{R}_{x x}^{i} \mathbf{r}_{d x}
$$

Equivalence Between MWF and Conjugate Gradients

- deriving a direct (no backwards recursion) weight update for MWF each time a new "stage" is added lead to a two-step (coupled) recursion

$$
\begin{gathered}
\mathbf{w}_{i}=\mathbf{w}_{i-1}+\gamma_{i} \mathbf{g}_{i}+\phi_{i} \mathbf{t}_{i} \\
\mathbf{g}_{i}=\eta_{i} \mathbf{g}_{i-1}+\zeta_{i} \mathbf{t}_{i}
\end{gathered}
$$

- followed this through to a mathematical proof of exact equivalence between MWF and iterative search method of Conjugate Gradients (CG)
- At each iteration/step, CG minimizes $E\left\{\left|d[n]-\mathbf{w}^{H} \mathbf{x}[n]\right|^{2}\right\}=$ $\sigma_{d}^{2}+\mathbf{w}^{H} \mathbf{r}_{d x}+\mathbf{r}_{d x}^{H} \mathbf{w}+\mathbf{w}^{H} \mathbf{R}_{x x} \mathbf{w}$ over Krylov subspace generated by $\mathbf{R}_{x x}$ and $\mathbf{r}_{d x}, \Rightarrow$ same as MWF!!
- adding a stage to MWF equivalent to taking a step in CG search
- the fact that an iterative search algorithm is related to a reduced-rank adaptive filtering scheme is fascinating!

$\mathbf{w}_{0}=\mathbf{0}$
$\mathbf{u}_{1}=\hat{\mathbf{r}}_{d x}$
$\mathbf{t}_{1}=-\mathbf{u}_{1}$
$\ell_{1}=\mathbf{t}_{1}^{H} \mathbf{t}_{1}$
for $i=1, \ldots, D$
$\mathbf{v}=\mathbf{R}_{x x} \mathbf{u}_{i}$
$\eta_{i}=\ell_{i} / \mathbf{u}_{i}^{H} \mathbf{v}$
$\mathbf{w}_{i}=\mathbf{w}_{i-1}+\eta_{i} \mathbf{u}_{i}$
$\mathbf{t}_{i+1}=\mathbf{t}_{i}+\eta_{i} \mathbf{v}$
$\ell_{i+1}=\mathbf{t}_{i+1}^{H} \mathbf{t}_{i+1}$
$\Psi_{i}=\ell_{i+1} / \ell_{i}$
$\mathbf{u}_{i+1}=-\mathbf{t}_{i+1}+\Psi_{i} \mathbf{u}_{i}$

\mathbf{w}_{i}	objective function argument (EQ tap wts)
η_{i}	argument step size at step i
\mathbf{u}_{i}	conjugate direction at step i
ψ_{i}	conjugate direction step size at step i
\mathbf{t}_{i}	gradient (residual error) at step i
Description of Variables in CG Algorithm.	

$\mathbf{w}_{0}=\mathbf{0}$
$\mathbf{u}_{1}=\hat{\mathbf{r}}_{d x}$
$\mathbf{t}_{1}=-\mathbf{u}_{1}$
$\ell_{1}=\mathbf{t}_{1}^{H} \mathbf{t}_{1}$
for $i=1, \ldots, D$
$\mathbf{v}=\hat{\mathbf{R}}_{x x} \mathbf{u}_{i}$
$\eta_{i}=\ell_{i} / \mathbf{u}_{i}^{H} \mathbf{v}$
$\mathbf{w}_{i}=\mathbf{w}_{i-1}+\eta_{i} \mathbf{u}_{i}$
$\mathbf{t}_{i+1}=\mathbf{t}_{i}+\eta_{i} \mathbf{v}$
$\ell_{i+1}=\mathbf{t}_{i+1}^{H} \mathbf{t}_{i+1}$
$\Psi_{i}=\ell_{i+1} / \ell_{i}$
$\mathbf{u}_{i+1}=-\mathbf{t}_{i+1}+\Psi_{i} \mathbf{u}_{i}$

