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Linear MMSE and Wiener-Hopf Equations

Efjd[n]�wHx[n]j2g = �2d �wHrdx � rHdxw +wHRxxw

� Gradient: f(w) = Rxxw � rdx

� Wiener-Hopf Eqns: Rxxw = rdx

� with sample data: ^Rxxw = ^rdx, where:

^Rxx =

1
K

K�1X
n=0
x[n]xH [n] (N �N) ^rdx =

1
K

K�1X
n=0
x[n]d�[n] (N � 1)

� when weight vector dimension N is large, �nite average performance can

be enhanced via reduced-rank or reduced dimension subspace processing

w = �1t1 + �2t2 + ::: + �DtD where D << N

{ ft1; t2; :::; tDg: data-adaptive reduced-dimension subspace
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Cayley-Hamilton Theorem and Krylov Subspaces

� Cayley-Hamilton Theorem dictates R�1
xx may be expressed as a linear

combination of powers of Rxx:

R�1
xx =

N�1X
i=0
�iR
i

xx = �0I + �1Rxx + �2R
2

xx + :::+ �N�1R
N�1

xx

� Substituting into the closed-form solution for the optimum Wiener-Hopf

weights w = R�1
xxrdx:

w = f
N�1X

i=0
�iR
i

xxgrdx

= �0rdx + +�1Rxxrdx + �2R
2

xxrdx + ::: + �N�1R
N�1

xx rdx

� thus, we see how the Krylov subspace basis

frdx;Rxxrdx;R
2

xxrdx; :::;R
N�1

xx rdxg naturally arises

� theory of power iteration reveals that Ri
xxrdx converges rapidly to

\largest" eigenvector of Rxx as i increases ) leads to very good

approximation below where D << N

w �
D�1X

i=0
�iR
i

xxrdx
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Equivalence Between MWF and Conjugate Gradients

� deriving a direct (no backwards recursion) weight update for MWF each

time a new \stage" is added lead to a two-step (coupled) recursion

wi = wi�1 + igi + �iti

gi = �igi�1 + �iti

� followed this through to a mathematical proof of exact equivalence

between MWF and iterative search method of Conjugate Gradients (CG)

{ At each iteration/step, CG minimizes Efjd[n]�wHx[n]j2g =

�2d +w
Hrdx + r
H

dxw +wHRxxw over Krylov subspace generated by

Rxx and rdx, ) same as MWF!!

� adding a stage to MWF equivalent to taking a step in CG search

� the fact that an iterative search algorithm is related to a reduced-rank

adaptive �ltering scheme is fascinating!
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w0 = 0

u1 = ^rdx

t1 = �u1

`1 = tH1 t1

for i = 1; : : : ;D

v = Rxxui

�i = `i=u
H

i v

wi = wi�1 + �iui

ti+1 = ti + �iv

`i+1 = tHi+1ti+1

	i = `i+1=`i

ui+1 = �ti+1 + 	iui

Direct Block CG-MSNWF.

wi objective function argument (EQ tap wts)

�i argument step size at step i

ui conjugate direction at step i

 i conjugate direction step size at step i

ti gradient (residual error) at step i

Description of Variables in CG Algorithm.
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w0 = 0

u1 = ^rdx

t1 = �u1

`1 = tH1 t1

for i = 1; : : : ; D

v = ^Rxxui

�i = `i=u
H

i v

wi = wi�1 + �iui

ti+1 = ti + �iv

`i+1 = tHi+1ti+1

	i = `i+1=`i

ui+1 = �ti+1 + 	iui

Cov. Block CG-MSNWF.

� straightforward per sample update

CG (one step per unit time) has

complexity comparable to RLS

� CG uses Rxx directly

� in contrast, RLS recursively updates

R�1
xx ) nonlinearly related

� results in a number of VIP advantages

of Direct CG over Block Minimum

Variance or RLS
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Auxiliary Vector Method Equivalent to Constrained Steepest Descent

w1 = ^rdx

P? = I� ^rdx^r
H

dx=^r
H

dx^rdx

for i = 1; : : : ; D

gi = P?f ^Rxxwi � ^rdxg

�i = gHi
^Rxxgi=w
H

i

^Rxxwi

wi+1 = wi � �igi

AV Method

� \adding Auxiliary Vector")step of

Constrained Steepest Descent search

� there is order in the universe!

