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Linear MMSE and Wiener-Hopf Equations

E{ld[n] — wx[n]|*} = 0% — w'rg, —rllw + w'R,,w
e Gradient: f(w)=R,,w —ry;
e Wiener-Hopt Eqns: |[R,,w = ry,

e with sample data: f{mw = T4, where:

. 1 K-1 A

Rm_KZXHH[n] (NXN)  Fap =
n=0

e when weight vector dimension NV is large, finite average performance can

be enhanced via reduced-rank or reduced dimension subspace processing

o T Xnldn] (N x 1)

w = o1t + agty + ... + aptp where D << N

— {t1,t2,...,tp}: data-adaptive reduced-dimension subspace
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Cayley-Hamilton Theorem and Krylov Subspaces

e Cayley-Hamilton Theorem dictates R! may be expressed as a linear
combination of powers of R,
N —

1 |

R;xl = R CKZR;,:C = Oé()I + Oélex + O[QRix + ...+ OéN_lRJZXC_l
e Substituting into the closed-form solution for the optimum Wiener-Hopf

weights w = R Irg,:

N-1 |
w = { Eo ;R4
= Ty T+ +a1R$Jfrd$ T CVQR?;g;rdaz + T &N—lR;]I;\;—lrdm

e thus, we see how the Krylov subspace basis

{rge, RuaTas, R2 rap, ..., RY "rg, } naturally arises
e theory of power iteration reveals that R!_rg, converges rapidly to

“largest” eigenvector of R, as ¢ increases = leads to very good
approximation below where D << N
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Equivalence Between MWEF and Conjugate Gradients

e deriving a direct (no backwards recursion) weight update for MWF each
time a new “stage” is added lead to a two-step (coupled) recursion

W, = W;_1 + Vg + oit;
g = Nigi—1 + (it

e followed this through to a mathematical proof of exact equivalence
between MWF and iterative search method of Conjugate Gradients (CG)

— At each iteration/step, CG minimizes E{|d[n] — wx[n]|*} =
o3+ whry, + rfw + wHR,,w over Krylov subspace generated by
R,., and rg,, = same as MWF!!

e adding a stage to MWEF equivalent to taking a step in CG search

e the fact that an iterative search algorithm is related to a reduced-rank
adaptive filtering scheme is fascinating!
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W():O

u; :fdx

t1=—u

(1 =t
fore=1,...,D

v=R,u

n; = {;/uitv

W, = W;_1 + 1y,

tisi =t +nv

W
T
u;
(0
t;

objective function argument (EQ tap wts)
argument step size at step ¢

conjugate direction at step ¢

conjugate direction step size at step @
gradient (residual error) at step 4

— +H
liv1 =t 1t

U, =4i1/Y;

Wiy = —ti + Vi,

Direct Block CG-MSNWF.

Michael D. Zoltowski

Description of Variables in CG Algorithm.




W():O

e straightforward per sample update

u; = f'd:c . )
P— CG (one step per unit time) has
7 = t7t, complexity comparable to RLS
=4
fore=1,...,D .
~ e CG uses R, directly
V = Rm;llz'
n; = {;/uilv

e in contrast, RLS recursively updates
R_! = nonlinearly related

W; = W1 + Nl
tiy1 =t +nv
liy1 = t£_1ti+1

e results in a number of VIP advantages
Vi = Lin /4 of Direct CG over Block Minimum

Uit = —tip1 + Wi Variance or RLS
Cov. Block CG-MSNWEF.

Michael D. Zoltowski 5




A

Wi =Ty,

T _ o H oH
P-=1—-r4r}/T5 T4,
fore=1,...,D

gi = PJ_{RJE:I:WZ — f'da:}

Wit1 = W; — 48,

AV Method

Michael D. Zoltowski

uxiliary Vector Method Equivalent to Constrained Steepest Descept

e “adding Auxiliary Vector” =step ot
Constrained Steepest Descent search

e there is order in the universe!

