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ABSTRACT

The Multi-Stage Nested Wiener Filter (MSNWF) and the Conjugate Gradient (CG) method yield the solution of
the Wiener-Hopf equation in the Krylov subspace of the covariance matrix of the observation and the crosscorrelation
vector between the observation and the desired signal. Using the Lanczos algorithm instead of the Arnoldi algorithm
for the MSNWF simplifies the computation of the Krylov subspace basis.

In this paper, we show the relationship between the CG method and the Lanczos based MSNWF and finally
derive that the MSNWF may be mathematically transformed into the CG algorithm. Consequently, we present a
new implementation of the MSNWF where the weight vector and the Mean Square Error (MSE) is directly updated
as each new stage is added.

The new algorithm is applied to an Enhanced Data rates for GSM Evolution (EDGE) system where it linearily
equalizes the received signal. Simulation results demonstrate the ability of the MSNWF to reduce the receiver
complexity while maintaining the same level of system performance.

Keywords: adaptive filtering, conjugate gradients, reduced-rank equalization, space-time processing, wireless com-
munications, EDGE, multipath propagation.

1 Introduction

One general problem in estimation theory is to regain the unknown signal d0 [n] from an observation signal x0 [n].
The Wiener filter (WF) solves this problem in the Minimum Mean Square Error (MMSE) sense exploiting only
second order statistics. Thus, the WF is easy to implement and therefore used in many applications. However, the
resulting filter needs the inverse of the covariance matrix of the observation. This means observations x0 [n] of high
dimensionality imply high computational complexity.

The Principal Component (PC) method [1] was the first approach to reduce the estimation problem. A pre-
filter matrix composed of the eigenvectors belonging to the principal eigenvalues of the covariance matrix of the
observation is applied to the observation signal to get a transformed signal of lower dimensionality. An alternative
approach is the Cross-Spectral (CS) metric introduced by Goldstein et. al. [2], where the columns of the pre-filter
matrix are the eigenvectors which belong to the largest CS metric. Thus, it considers not only the statistics of the
observation signal but also the relation to the desired signal. More recently, Goldstein et. al. developed the Multi-
Stage Nested Wiener Filter (MSNWF) [3] which approximates the WF in reduced space without the computation
of eigenvectors. The MSNWF shows that dimensionality reduction of the observation signal based on eigenvectors
is generally suboptimal.

Honig et. al. [4] observed that the MSNWF can be seen as the solution of the Wiener-Hopf equation in the Krylov
subspace of the covariance matrix of the observation and the crosscorrelation vector between the observation and
the desired signal. Finally, in [5] it is shown that the Arnoldi algorithm can be replaced by the Lanczos algorithm to
generate the basis vectors for the Krylov subspace since the covariance matrix is Hermitian. The resulting algorithm
is an order-recursive version of the MSNWF which recursively updates the filter and the Mean Square Error (MSE)
at each stage.



Our contribution is to derive the relationship between the Conjugate Gradient (CG) method and the Lanczos
based implementation of the MSNWF. The CG method was originally introduced by Hestenes and Stiefel [6] in
the year 1952 to solve a system of linear equations. It searchs for an approximate solution in the Krylov subspace
similar to the Lanczos based MSNWF. We transform the equations of the Lanczos based MSNWF algorithm to
yield a formulation of the CG algorithm, and finally present a new implementation of the MSNWF where the weight
vector and the Mean Square Error (MSE) between the estimated and desired signal is directly updated as each new
stage is added.

In the next section, we briefly derive the Lanczos based MSNWF. Before we show the relationship between the
considered algorithms in Section 4, we review the basics of the CG algorithm in Section 2. Finally, we present a new
formulation of the MSNWF algorithm in Section 5 and apply it to an EDGE system in Section 6.

Throughout the paper the covariance matrix of a vector x [n] is denoted by Rx = E
{
x [n]xH [n]

}
, the cross-

correlation of a vector x [n] and a scalar d [n] is rx,d = E {x [n] d∗ [n]}, and the variance of a scalar d [n] is

σ2
d = E

{
|d [n]|2

}
.