- straightforward per sample update CG (one step per unit time) has complexity comparable to RLS
- CG uses $\mathbf{R}_{x x}$ directly
- in contrast, RLS recursively updates $\mathbf{R}_{x x}^{-1} \Rightarrow$ nonlinearly related
- results in a number of VIP advantages of Direct CG over Block Minimum Variance or RLS

Auxiliary Vector Method Equivalent to Constrained Steepest Desce

$\mathbf{w}_{1}=\hat{\mathbf{r}}_{d x}$
$\mathbf{P}^{\perp}=\mathbf{I}-\hat{\mathbf{r}}_{d x} \hat{\mathbf{r}}_{d x}^{H} / \hat{\mathbf{r}}_{d x}^{H} \hat{\mathbf{r}}_{d x}$
for $i=1, \ldots, D$
$\mathbf{g}_{i}=\mathbf{P}^{\perp}\left\{\hat{\mathbf{R}}_{x x} \mathbf{w}_{i}-\hat{\mathbf{r}}_{d x}\right\}$
$\alpha_{i}=\mathbf{g}_{i}^{H} \hat{\mathbf{R}}_{x x} \mathbf{g}_{i} / \mathbf{w}_{i}^{H} \hat{\mathbf{R}}_{x x} \mathbf{w}_{i}$
$\mathbf{w}_{i+1}=\mathbf{w}_{i}-\alpha_{i} \mathbf{g}_{i}$

AV Method

- "adding Auxiliary Vector" \Rightarrow step of Constrained Steepest Descent search
- there is order in the universe!
- same computational advantages as CG since AV works on $\hat{\mathbf{R}}_{x x}$ directly

$\mathbf{w}_{0}=$ "smart" initialize or	
opt value from prior block	
$\mathbf{t}_{1}=\hat{\mathbf{R}}_{x x} \mathbf{w}_{0}-\hat{\mathbf{r}}_{d x}$	$\mathbf{W}_{1}=\mathbf{r}_{d x}$
$\mathbf{u}_{1}=-\mathbf{t}_{1}$	$\tilde{\mathbf{r}}_{d x}=\hat{\mathbf{r}}_{d x} / \sqrt{\hat{\mathbf{r}}_{d x}^{H} \hat{\mathbf{r}}_{d x}}$
$\ell_{1}=\mathbf{t}_{1}^{H} \mathbf{t}_{1}$	
for $i=1, \ldots, D$	
$\mathbf{v}=\mathbf{R}_{x x} \mathbf{u}_{i}$	$\mathbf{u}_{i}=\mathbf{R}_{x x} \mathbf{W}_{i} \mathbf{r}_{i}=\mathbf{u}_{i}-\left(\tilde{\mathbf{r}}^{H} \mathbf{u}_{i}\right) \tilde{\mathbf{r}}^{\text {a }}$
$\eta_{i}=\ell_{i} / \mathbf{u}_{i}^{H} \mathbf{v}$	$\mathbf{g}_{i}=\mathbf{u}_{i}-\left(\tilde{\mathbf{r}}_{d x} \mathbf{u}_{i}\right) \widetilde{\mathbf{r}}_{d x}$
$\mathbf{w}_{i}=\mathbf{w}_{i-1}+\eta_{i} \mathbf{u}_{i}$	$\mathbf{v}_{i}=\mathbf{R}_{x x} \mathbf{g}_{i}$
$\mathbf{t}_{i+1}=\mathbf{t}_{i}+\eta_{i} \mathbf{V}$	$\alpha_{i}=\mathbf{g}_{i}^{H} \mathbf{v}_{i} / \mathbf{w}_{i}^{H} \mathbf{u}_{i}$
$\ell_{i+1}=\mathbf{t}_{i+1}^{H} \mathbf{t}_{i+1}$	$\mathbf{w}_{i+1}=\mathbf{w}_{i}-\alpha_{i} \mathbf{g}_{i}$
$\Psi_{i}=\ell_{i+1} / \ell_{i}$	CSD-AV Method
$\mathbf{u}_{i+1}=-\mathbf{t}_{i+1}+\Psi_{i} \mathbf{u}_{i}$	
CG-MWF.	