� same computational advantages as

CG since AV works on ^Rxx directly
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w0 = \smart" initialize or

opt value from prior block

t1 = ^Rxxw0 � ^rdx

u1 = �t1

`1 = tH1 t1

for i = 1; : : : ; D

v = ^Rxxui

�i = `i=u
H

i v

wi = wi�1 + �iui

ti+1 = ti + �iv

`i+1 = tHi+1ti+1

	i = `i+1=`i

ui+1 = �ti+1 + 	iui

CG-MWF.

w1 = ^rdx

~rdx = ^rdx=
r

^rHdx^rdx

for i = 1; : : : ;D

ui = ^Rxxwi

gi = ui � (~rHdxui)~rdx

vi = ^Rxxgi

�i = gHi vi=w
H

i ui

wi+1 = wi � �igi

CSD-AV Method

� In solving an N -dimensional quadratric optimization problem, CG is

guaranteed to get to the minimum in N steps, whereas convergence with

Steepest Descent is only guaranteed with an in�nite number of steps
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w0 = 0

u1 = ^rdx

t1 = �u1

`1 = tH1 t1

for i = 1; : : : ;D

v = XXHui

�i = `i=u
H

i v

wi = wi�1 + �iui

ti+1 = ti + �iv

`i+1 = tHi+1ti+1

	i = `i+1=`i

ui+1 = �ti+1 + 	iui

Direct Block CG-MSNWF.

� ^Rxx =

nX
`=n�M

x[n]xH [n] = XXH

where X contains the \snapshots"

(as columns) obtained by sliding

over one sample at a time

� both X and XH are Toeplitz )

use circulant extension of Toeplitz

matrix \trick" twice successively

� FFT processing for reduced

complexity ) one-time FFT of

data block outside CG loop (invoke

Parseval's theorem)

� No need to compute or store ^Rxx

(no need to form X either)
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Circulant Extension for Toeplitz Matrix-Vector Product

2
6666664
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3
7777775

=
2

6666664
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r1 r0 r�1

r2 r1 r0
3
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x2
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)

2
666666666666664
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777777777777775

=
2

66666666666666666664
r0 r�1 r�2
... r2 r1

r1 r0 r�1
... r�2 r2

r2 r1 r0
... r�1 r�2

� � � � � � � � � ... � � � � � �

r�2 r2 r1
... r0 r�1

r�1 r�2 r2
... r1 r0

3
77777777777777777775

2
66666666666666666664
x1

x2
x3

� � �
0

0
3

77777777777777777775

� Multiplication by circulant matrix e�ects circular convolution

� (i) compute 5 pt DFT of fr0; r1; r2; r�2; r�1g, (ii) compute 5 pt DFT of

fx1; x2; x3; 0; 0g, (iii) pt-wise multiply, (iv) compute 5 pt inverse DFT of

pt-wise product, (v) retain only �rst 3 values

� choose FFT length equal to power of two
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� (i) compute 8 pt FFT of fr0; r1; r2; 0; 0; 0; r�2; r�1g, (ii) compute 8 pt

FFT of fx1; x2; x3; 0; 0; 0; 0; 0; 0g, (iii) pt-wise multiply, (iv) compute 8

pt inverse FFT of pt-wise product, (v) retain only �rst 3 values
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L=block length; N=FFT length; M=weight vector length; N=M+L-1