2 Lanczos Based MSNWF

Applying the linear filter w ∈ CN to the observation signal x0 [n] ∈ CN leads to the estimate d̂0 [n] = wHx0 [n] of

the desired signal d0 [n] ∈ C. The power of the estimation error ε0 [n] = d0 [n] − d̂0 [n] = d0 [n] − wHx0 [n] is the
mean square error

MSE0 = E
{
|ε0 [n]|2

}
= σ2

d0
−wHrx0,d0 − r

H
x0,d0

w +wHRx0w. (1)

The Wiener filter (WF) minimizes MSE0, thus, we get the design criterion

w0 = arg min
w

MSE0, (2)

which leads to the Wiener-Hopf equation

Rx0w0 = rx0,d0 . (3)

Its solution, the WF w0, achieves the minimum mean square error

MMSE0 = σ2
d0
− rH

x0,d0
R−1
x0
rx0,d0 . (4)
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Figure 1: MSNWF as a Filter Bank

Figure 1 shows the block circuit diagram of the Multi-Stage Nested Wiener Filter (MSNWF) as a filter bank
that solves Equation (3). Its derivation [3, 5] is not shown in this paper due to space limitations. The basis vectors
for the observation space, ti ∈ CN , i ∈ {1, . . . , N}, are defined as

ti =

(
i−1∏
k=1

BH
k

)
hi. (5)



hi ∈ CN−(i−1) is the normalized matched filter

hi =
rxi−1,di−1∥∥rxi−1,di−1

∥∥
2

, (6)

which maximizes the real part of the crosscorrelation between the new desired signal di [n] = hH
i xi−1 [n] ∈ C at

stage i and the desired signal di−1 [n] at the previous stage i − 1 of the MSNWF. Bi ∈ C(N−i)×(N−(i−1)) for
i ∈ {1, . . . , N − 1} are the blocking matrices satisfying the following equation

Bihi = 0 ⇔ span
(
BH
i

)
= null

(
hH
i

)
. (7)

Thus, the rows of Bi are chosen to be orthogonal to the matched filter hi and the new observation signal xi [n] =
Bixi−1 [n] ∈ CN−i at stage i is minimum correlated to the desired signal di−1 [n] at stage i − 1. Finally, αi ∈ R
are scalar WF which estimate the desired signal di−1 [n] from the error εi [n] of the new desired signal di [n] to its

estimate d̂i [n], i.e. εi [n] = di [n]− d̂i [n]. Thus, it holds for i ∈ {1, . . . , N}

αi = σ−2
εi rεi,di−1 , (8)

where rεi,di−1 = E
{
εi [n] d∗i−1 [n]

}
=
∥∥rxi−1,di−1

∥∥
2

[3] and εN [n] = dN [n].
Note, that the pre-filtered observation vector

d [n] =
[
d1 [n] · · · dN [n]

]T
(9)

has a real tri-diagonal covariance matrix Rd [3, 5] because the matched filters hi and hi+1 of two arbitrary adjoining
stages of the MSNWF are designed to maximize the real part of the correlation between di [n] and di−1 [n], and
between di+1 [n] and di [n], respectively, whereas the blocking matrix Bi ensures that di+1 [n] is uncorrelated with
di−1 [n].

To obtain a reduced rank MSNWF we only use the first D basis vectors ti, i ∈ {1, . . . , D}, to build the pre-filter
matrix

T (D) =
[
t1 . . . tD

]
∈ CN×D, (10)

which yields the observation vector d(D) [n] ∈ CD of reduced length

d(D) [n] = T (D),Hx0 [n] . (11)

Its tri-diagonal covariance matrix R
(D)
d ∈ RD×D and its crosscorrelation vector with the desired signal d0 [n],

r
(D)
d,d0
∈ RD, may be written as

R
(D)
d = T (D),HRx0

T (D) =

 0
T (D−1),HRx0

T (D−1)

rD−1,D

0T rD−1,D rD,D

 , (12)

r
(D)
d,d0

= T (D),Hrx0,d0 =

[
‖rx0,d0‖2

0

]
. (13)

The new entries of R
(D)
d are simply

rD−1,D = tHD−1Rx0
tD and rD,D = tHDRx0

tD (14)

if we use the knowledge of R
(D−1)
d . It can be proved that the elements of R

(D)
d are real-valued but the proof is

omitted due to space limitations. Next, we have to compute the WF w
(D)
d ∈ RD which estimates d0[n] from d(D)[n],

i.e.