- In solving an N-dimensional quadratric optimization problem, CG is guaranteed to get to the minimum in N steps, whereas convergence with Steepest Descent is only guaranteed with an infinite number of steps
- $\hat{\mathbf{R}}_{x x}=\sum_{\ell=n-M}^{n} \mathbf{x}[n] \mathbf{X}^{H}[n]=\mathbf{X X}{ }^{H}$

$\mathbf{w}_{0}=\mathbf{0}$
$\mathbf{u}_{1}=\hat{\mathbf{r}}_{d x}$
$\mathbf{t}_{1}=-\mathbf{u}_{1}$
$\ell_{1}=\mathbf{t}_{1}^{H} \mathbf{t}_{1}$
for $i=1, \ldots, D$
$\mathbf{v}=\mathbf{X} \mathbf{X}^{H} \mathbf{u}_{i}$
$\eta_{i}=\ell_{i} / \mathbf{u}_{i}^{H} \mathbf{v}$
$\mathbf{w}_{i}=\mathbf{w}_{i-1}+\eta_{i} \mathbf{u}_{i}$
$\mathbf{t}_{i+1}=\mathbf{t}_{i}+\eta_{i} \mathbf{v}$
$\ell_{i+1}=\mathbf{t}_{i+1}^{H} \mathbf{t}_{i+1}$
$\Psi_{i}=\ell_{i+1} / \ell_{i}$
$\mathbf{u}_{i+1}=-\mathbf{t}_{i+1}+\Psi_{i} \mathbf{u}_{i}$

- both \mathbf{X} and \mathbf{X}^{H} are Toeplitz \Rightarrow use circulant extension of Toeplitz matrix "trick" twice successively
- FFT processing for reduced complexity \Rightarrow one-time FFT of data block outside CG loop (invoke Parseval's theorem)
- No need to compute or store $\hat{\mathbf{R}}_{x x}$ (no need to form \mathbf{X} either)

Circulant Extension for Toeplitz Matrix-Vector Product

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{ccc}
r_{0} & r_{-1} & r_{-2} \\
r_{1} & r_{0} & r_{-1} \\
r_{2} & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
d . c . \\
d . c .
\end{array}\right]=\left[\begin{array}{cccccc}
r_{0} & r_{-1} & r_{-2} & \vdots & r_{2} & r_{1} \\
r_{1} & r_{0} & r_{-1} & \vdots & r_{-2} & r_{2} \\
r_{2} & r_{1} & r_{0} & \vdots & r_{-1} & r_{-2} \\
\cdots & \cdots & \cdots & \vdots & \cdots & \cdots \\
r_{-2} & r_{2} & r_{1} & \vdots & r_{0} & r_{-1} \\
r_{-1} & r_{-2} & r_{2} & \vdots & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
0 \\
0
\end{array}\right]
$$

- Multiplication by circulant matrix effects circular convolution
- (i) compute 5 pt DFT of $\left\{r_{0}, r_{1}, r_{2}, r_{-2}, r_{-1}\right\}$, (ii) compute 5 pt DFT of $\left\{x_{1}, x_{2}, x_{3}, 0,0\right\}$, (iii) pt-wise multiply, (iv) compute 5 pt inverse DFT of pt-wise product, (v) retain only first 3 values
- choose FFT length equal to power of two