X=�t(xd,N); F=(exp(-j*2*pi/N).^[0:N-1]').*conj(X);

w=zeros(M,1); u=rdx; g=-u;

l=g'*g;

for i=1:Nstop,

d=i�t(X.*�t(u,N),N); y=d(end-L+1:end,1);

z=i�t(F.*�t(y,N),N); v=z(end-M+1:end,1);

eta=l/(u'*v);

w old=w;

w=w old+eta*u;

g old=g;

g=g old+eta*v;

l old=l;

l=g'*g;

psi=l/l old;

uold=u;

u=-g+psi*u old;

end
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w0 = 0

u1 = rdx =H�d

t1 = �u1

`1 = tH1 t1

for i = 1; : : : ;D

v =HHHui

v = v + �2nui

�i = `i=u
H

i v

wi = wi�1 + �iui

ti+1 = ti + �iv

`i+1 = tHi+1ti+1

	i = `i+1=`i

ui+1 = �ti+1 + 	iui

Indirect CG.

� Rxx =HH
H + �2nI, whereH is

channel convolution matrix and �2n

is noise power

� bothH andHH are Toeplitz )

use circulant extension of Toeplitz

matrix \trick" twice successively

� FFT processing for reduced

complexity ) one-time FFT of

channel outside CG loop (invoke

Parseval's theorem)

� No need to compute or store Rxx

(no need to form H either)

Michael D. Zoltowski 12



N=FFT length; M=weight vector length;

H=�t(conj(h),N); F=(exp(-j*2*pi/N).^[0:N-1]').*H; C=conj([H(1,1) ; H(end:-1:2,1)]);

w=zeros(M,1); u=h; g= - u;

l=g'*g;

for i=1:Nstop,

U=F.*�t(u,N); P=[U(1,1) ; U(end:-1:2,1)];

z=i�t(C.*P,N); v=z(end:-1:end-M+1,1) +noisepwr*u;

eta=l/(u'*v);

w old=w;

w=w old+eta*u;

g old=g;

g=g old+eta*v;

l old=l;

l=g'*g;

psi=l/l old;

uold=u;

u=-g+psi*u old;

end
Michael D. Zoltowski 13



Simulation Parameters for FFT Based CG for QPSK EQ

� QPSK information symbols transmitted through simple frequency

selective channel

� channel: 70% ghost at half-symbol delay with a phase of 165�

� with pulse shaping, channel is of length 13

� equalizer length is 20

� FFT length is 32
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\Back of the Envelope" Calculation

Example: equalizer length, Ng = 20, and FFT length is N = 32

� Outside C-G loop, compute one-time FFT of channel

� Inside C-G loop, matrix vector product Rxxu where Rxx is Ng �Ng and

u is Ng � 1 is replaced by

(a) N pt FFT of u e.g. requires 80 mults

(b) Two pt-wise products of N � 1 vectors e.g. requires 2*32 = 64 mults

(c) N pt inverse FFT e.g. requires 80 mults

� Rxx is 20� 20 and u is 20� 1, such that computing Rxxu requires

� 202 = 400 mults

� even for this simple example where N is quite small, the computation

needed for the matrix-vector product at EACH step of CG is reduced

FROM 202 = 400 TO 2 � 80 + 64 = 224 mults

� further, don't ever need to form or store Rxx
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FFT Direct CG Applied to Equalization of QPSK

−2 0 2
−2

0

2
Recvd Signal Constellation

−2 0 2
−2

0

2
Computing Full Inverse

−2 0 2
−2

0

2
Direct CG−MWF D=3

−2 0 2
−2

0

2
Direct CG−MWF D=5
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FFT Indirect CG Applied to Equalization of QPSK
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^rdx[0] = ^H�d

^Rxx[0] = ^H ^H
H

+ ^�2nI

for n = 1; :::; N

^Rxx[n] = f(n + kw) ^Rxx[n� 1]+

x[n]xH [n]g=(n + kw + 1)

^rdx[n] = f(n+ kw)^rdx[n� 1]+

d�[n]x[n]g=(n + kw + 1)

w0[n] = wD[n� 1]

u1[n] = uD[n� 1]

for i = 1; : : : ;D (typ. D = 1)

v[n] = ^Rxx[n]ui[n]

�i[n] = tHi [n]ti[n]=u
H

i [n]v[n]

wi[n] = wi�1[n] + �i[n]ui[n]

ti+1[n] = ^Rxx[n]wi[n]� ^rdx[n]

	i+1[n] = tHi+1[n]ti+1[n]=t
H

i [n]ti[n]

ui+1[n] = �ti+1[n] + 	i[n]ui[n]

Hybrid per-sample CG.