w
(D)
d =

(
R

(D)
d

)−1

r
(D)
d,d0

=
(
T (D),HRx0

T (D)
)−1

T (D),Hrx0,d0 , (15)



to get finally the rank D approximation of the WF

w
(D)
0 = T (D)w

(D)
d = T (D)

(
T (D),HRx0

T (D)
)−1

T (D),Hrx0,d0, (16)

which yields the mean square error

MSE(D) = σ2
d0
− rH

x0,d0
T (D)

(
T (D),HRx0T

(D)
)−1

T (D),Hrx0,d0 . (17)

Note that the rank D MSNWF is equivalent [4, 5] to solving the Wiener-Hopf equation in the D-dimensional
Krylov subspace K(D) = span

([
rx0,d0 Rx0

rx0,d0 · · · R(D−1)
x0

rx0,d0

])
if the filters ti for i ∈ {1, . . . , D} are

mutually orthogonal. Consequently, the columns of the pre-filter matrix T (D) are basis vectors for K(D) and may
be computed by the Lanczos algorithm since we assume that ‖ti‖2 = 1 for all i ∈ {1, . . . , D} and remember that
the covariance matrix Rx0

is Hermitian. Thus, we get the recursion formula

ti =
P i−1P i−2Rx0

ti−1

‖P i−1P i−2Rx0
ti−1‖2

=
Rx0

ti−1 − t
H
i−2Rx0

ti−1ti−2 − t
H
i−1Rx0

ti−1ti−1∥∥Rx0
ti−1 − t

H
i−2Rx0

ti−1ti−2 − t
H
i−1Rx0

ti−1ti−1

∥∥
2

(18)

with the projectors P k = 1− tkt
H
k , k ∈ {i− 1, i− 2}, onto the space orthogonal to tk. 1 denotes the N ×N identity

matrix.
To finish the derivation of the Lanczos implementation of the MSNWF, define

C(D) = R
(D),−1
d =

[
c

(D)
1 · · · c

(D)
D

]
(19)

and use the inversion lemma for partitioned matrices to get

C(D) =

[
C(D−1) 0

0T 0

]
+ β−1

D b(D)b(D),H, (20)

where

b(D) =

 −C(D−1)

[
0

rD−1,D

]
1

 =

[
−rD−1,Dc

(D−1)
D−1

1

]
(21)

and

βD = rD,D −
[

0T rD−1,D

]
C(D−1)

[
0

rD−1,D

]
= rD,D − r

2
D−1,Dc

(D−1)
D−1,D−1. (22)

The variable c
(D−1)
D−1,D−1 denotes the last element of the last column c

(D−1)
D−1 of C(D−1) at the previous step. Recall

that only the first element of r
(D)
d,d0

is unequal 0 (cf. Equation 13), thus, only the first column c
(D)
1 of the inverse

C(D)

c
(D)
1 =

[
c

(D−1)
1

0

]
+ β−1

D c
(D−1)
1,D−1

[
r2
D−1,Dc

(D−1)
D−1

−rD−1,D

]
, (23)

where c
(D−1)
1,D−1 denotes the first element of c

(D−1)
D−1 , is needed for the computation of the WF w

(D)
d using Equation (15).

We observe that the filter at step D depends upon the first column c
(D−1)
1 at step D − 1, the new entries of the

covariance matrix rD−1,D and rD,D, and the previous last column c
(D−1)
D−1 . Using again Equation (20), we get the

following recursion formula for the new last column

c
(D)
D = β−1

D

[
−rD−1,Dc

(D−1)
D−1

1

]
, (24)



which only depends on the previous last column and the new entries of R
(D)
d . So, we only have to update the vectors

c
(D)
1 and c

(D)
D at each iteration step. Moreover, the mean square error at step D can be updated using the first

entry c
(D)
1,1 of c

(D)
1 as follows (cf. Equation 17)

MSE(D) = σ2
d0
− ‖rx0,d0‖

2
2 c

(D)
1,1 . (25)

Finally, substituting c
(i)
1 and c

(i)
i by c

(i)
first and c

(i)
last, repectively, and using the last elements of the vectors in Equa-

tion (24), i.e. c
(D)
D,D = β−1

D , to replace c
(D−1)
D−1,D−1 in Equation (22), yield the resulting Lanczos based implementation

of the MSNWF given by Algorithm 1 which is used in Section 4 to show its relationship to the CG method.