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{ccc}
r_{0} & r_{-1} & r_{-2} \\
r_{1} & r_{0} & r_{-1} \\
r_{2} & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
d . c . \\
\text { d.c. } \\
\text { d.c. } \\
\text { d.c. } \\
\text { d.c. }
\end{array}\right]=\left[\begin{array}{ccccccccc}
r_{0} & r_{-1} & r_{-2} & \vdots & 0 & 0 & 0 & r_{2} & r_{1} \\
r_{1} & r_{0} & r_{-1} & \vdots & r_{-2} & 0 & 0 & 0 & r_{2} \\
r_{2} & r_{1} & r_{0} & \vdots & r_{-1} & r_{-2} & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & r_{2} & r_{1} & \vdots & r_{0} & r_{-1} & r_{-2} & 0 & 0 \\
0 & 0 & r_{2} & \vdots & r_{1} & r_{0} & r_{-1} & r_{-2} & 0 \\
0 & 0 & 0 & \vdots & r_{2} & r_{1} & r_{0} & r_{-1} & r_{-2} \\
r_{-2} & 0 & 0 & \vdots & 0 & r_{2} & r_{1} & r_{0} & r_{-1} \\
r_{-1} & r_{-2} & 0 & \vdots & 0 & 0 & r_{2} & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

- (i) compute 8 pt FFT of $\left\{r_{0}, r_{1}, r_{2}, 0,0,0, r_{-2}, r_{-1}\right\}$, (ii) compute 8 pt FFT of $\left\{x_{1}, x_{2}, x_{3}, 0,0,0,0,0,0\right\}$, (iii) pt-wise multiply, (iv) compute 8 pt inverse FFT of pt-wise product, (v) retain only first 3 values

```
L=block length; N=FFT length; M=weight vector length; N=M+L-1
X=fft(xd,N); F=(exp(-j*2*pi/N).[0:N-1]').*conj(X);
w=zeros(M,1); u=rdx; g=-u;
l=g'*g;
for i=1:Nstop,
d=ifft(X.*fft(u,N),N); y=d(end-L+1:end,1);
z=ifft(F.*fft(y,N),N); v=z(end-M+1:end,1);
eta=l/(u'*v);
w_old=w;
w=w_old+eta*u;
g_old=g;
g=g_old+eta* v;
l_old=l;
l=g*g;
psi=l/l_old;
uold=u;
u=-g+psi*u_old;
end
```

$\mathbf{w}_{0}=\mathbf{0}$
$\mathbf{u}_{1}=\mathbf{r}_{d x}=\boldsymbol{H} \boldsymbol{\delta}_{d}$
$\mathbf{t}_{1}=-\mathbf{u}_{1}$
$\ell_{1}=\mathbf{t}_{1}^{H} \mathbf{t}_{1}$
for $i=1, \ldots, D$
$\mathbf{v}=\mathcal{H}^{H} \mathcal{H}^{H} \mathbf{u}_{i}$
$\mathbf{v}=\mathbf{v}+\sigma_{n}^{2} \mathbf{u}_{i}$
$\eta_{i}=\ell_{i} / \mathbf{u}_{i}^{H} \mathbf{v}$
$\mathbf{w}_{i}=\mathbf{w}_{i-1}+\eta_{i} \mathbf{u}_{i}$
$\mathbf{t}_{i+1}=\mathbf{t}_{i}+\eta_{i} \mathbf{v}$
$\ell_{i+1}=\mathbf{t}_{i+1}^{H} \mathbf{t}_{i+1}$
$\Psi_{i}=\ell_{i+1} / \ell_{i}$
$\mathbf{u}_{i+1}=-\mathbf{t}_{i+1}+\Psi_{i} \mathbf{u}_{i}$