e same computational advantages as

CG since AV works on R, directly




wo = “smart” initialize or
opt value from prior block

tl — R:ca;WO — I'dz

t Wi = f'dx
U = ;{ 1 f'dx — IA'dat:/\/IA'c[ljng'ciaE
b=t fori=1..... D
fore=1,...,D U___R7 W?
v = R, — -
Uik g =u; — (Thu)Ty,
n; = {;/ui'v
z vi = R;.8:
W; = W1 + iU, ai = gfv, /wiu,
i1 :tjq+ iV WZ.H :ZWZ._Za.gZ_
biv1 = tiy bis CZSD—AV ZMethzogi
Wy = Lliy1 /L
Wiy = —ti + Vi,
CG-MWEF.

e In solving an N-dimensional quadratric optimization problem, CG is
guaranteed to get to the minimum in NV steps, whereas convergence with
Steepest Descent is only guaranteed with an infinite number of steps

Michael D. Zoltowski 7




Wy = 0

ulzfdx

t1:—u1

(1 = ti't;
fore=1,...,D

v = XXy,

ni = Lifu;'v

Wi = W1 + iU,

tiii =t +nv

— +H
liv1 =t 1t

U, =4i1/¢;

Wiy = —ti + Vi,

Direct Block CG-MSNWFE,
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eR,,= > x[njx"n]=xX"
l=n—M
where X contains the “snapshots”

(as columns) obtained by sliding
over one sample at a time

e both X and X are Toeplitz =
use circulant extension of Toeplitz
matrix “trick” twice successively

e FFT processing for reduced
complexity = one-time FFT of

data block outside CG loop (invoke
Parseval’s theorem)

e No need to compute or store f{m
(no need to form X either)



Circulant Extension for Toeplitz Matrix-Vector Product

- - o T'—1 T'_—9 : T9 (8] L1
1
Y T To T—-1 :T_2 T9 i)
Y1 o -1 T—2 | | X1 Y2 :
T9 T o : -1 T=9 I3
Yo | = |71 To T-1| | T2\ = | Y3\ =0
3 o Tt To I3 d.c.
Y d.c -9 T9o T1 ' To T-1 0
- -1 T—9 T9o T To 0

e Multiplication by circulant matrix effects circular convolution

e (i) compute 5 pt DFT of {rg, 1,72, 7 9,71}, (ii) compute 5 pt DFT of
{x1, 2o, x3,0,0}, (iii) pt-wise multiply, (iv) compute 5 pt inverse DFT of
pt-wise product, (v) retain only first 3 values

e choose FFT length equal to power of two
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Y1 o T—1 T—2||X1
Y2 | = |71 To T—1|| T2
Y3 ro T1 Ty I3
- _ To T'—1 T—9 : 0 0 0 o T | _331
91 re To T—1:i7T—o 0 0 0 1mry To
Y2 T Tv To : T-1 Tr_9 0 0 0 I3
d.c.
= O 7o 11 ¢ 19 T—1 7_9 0 0 0
d.c.
0 0 To + T't Top T—-1 T-9 0 0
d.c.
0 0 0 T T1 Top T—-1 T-29 0
d.c.
T_9 0 0 : 0 T T1 To T 0
d.c.
- T_1 T2 0 : 0 0 o T1 To | 0

e (i) compute 8 pt FFT of {rg,r1,79,0,0,0,7 9,71}, (ii) compute 8 pt
FET of {x1,x2,23,0,0,0,0,0,0}, (iii) pt-wise multiply, (iv) compute 8
pt inverse FFT of pt-wise product, (v) retain only first 3 values
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L=block length; N=FFT length; M=weight vector length; N=M+L-1
X=ttt(xd,N); F:(exp(—j*Z*pi/N).A[O:N—l]’).*Conj(X);
w=zeros(M,1); u=rdx; g=-u;

l=g™*g;

for i=1:Nstop,

d=ifft (X *ftt(u,N),N); y=d(end-L+1:end,1);
z=ifft(F. *ftt(y,N),N); v=z(end-M+1:end,1);
eta=1/(u"*v);

w_old=w:;

w=w_old-+eta*u;

g-old=g;

g=g_old+eta*v;