Algorithm 1 Lanczos Based MSNWF

t0 = 0
t1 = rx0,d0/ ‖rx0,d0‖2
r0,1 = 0, r1,1 = β1 = tH1Rx0

t1

c
(1)
first = c

(1)
last = r−1

1,1

5: MSE(1) = σ2
d0
− ‖rx0,d0‖

2
2 c

(1)
first

for i = 2 to D do
v = Rx0

ti−1 − ri−1,i−1ti−1 − ri−2,i−1ti−2

ri−1,i = ‖v‖2
ti = v/ri−1,i

10: ri,i = tHi Rx0
ti

βi = ri,i − r2
i−1,iβ

−1
i−1

c
(i)
first =

[
c

(i−1)
first

0

]
+ β−1

i c
(i−1)
last,1

[
r2
i−1,ic

(i−1)
last

−ri−1,i

]
c

(i)
last = β−1

i

[
−ri−1,ic

(i−1)
last

1

]
MSE(i) = σ2

d0
− ‖rx0,d0‖

2
2 c

(i)
first,1

15: end for
T (D) =

[
t1 · · · tD

]
w

(D)
0 = ‖rx0,d0‖2 T

(D)c
(D)
first

3 Conjugate Gradient Algorithm

The iterative Conjugate Gradient (CG) algorithm was developed by Hestenes and Stiefel [6] for solving a system
Ax = b of N linear equations in N unknowns. The solution is given in N steps. If we stop the algorithm after
D steps, we get an approximate solution. One possible realization is given by Algorithm 2, where the matrix
A ∈ CN×N has to be symmetric and positive definite. Other implementations may be obtained [6] by replacing
Lines 4 and/or 7 of Algorithm 2 by

γi =
(
rH
i ri
)
/
(
pH
i Api

)
and/or (26)

δi =
(
rH
i+1ri+1

)
/
(
rH
i ri
)
, (27)

respectively. These formulas reduce computational complexity as can be seen in Section 5.
The fundamental recursion formula which updates the approximate solution of the system Ax = b is Line 5 of

Algorithm 2, where pi is the search direction at iteration step i and γi is its weight factor. To understand Line 4 of
Algorithm 2, we introduce the error function as the A-norm of the error of the approximate solution x to the exact
solution x(N), i.e.

f (x) =
∥∥∥x(N) − x

∥∥∥
A

=
(
x(N) − x

)H

A
(
x(N) − x

)
= xHAx− xHb− bHx+ x(N),Hb. (28)



Algorithm 2 Conjugate Gradient Method

x(0) = 0
p1 = −r1 = b
for i = 1 to D do
γi = −

(
pH
i ri
)
/
(
pH
i Api

)
5: x(i) = x(i−1) + γipi

ri+1 = ri + γiApi
δi =

(
pH
i Ari+1

)
/
(
pH
i Api

)
pi+1 = −ri+1 + δipi

end for

The choice of γi ensures that the approximate solution x(i) minimizes the error function f (x) on the line x =
x(i−1) + γpi. It holds

γi = arg min
γ
f
(
x(i−1) + γpi

)
. (29)

Line 6 of Algorithm 2 updates the residual ri = Ax(i−1)−b. Note that the residual ri belongs to the approximation
x(i−1). The index mismatch is useful for the derivations we make in Section 4. The recursion formula for the
residuals can easily be derived as follows

ri+1 = Ax(i) − b = A
(
x(i−1) + γipi

)
− b = ri + γiApi (30)

by using Line 5 of Algorithm 2.
The CG algorithm belongs to the Conjugate Directions (CD) methods because the search directions are mutually

A-conjugate, i.e.

pH
j Api = 0 ∀j < i ≤ D, (31)

which follows from Lines 6, 7, and 8 of Algorithm 2. Moreover, the CG method is a special family within the CD
methods because the residuals are mutually orthogonal. It holds

rH
j ri = 0 ∀j < i ≤ D. (32)

The proofs of Equations (31) and (32) [6] are not shown in this paper due to space limitations.