- $\mathbf{R}_{x x}=\mathcal{H H}^{H}+\sigma_{n}^{2} \mathbf{I}$, where \mathcal{H} is channel convolution matrix and σ_{n}^{2} is noise power
- both $\boldsymbol{\mathcal { H }}$ and $\boldsymbol{\mathcal { H }}^{H}$ are Toeplitz \Rightarrow use circulant extension of Toeplitz matrix "trick" twice successively
- FFT processing for reduced complexity \Rightarrow one-time FFT of channel outside CG loop (invoke Parseval's theorem)
- No need to compute or store $\mathbf{R}_{x x}$ (no need to form \mathcal{H} either)

```
N=FFT length; M=weight vector length;
H=fft(conj(h),N); F=(exp(-j*2*pi/N).\hat{[0:N-1]').*H; C=conj([H(1,1); H(end:-1:2 1)]);}
w=zeros(M,1); u=h; g= - u;
l=g*g;
for i=1:Nstop,
U=F.*fft(u,N); P=[U(1,1); U(end:-1:2,1)];
z=ifft(C.*P,N); v=z(end:-1:end-M+1,1) +noisepwr*u;
eta=l/(u'*v);
w_old=w;
w=w_old}+\mathrm{ +ta* u;
g_old=g;
g=g_old+eta*v;
l_old=l;
l=g*g;
psi=l/l_old;
uold=u;
u=-g+psi*u_old;
end

\section*{Simulation Parameters for FFT Based CG for QPSK EQ}
- QPSK information symbols transmitted through simple frequency selective channel
- channel: \(70 \%\) ghost at half-symbol delay with a phase of \(165^{\circ}\)
- with pulse shaping, channel is of length 13
- equalizer length is 20
- FFT length is 32

\section*{"Back of the Envelope" Calculation}

Example: equalizer length, \(N_{g}=20\), and FFT length is \(N=32\)
- Outside C-G loop, compute one-time FFT of channel
- Inside C-G loop, matrix vector product \(\mathbf{R}_{x x} \mathbf{u}\) where \(\mathbf{R}_{x x}\) is \(N_{g} \times N_{g}\) and \(\mathbf{u}\) is \(N_{g} \times 1\) is replaced by
(a) \(N \mathrm{pt}\) FFT of \(\mathbf{u} \quad\) e.g. requires 80 mults
(b) Two pt-wise products of \(N \times 1\) vectors e.g. requires \(2^{*} 32=64\) mults
(c) N pt inverse FFT e.g. requires 80 mults
- \(\mathbf{R}_{x x}\) is \(20 \times 20\) and \(\mathbf{u}\) is \(20 \times 1\), such that computing \(\mathbf{R}_{x x} \mathbf{u}\) requires \(\approx 20^{2}=400\) mults
- even for this simple example where \(N\) is quite small, the computation needed for the matrix-vector product at \(\mathbf{E A C H}\) step of CG is reduced FROM \(20^{2}=400\) TO \(2 * 80+64=224\) mults
- further, don't ever need to form or store \(\mathbf{R}_{x x}\)

FFT Direct CG Applied to Equalization of QPSK Recvd Signal Constellation Computing Full Inverse




FFT Indirect CG Applied to Equalization of QPSK Recvd Signal Constellation Computing Full Inverse



\begin{tabular}{|l|}
\hline\(\hat{\mathbf{r}}_{d x}[0]=\hat{\mathcal{H}} \boldsymbol{\delta}_{d}\) \\
\hline\(\hat{\mathbf{R}}_{x x}[0]=\hat{\boldsymbol{\mathcal { H }}} \hat{\boldsymbol{\mathcal { H }}}^{H}+\hat{\sigma}_{n}^{2} \mathbf{I}\) \\
\hline for \(n=1, \ldots, N\) \\
\(\hat{\mathbf{R}}_{x x}[n]=\left\{\left(n+k_{w}\right) \hat{\mathbf{R}}_{x x}[n-1]+\right.\) \\
\\
\(\left.\mathbf{x}[n] \mathbf{x}^{H}[n]\right\} /\left(n+k_{w}+1\right)\) \\