[_old=l;

l=g™*g;

psi=l1/1old;

uold=u;

u=-g+psi*u_old;

end
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W():O

Uy =TIy, = 7{5(1
ti = —w

(1 = tity
fore=1,...,D
V:%%Hui

vV =v+oiuy,
mi = Li/uj'v

W, = W;_1 + n;u;

tiii =t +nv

—
biv1 = ti tin

Vi = lip1/4;

Wiy = —ti + Vi,

Indirect CG.
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o R,, = HH" + 021, where H is
channel convolution matrix and o
IS noise power

e both H and H are Toeplitz =
use circulant extension of Toeplitz
matrix “trick” twice successively

e FFT processing for reduced
complexity =- one-time FFT of
channel outside CG loop (invoke
Parseval’s theorem)

e No need to compute or store R,
(no need to form H either)
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N=FFT length; M=weight vector length;
H=fft(conj(h),N); F:(exp(—j*2*pi/N).A[O:N—l]’).*H; C=conj(|H(1,1) ; H(end:-1:2
w=zeros(M,1); u=h; g= - u;

l=g"*g

for i=1:Nstop,

U=F*ft(u,N); P=[U(1,1) ; U(end:-1:2,1)];
z=ifft(C.*P,N); v=z(end:-1:end-M+1,1) +noisepwr*u;
eta=l1/(u"*v);

w_old=w:;

w=w_old-+eta*u;

g-old=g;

g=g_old+eta*v;

[_old=lI;

l=g’*g;

psi=l1/1old;

uold=u;

u=-g+psi*u_old;

end
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Simulation Parameters for FFT Based CG for QPSK EQ

e ()PSK information symbols transmitted through simple frequency
selective channel

e channel: 70% ghost at half-symbol delay with a phase of 165°
e with pulse shaping, channel is of length 13

e equalizer length is 20

e F'F'T length is 32
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“Back of the Envelope” Calculation
Ezample: equalizer length, N, = 20, and FFT length is IV = 32

e Outside C-G loop, compute one-time FFT of channel

e Inside C-G loop, matrix vector product R,;u where R, is N, X N, and
uis N, x 1 is replaced by

(a) N pt FFT of u e.g. requires 80 mults
(b) Two pt-wise products of N x 1 vectors e.g. requires 2*32 = 64 mult
(¢) N pt inverse FF'T e.g. requires 80 mults

e R, is 20 X 20 and u is 20 x 1, such that computing R,,u requires
~ 20? = 400 mults

e even for this simple example where N is quite small, the computation
needed for the matrix-vector product at EACH step of CG is reduced
FROM 20% = 400 TO 2 * 80 + 64 = 224 mults

e further, don’t ever need to form or store R,

Michael D. Zoltowski 15
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FFT Direct CG Applied to Equalization of QPSK
Recvd Signal Constellation Computing Full Inverse
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FFT Indirect CG Applied to Equalization of QPSK
Recvd Signal Constellation Computing Full Inverse
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rq.[0] = Hdy

e Key feature of per sample update

o S |

R,.[0] = HH +o°1 CG = amenability to “smart”
form=1,...,. N initialization

Riz[n] = {(n + ky)Ruzln — 1]+

x[n|x®[n]}/(n +k,+1)| e equalization example: employ

ry.[n] ={(n+ ky)tan — 1]+ semi-blind  (training  sequence
d*[n]x[n]}/(n + k, + 1) | plus signal properties) estimate of
woln| = wpln — 1] propagation channel to form initial
u;[n] = upn — 1] estimate of both R,, and rg,
fore=1,...,D (typ. D =1)
vin] = R, n]u;[n] e then weighted running estimate
ni[n] = tZ[n]t[n] /ol [n]v]n] of R,, and weighted decision

wiln] = wi_i[n] + mi[n]win] directed updating of rg,

t;1n| = Ry |n|w;n| — rg:n
\Ijﬂl[[?l] B éx[[g] t-Z[l[]n] /t%x[gz]]t[n] e not possible with RLS since it
- s : Z recursively updates R_.! = how to
“smartly” initialize R 1777

Wi1[n] = —tip|n] + Vilnjun]
Hybrid per-sample CG.
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CG Applied to DFE

e Wiener-Hopt equations for Decision Feedback Equalizer:

Ry, Rys||gr
Ryli’ Rss gB

I'dy = O'E%CSD
R,, = c>HH" + Noly,

rdy
I'js

)

R, = c-HAg
RSS — O'?INB
rpgs = 0

e Digital TV application: number of feedforward taps, Np, and number of
feedback taps, Npg, are on the order of 500

— ideal application for CG!

e if initial channel estimate is available, can initialize all matrices needed to
form Wiener-Hopt equations
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Channels Employed in Digital TV Example

Path 2 Path 3 Path 4
Delay | Gain | Phase | Delay | Gain | Phase | Delay | Gain | Phase
1 194 | -6.45 | 291.2 | 176.7 |-0.97| 303.5 | 228.1 |-0.28 | 245.0
2 | -13.8 | -7.98 | 146.8 | 84.9 [-2.39| 285.2 | 220.2 |-5.59 | 342.8
3 | -27.2|-1386| 91.5 | 68.8 |-4.97|289.0 | 197.7 |-4.67| 182.5
4 89 | -833 3283 | 25.6 |-4.99|299.1 | 26.8 |-1.67| 0.8
Delays, gains (dB), and phases of the paths relative to main path of four
simulated channels Including power of all four interfering paths, SNR = 30 dB.

Chan

Michael D. Zoltowski 20




Channel Estimates for Digital TV Example

Real Part of Channel Impulse Response Imaginary Part of Channel Impulse Response
0.6 - - - 0.4 . . .
— Estimate — Estimate
0.5} --- Actual 0.3} - -- Actual
0.4t 1 0.2}
0.3 1 0.1t
o 0.2 © Of - r——
3 &
> 0.1f 1 >-0.1t 1
oF N “\HP -0.2}
-0.1f 1 -0.3f
-0.2 1 -0.4¢
-0.3 : : : -0.5 : : :
-100 0 100 200 300 -100 0 100 200 300
Sample Sample

True and estimated and channel impulse responses at an SNR of 30 dB.
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Various Initialization Schemes for a DFE

A. Minimal initialization. This is identical to the first set of results above.

B. Matriz initialization. In this case, we initialize the correlation matrices
using the actual channel and noise variance V.

C. Feedback tap initialization. Here, we fill the feedback taps with training
symbols prior to beginning adaptation. The correlation matrices are not
initialized using the channel.

D. Matriz and feedback tap initialization. This is a combination of cases B
and C. We initialize the matrices using the actual channel and noise
variance, and we fill the feedback taps with training symbols.

E. Matriz and feedback tap initialization with equalizer tap weight
initialization. This case is identical to case D except, in addition, we
provide a simple initialization of the equalizer tap weights using the
negative of the post-cursor portion of the channel.

Michael D. Zoltowski 22




DFE Learning Curves for CG-MSNWEF with Various Initialization
k =100
W

Normalized MSE

0 1000 2000 3000 4000 5000
Symbols
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Zoomed-In DFE Learning Curves for CG-MSNWF

k =100
0 w
10
o D act
o E act
: D est
, A Eest
B --- ICG
alo0F MMSE
= |
[®]
]
N
'S
=
2107

0 100 200 300 400 500
Symbols
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Summary: Advantages of CG over RLS

e CG implicitly effects reduced-rank adaptive filtering thereby offering
performance benefits over RLS under low sample support conditions

e CG works on R, directly = RLS implicitly /explicitly works on R;xl

— CG can take advantage of initial estimate of R,,; e.g., formed while
searching for training sequence or from channel estimate formed
simply from correlation performed to detect training sequence

— CG can exploit Toeplitz structure of R, to use FFT's for reduced
computational complexity (R} is not Toeplitz)

— CG can work with a weighted combination of an R,, estimated
directly from data and an R,, formed from parametric model

e CG i1s not incommensurate with Principal Components = can apply CG
in a space spanned by eigenvectors for array processing applications

e for spectral estimation via S(6) = 1/s*(0)R_1s(#) = CG solution to
R, w(0) = s(#) used to initialize CG sol'n R,,w(0 + A) =s(0 + A)
(might require only single step of CG for each search angle)
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