4 Relationship Between CG and MSNWF

In numerous papers and books [5, 7] it was mentioned that the Lanczos algorithm which is used by our special
implementation of the MSNWF is only a version of the CG algorithm. If we compare the optimization function in
Equations (1) and (28), we see that they are the same except for a constant which does not change the minimum
computed by Equations (2) and (29), respectively. Moreover, the solution at each step i is searched in the same
Krylov subspace K(D) spanned by the column vectors of the matrix T =

[
t1 · · · tD

]
as shown in [7]. To

establish the equivalence of both algorithms, we transform the formulas of the Lanczos based MSNWF to those of
the CG algorithm.

Assume that D ≥ i ≥ 2. Using Lines 17 and 12 of Algorithm 1, and by setting T (i) =
[
T (i−1) ti

]
, it holds

for w
(i)
0 that

w
(i)
0 = ‖rx0,d0‖2 T

(i)c
(i)
first = w

(i−1)
0 + ηiui, w

(1)
0 = ‖rx0,d0‖2 r

−1
1,1t1, (33)

where ηi and ui are defined as

ηi = ‖rx0,d0‖2 ρ
−1
i β−1

i ri−1,ic
(i−1)
last,1 , (34)

ui = ρi

(
ri−1,iT

(i−1)c
(i−1)
last − ti

)
, (35)



and where ρi ∈ R \ {0} is so far an arbitrary factor which meaning is established later. Multiplying Line 13 of

Algorithm 1 on the left side by T (i) and using Equation (35) leads to

T (i)c
(i)
last = −β−1

i

(
ri−1,iT

(i−1)c
(i−1)
last − ti

)
= −ρ−1

i β−1
i ui. (36)

Substituting i by i + 1 in Equation (35) and replacing T (i)c
(i)
last by using Equation (36) yields a recursion formula

for ui+1 and D − 1 ≥ i ≥ 1

ui+1 = ψiui − gi+1, u1 = −ρ1t1, (37)

where

ψi = −ρi+1ρ
−1
i β−1

i ri,i+1, (38)

gi+1 = ρi+1ti+1. (39)

In Equations (33) and (37) we observe the analogous terms in Lines 5 and 8 of Algorithm 2. The vectors ui
and gi are seen to be equivalent to the search direction pi and the residual ri of the CG algorithm, respectively. In
the Lanczos based MSNWF, the linear system to be solved is the Wiener-Hopf equation (cf. Equation 3) where the
solution is the WF w0. In the sequel, we prove that the MSNWF can be transformed into the CG algorithm.

Proposition 1. The vectors gi for D ≥ i ≥ 1 can be updated by the recursion formula

gi+1 = gi + ηiRx0
ui, g1 = ρ1t1, ρ1 = −‖rx0,d0‖2 , (40)

where the definition of ηi is given in Equation (34) and where

η1 = r−1
1,1. (41)

Proof. We prove by induction. First, set i = 1. Recall that u1 = −ρ1t1 = −g1 and we get by using the initialization
of Equations (40) and (41), and Lines 7 to 9 of Algorithm 1

g1 + η1Rx0
u1 = ρ1η1

(
η−1

1 t1 −Rx0
t1
)

= ‖rx0,d0‖2 r
−1
1,1r1,2t2 = ρ2t2 = g2.

The last equality holds if we define ρ2 as

ρ2 = ‖rx0,d0‖2 r
−1
1,1r1,2. (42)

Now assume that Equation (40) holds for i = n− 1. This leads to

Rx0
un−1 = η−1

n−1

(
gn − gn−1

)
. (43)

To prove Equation (40) for i = n if it holds for i = n− 1, we need a transformation of Equation (37). Substituting
i+ 1 by n and multiplying the equation on the left side by Rx0

yields

Rx0
un = ψn−1Rx0

un−1 −Rx0
gn. (44)