\hline\(\hat{\mathbf{r}}_{d x}[n]=\left\{\left(n+k_{w}\right) \hat{\mathbf{r}}_{d x}[n-1]+\right.\) \\
\\
\(\left.d^{*}[n] \mathbf{x}[n]\right\} /\left(n+k_{w}+1\right)\) \\
\hline \(\mathbf{w}_{0}[n]=\mathbf{w}_{D}[n-1]\) \\
\hline \(\mathbf{u}_{1}[n]=\mathbf{u}_{D}[n-1]\) \\
\hline for \(i=1, \ldots, D(\operatorname{typ} . D=1)\) \\
\hline \(\mathbf{v}[n]=\hat{\mathbf{R}}_{x x}[n] \mathbf{u}_{i}[n]\) \\
\hline\(\eta_{i}[n]=\mathbf{t}_{i}^{H}[n] \mathbf{t}_{i}[n] / \mathbf{u}_{i}^{H}[n] \mathbf{v}[n]\) \\
\hline \(\mathbf{w}_{i}[n]=\mathbf{w}_{i-1}[n]+\eta_{i}[n] \mathbf{u}_{i}[n]\) \\
\hline \(\mathbf{t}_{i+1}[n]=\hat{\mathbf{R}}_{x x}[n] \mathbf{w}_{i}[n]-\hat{\mathbf{r}}_{d x}[n]\) \\
\hline\(\Psi_{i+1}[n]=\mathbf{t}_{i+1}^{H}[n] \mathbf{t}_{i+1}[n] / \mathbf{t}_{i}^{H}[n] \mathbf{t}_{i}[n]\) \\
\hline \(\mathbf{u}_{i+1}[n]=-\mathbf{t}_{i+1}[n]+\Psi_{i}[n] \mathbf{u}_{i}[n]\) \\
\hline
\end{tabular}

Hybrid per-sample CG.
- Key feature of per sample update \(\mathrm{CG} \Rightarrow\) amenability to "smart" initialization
- equalization example: employ semi-blind (training sequence plus signal properties) estimate of propagation channel to form initial estimate of both \(\mathbf{R}_{x x}\) and \(\mathbf{r}_{d x}\)
- then weighted running estimate of \(\mathbf{R}_{x x}\) and weighted decision directed updating of \(\mathbf{r}_{d x}\)
- not possible with RLS since it recursively updates \(\mathbf{R}_{x x}^{-1} \Rightarrow\) how to "smartly" initialize \(\mathbf{R}_{x x}^{-1}\) ???

\section*{CG Applied to DFE}
- Wiener-Hopf equations for Decision Feedback Equalizer:
\[
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{R}_{y y} & \mathbf{R}_{y s} \\
\mathbf{R}_{y s}^{H} & \mathbf{R}_{s s}
\end{array}\right]\left[\begin{array}{l}
\mathbf{g}_{F} \\
\mathbf{g}_{B}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{r}_{d y} \\
\mathbf{r}_{d s}
\end{array}\right], } \\
& \mathbf{r}_{d y}=\sigma_{s}^{2} \boldsymbol{\mathcal { H }} \boldsymbol{\delta}_{D} \\
& \mathbf{R}_{y y}=\sigma_{s}^{2} \boldsymbol{\mathcal { H }} \mathcal{H}^{H}+N_{0} \mathbf{I}_{N_{F}} \\
& \mathbf{R}_{y s}=\sigma_{s}^{2} \boldsymbol{\mathcal { H }} \boldsymbol{\Delta}_{K} \\
& \mathbf{R}_{s s}=\sigma_{s}^{2} \mathbf{I}_{N_{B}} \\
& \mathbf{r}_{d s}=\mathbf{0}
\end{aligned}
\]
- Digital TV application: number of feedforward taps, \(N_{F}\), and number of feedback taps, \(N_{B}\), are on the order of 500
- ideal application for CG!
- if initial channel estimate is available, can initialize all matrices needed to form Wiener-Hopf equations

\section*{Channels Employed in Digital TV Example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Chan } & \multicolumn{3}{|c|}{ Path 2 } & \multicolumn{3}{c|}{ Path 3 } & \multicolumn{3}{c|}{ Path 4 } \\
\cline { 2 - 10 } & Delay & Gain & Phase & Delay & Gain & Phase & Delay & Gain & Phase \\
\hline 1 & 19.4 & -6.45 & 291.2 & 176.7 & -0.97 & 303.5 & 228.1 & -0.28 & 245.0 \\