� Key feature of per sample update

CG ) amenability to \smart"

initialization

� equalization example: employ

semi-blind (training sequence

plus signal properties) estimate of

propagation channel to form initial

estimate of both Rxx and rdx

� then weighted running estimate

of Rxx and weighted decision

directed updating of rdx

� not possible with RLS since it

recursively updates R�1
xx ) how to

\smartly" initialize R�1
xx ???
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CG Applied to DFE

� Wiener-Hopf equations for Decision Feedback Equalizer:

2
664
Ryy Rys

RH
ys Rss

3
775

2
664
gF

gB
3

775 =
2

664
rdy

rds
3

775 ;

rdy = �2sH�D

Ryy = �2sHH
H +N0INF

Rys = �2sH�K

Rss = �2sINB

rds = 0

� Digital TV application: number of feedforward taps, NF , and number of

feedback taps, NB, are on the order of 500

{ ideal application for CG!

� if initial channel estimate is available, can initialize all matrices needed to

form Wiener-Hopf equations
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Channels Employed in Digital TV Example

Path 2 Path 3 Path 4

Chan
Delay Gain Phase Delay Gain Phase Delay Gain Phase

1 19.4 -6.45 291.2 176.7 -0.97 303.5 228.1 -0.28 245.0

2 -13.8 -7.98 146.8 84.9 -2.39 285.2 220.2 -5.59 342.8

3 -27.2 -13.86 91.5 68.8 -4.97 289.0 197.7 -4.67 182.5

4 8.9 -8.33 328.3 25.6 -4.99 299.1 26.8 -1.67 0.8

Delays, gains (dB), and phases of the paths relative to main path of four

simulated channels Including power of all four interfering paths, SNR = 30 dB.
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Channel Estimates for Digital TV Example
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True and estimated and channel impulse responses at an SNR of 30 dB.
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Various Initialization Schemes for a DFE

A.Minimal initialization. This is identical to the �rst set of results above.

B.Matrix initialization. In this case, we initialize the correlation matrices

using the actual channel and noise variance N0.

C.Feedback tap initialization. Here, we �ll the feedback taps with training

symbols prior to beginning adaptation. The correlation matrices are not

initialized using the channel.

D.Matrix and feedback tap initialization. This is a combination of cases B

and C. We initialize the matrices using the actual channel and noise

variance, and we �ll the feedback taps with training symbols.

E.Matrix and feedback tap initialization with equalizer tap weight

initialization. This case is identical to case D except, in addition, we

provide a simple initialization of the equalizer tap weights using the

negative of the post-cursor portion of the channel.
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DFE Learning Curves for CG-MSNWF with Various Initializations
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Zoomed-In DFE Learning Curves for CG-MSNWF
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Summary: Advantages of CG over RLS

� CG implicitly e�ects reduced-rank adaptive �ltering thereby o�ering

performance bene�ts over RLS under low sample support conditions

� CG works on Rxx directly ) RLS implicitly/explicitly works on R�1
xx

{ CG can take advantage of initial estimate of Rxx; e.g., formed while

searching for training sequence or from channel estimate formed

simply from correlation performed to detect training sequence

{ CG can exploit Toeplitz structure of Rxx to use FFT's for reduced

computational complexity (R�1
xx is not Toeplitz)

{ CG can work with a weighted combination of an Rxx estimated

directly from data and an Rxx formed from parametric model

� CG is not incommensurate with Principal Components ) can apply CG

in a space spanned by eigenvectors for array processing applications

� for spectral estimation via S(�) = 1=sH(�)R�1
xxs(�) ) CG solution to

Rxxw(�) = s(�) used to initialize CG sol'n Rxxw(� + �) = s(� +�)

(might require only single step of CG for each search angle)
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