Finally, we get by using Equations (44) and (43)

gn + ηnRx0
un = gn − ηnRx0

gn + ηnψn−1Rx0
un−1

= gn − ηnRx0
gn + η−1

n−1ηnψn−1

(
gn − gn−1

)
= −ρnηnRx0

tn + ρn
(
1 + η−1

n−1ηnψn−1

)
tn − ρn−1η

−1
n−1ηnψn−1tn−1. (45)

On the other hand, multiplying the recursion formula in Lines 7 to 9 of Algorithm 1 by ρn+1 on both sides yields

ρn+1tn+1 = ρn+1r
−1
n,n+1Rx0tn − ρn+1r

−1
n,n+1rn,ntn − ρn+1r

−1
n,n+1rn−1,ntn−1. (46)



Recalling Equation (39) and comparing Equation (45) with (46), Proposition 1 is proved if the following three
equations are true:

−ρnηn = ρn+1r
−1
n,n+1, (47)

ρn
(
1 + η−1

n−1ηnψn−1

)
= −ρn+1r

−1
n,n+1rn,n, (48)

ρn−1η
−1
n−1ηnψn−1 = ρn+1r

−1
n,n+1rn−1,n. (49)

Using Equations (47), (34), and Line 13 of Algorithm 1 to calculate ρn+1 yields for D − 1 ≥ n ≥ 2

ρn+1 = −ρnηnrn,n+1 = −‖rx0,d0‖2 β
−1
n rn,n+1rn−1,nc

(n−1)
last,1 = ‖rx0,d0‖2 rn,n+1c

(n)
last,1.

If n+ 1 = i and we include Equation (42) for i = 2, ρi for D ≥ i ≥ 2 is given by the formulas

ρi = ‖rx0,d0‖2 ri−1,ic
(i−1)
last,1 , (50)

ρi = −ρi−1ηi−1ri−1,i. (51)

If we plug Equations (50) and (51) in Equations (34) and (38), respectively, we get simpler formulas for ηi and ψi

ηi = β−1
i , D ≥ i ≥ 1, (52)

ψi = β−2
i r2

i,i+1, D − 1 ≥ i ≥ 1. (53)

To prove Equation (48) use Equations (51), (52), (53), and Line 11 of Algorithm 1. It follows

ρn
(
1 + η−1

n−1ηnψn−1

)
= −ρn+1η

−1
n r−1

n,n+1

(
1 + β−1

n β−1
n−1r

2
n−1,n

)
= −ρn+1r

−1
n,n+1

(
βn + r2

n−1,nβ
−1
n−1

)
= −ρn+1r

−1
n,n+1rn,n.

With the same equations, we get

ρn−1η
−1
n−1ηnψn−1 = ρn+1η

−2
n−1ψn−1r

−1
n−1,nr

−1
n,n+1 = ρn+1r

−1
n,n+1rn−1,n.

Thus, Equations (47), (48), and (49) hold and Proposition 1 is proved.

Note that with the definition of η1 by Equation (41), Equation (33) holds for i = 1, where w
(0)
0 = 0, as well as for

D ≥ i > 1.

Proposition 2. The vectors gi are residual vectors for D + 1 ≥ i ≥ 1. Thus,

gi = Rx0
w

(i−1)
0 − rx0,d0 . (54)

Proof. Again, this proposition can be proved by induction. Set i = 1. It holds that

Rx0
w

(0)
0 − rx0,d0 = −‖rx0,d0‖2 t1 = g1.

Assume that Equation (54) holds for i = n− 1. Hence, we get for i = n (cf. Equation 33)

Rx0
w

(n−1)
0 − rx0,d0 = Rx0

w
(n−2)
0 − rx0,d0 + ηn−1Rx0

un−1 = gn−1 + ηn−1Rx0
un−1 = gn

The last equality holds because of Proposition 1.

Up to now we showed, in addition to Equations (33) and (37), that the residuals gi are updated by a similar
formula as the residuals ri. To derive the remaining problem, we need to show that the computation of the weight
factors ψi and ηi is the same as for those in the CG algorithm. First, we prove the following proposition.

Proposition 3. The vectors uj and gi satisfy the relation

uH
j Rx0

gi = 0, ∀ (j ≤ i− 2 ∧ i ≤ D) . (55)



Proof. First, let j = 1 and D ≥ i ≥ 3, but fixed. With Equations (37) and (39) we get

uH
1Rx0

gi = −ρ1ρit
H
1Rx0

ti = −ρ1ρir1,i = 0.