\hline 2 & -13.8 & -7.98 & 146.8 & 84.9 & -2.39 & 285.2 & 220.2 & -5.59 & 342.8 \\
\hline 3 & -27.2 & -13.86 & 91.5 & 68.8 & -4.97 & 289.0 & 197.7 & -4.67 & 182.5 \\
\hline 4 & 8.9 & -8.33 & 328.3 & 25.6 & -4.99 & 299.1 & 26.8 & -1.67 & 0.8 \\
\hline
\end{tabular}

Delays, gains (dB), and phases of the paths relative to main path of four simulated channels Including power of all four interfering paths, \(S N R=30 \mathrm{~dB}\).

\section*{Channel Estimates for Digital TV Example}


True and estimated and channel impulse responses at an SNR of 30 dB .

\section*{Various Initialization Schemes for a DFE}
A. Minimal initialization. This is identical to the first set of results above.
B. Matrix initialization. In this case, we initialize the correlation matrices using the actual channel and noise variance \(N_{0}\).
C. Feedback tap initialization. Here, we fill the feedback taps with training symbols prior to beginning adaptation. The correlation matrices are not initialized using the channel.
D. Matrix and feedback tap initialization. This is a combination of cases B and C. We initialize the matrices using the actual channel and noise variance, and we fill the feedback taps with training symbols.
E. Matrix and feedback tap initialization with equalizer tap weight initialization. This case is identical to case D except, in addition, we provide a simple initialization of the equalizer tap weights using the negative of the post-cursor portion of the channel.

PFE Learning Curves for CG-MSNWF with Various Initializations
\(k_{w}=100\)


Zoomed-In DFE Learning Curves for CG-MSNWF
\[
k_{w}=100
\]


\section*{Summary: Advantages of CG over RLS}
- CG implicitly effects reduced-rank adaptive filtering thereby offering performance benefits over RLS under low sample support conditions
- CG works on \(\mathbf{R}_{x x}\) directly \(\Rightarrow\) RLS implicitly/explicitly works on \(\mathbf{R}_{x x}^{-1}\)
- CG can take advantage of initial estimate of \(\mathbf{R}_{x x}\); e.g., formed while searching for training sequence or from channel estimate formed simply from correlation performed to detect training sequence
- CG can exploit Toeplitz structure of \(\mathbf{R}_{x x}\) to use FFT's for reduced computational complexity ( \(\mathbf{R}_{x x}^{-1}\) is not Toeplitz)
- CG can work with a weighted combination of an \(\mathbf{R}_{x x}\) estimated directly from data and an \(\mathbf{R}_{x x}\) formed from parametric model
- CG is not incommensurate with Principal Components \(\Rightarrow\) can apply CG in a space spanned by eigenvectors for array processing applications
- for spectral estimation via \(S(\theta)=1 / \mathbf{s}^{H}(\theta) \mathbf{R}_{x x}^{-1} \mathbf{s}(\theta) \Rightarrow\) CG solution to \(\mathbf{R}_{x x} \mathbf{w}(\theta)=\mathbf{s}(\theta)\) used to initialize CG sol'n \(\mathbf{R}_{x x} \mathbf{w}(\theta+\Delta)=\mathbf{s}(\theta+\Delta)\) (might require only single step of CG for each search angle)```