The last equality holds, because rj,i are the elements of the tridiagonal matrix R
(D)
d (cf. Section 2) and thus, rj,i = 0

for all j ≤ i− 2 and i ≤ D. Assume that Equation (55) holds for j = n− 1. Then, we get for j = n

uH
nRx0

gi = ψn−1u
H
n−1Rx0

gi − g
H
nRx0

gi = −ρnρit
H
nRx0

ti = −ρnρirn,i = 0.

Proposition 4. The factor ψi in Equation (37) satisfies the relation

ψi =
uH
i Rx0gi+1

uH
i Rx0

ui
(56)

and thus, {u1, . . . ,uD} is a set of Rx0
-conjugate vectors, i.e.

uH
j Rx0ui = 0, ∀j < i ≤ D. (57)

Proof. Use Equation (37) to get

uH
i−1Rx0

gi = ψi−2u
H
i−2Rx0

gi − g
H
i−1Rx0

gi = −ρi−1ρiri−1,i. (58)

The last equality holds because of Proposition 3.
To optain a similar expression for the denominator on the right side of Equation (56), substitute ui given by

Equation (37) and use Equations (39), (53), (58), and Line 10 of Algorithm 1.

uH
i Rx0ui = gH

i Rx0gi − ψi−1g
H
i Rx0ui−1 − ψi−1u

H
i−1Rx0gi + ψ2

i−1u
H
i−1Rx0ui−1

= ρ2
i

(
ri,i − 2r2

i−1,iβ
−1
i−1 + r2

i−1,iβ
−1
i−1

uH
i−1Rx0ui−1

ρ2
i−1βi−1

)
Comparing the equation above with Line 11 of Algorithm 1 leads to

uH
i Rx0

ui = ρ2
iβi. (59)

Substituting i by i+1 in Equation (58) and dividing it by the left side of Equation (59) yields Equation (56). Thus,
similar to δi in Algorithm 2, ψi, Equations (37), and (40) ensure that the vectors ui are mutually Rx0

-conjugate.

Proposition 5. It holds for D ≥ i ≥ 1 that

ηi = −
uH
i gi

uH
i Rx0

ui
. (60)

Thus, with w = w
(i−1)
0 + ηiui the value of ηi above minimizes the error function

f (w) = wHRx0
w −wHrx0,d0 − r

H
x0,d0

w. (61)

Proof. Replacing gi by Equation (54), uH
i Rx0

ui by Equation (59) and using recursively Equation (33) yields

−
uH
i gi

uH
i Rx0

ui
= −ρ−2

i β−1
i uH

i

(
Rx0

w
(i−1)
0 − rx0,d0

)
= ρ−2

i β−1
i uH

i

(
rx0,d0 −Rx0

i−1∑
k=1

ηkuk

)
= ρ−2

i β−1
i uH

i rx0,d0 .



The last equality holds, because the vectors ui are mutually Rx0
-conjugate (cf. Equation 57). First, set i = 1. It

holds by using u1 = −ρ1t1 and Equation (52) that

ρ−2
1 β−1

1 uH
1 rx0,d0 = β−1

1 = η1.

Then, set D ≥ i ≥ 2 and substitute ui by Equation (35)

ρ−2
i β−1

i uH
i rx0,d0 = ρ−1

i β−1
i ri−1,ic

(i−1),T
last T (i−1),Hrx0,d0 − ρ

−2
i β−1

i tHi rx0,d0

= ‖rx0,d0‖2 ρ
−1
i β−1

i ri−1,ic
(i−1)
last,1 = ηi.

For the second equality remember, that tHi rx0,d0 = 0 for all D ≥ i ≥ 2.

Thus, we see that the remaining Equations (60) and (56) which compute the weight factors ψi and ηi are similar
to Lines 4 and 7 of Algorithm 2. To put it in a nutshell, the Lanczos based MSNWF uses the same formulas as the
CG algorithm if we make the following equivalences

approximate solution: w
(i)
0 ↔ x(i), ηi ↔ γi, (62)

search directions: ui ↔ pi, ψi ↔ δi, (63)

residuals: gi ↔ ri. (64)

5 A New Implementation of MSNWF

In Section 4 we have derived that the Lanczos based MSNWF can be expressed by the CG algorithm. Thus,
Equations (60) and (56) can be replaced in the same manner as Lines 4 and 7 of Algorithm 2 by Equations (26)
and (27), respectively. It follows

ηi =
gH
i gi

uH
i Rx0

ui
, (65)

ψi =
gH
i+1gi+1

gH
i gi

. (66)

This reduces computational complexity because the matrix vector multiplicationRx0gi+1 in Equation (56) is avoided.
Besides, the only product left, Rx0

ui, which is needed in Equation (40) has already been computed in Equation (65).
Therefore, the resulting computational complexity for a rank D MSNWF is O

(
N2D

)
, since a matrix vector multi-

plication with O
(
N2
)

has to be performed at each step.
Comparing to the Lanczos implementation of the MSNWF, the CG algorithm does not compute the mean square

error MSE(i) at each step. To get such a recursion formula for MSE(i) in the CG implementation, consider the first
elements in Line 12 of Algorithm 1. It holds for D ≥ i ≥ 2 that

c
(i)
first,1 = c

(i−1)
first,1 + β−1

i r2
i−1,ic

(i−1),2
last,1 . (67)

Use this equation to replace c
(i)
first,1 in Line 14 of Algorithm 1

MSE(i) = MSE(i−1) − ‖rx0,d0‖
2
2 β
−1
i r2

i−1,ic
(i−1),2
last,1 = MSE(i−1) − ρ2

i ηi, (68)

where MSE(1) is defined by Line 4 of Algorithm 1. The last equality holds because of Equations (50) and (52). The

fact that the factor ρi is the length of the residual gi and that MSE(1) = σ2
d0
− ρ2

1η1 yields for D ≥ i ≥ 1

MSE(i) = MSE(i−1) − ηig
H
i gi, MSE(0) = σ2

d0
. (69)

Finally, considering Equations (65), (33), (69), (40), (66), and (37) leads to a CG implementation of the MSNWF
which is given by Algorithm 3. In the following section, the resulting CG/MSNWF hybrid algorithm is applied as
a linear equalizer to an EDGE system.



Algorithm 3 CG MSNWF

w
(0)
0 = 0

u1 = −g1 = rx0,d0

l1 = gH
1 g1

MSE(0) = σ2
d0

5: for i = 1 to D do
v = Rx0

ui
ηi = li/

(
uH
i v
)

w
(i)
0 = w

(i−1)
0 + ηiui

MSE(i) = MSE(i−1) − ηili
10: gi+1 = gi + ηiv

li+1 = gH
i+1gi+1

ψi = li+1/li
ui+1 = −gi+1 + ψiui

end for

6 Application to an EDGE System

In the following we consider an EDGE system with 8PSK modulation and Laurent pulse shaping. The Laurent
impulse is a linearized GMSK impulse [8] which has a duration of five symbol times. Thus, we have severe intersymbol
interference even without channel distortion. The symbol time T = 3.69µs and the two antennas of the mobile station
(MS) receive the signal of a base station which propagates over Rayleigh multipath fading channels with a delay
spread of τmax = 10µs or three symbol times. We assume a constant channel during one burst with 148 symbols
(excluding guard symbols).

The CG based implementation of the MSNWF is used as a linear equalizer filter for the received signal at the
MS. We sample two times during one symbol duration and take 20 samples of each antenna to build the space-time
observation vector x0 [n], thus, its dimension N = 40.
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Figure 2: BER for known channel using CG MSNWF equalizer

Figure 2 shows the BER using the CG based MSNWF for D ∈ {6, 8, 10} steps compared to the MMSE equalizer
or WF which corresponds to the MSNWF with D = 40 steps. We use the ideal form of the covariance matrix and
the crosscorrelation vector. We observe that the MSNWF with D = 10 steps is very close to the MMSE equalizer
even for high SNR values.
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Figure 3: BER for estimated channel using CG MSNWF equalizer

Using the 26 training symbols of a burst to estimate the channel and therefore the crosscorrelation vector and
the covariance matrix, leads to the simulation results shown in Figure 3. Again, the MSNWF with D = 10 steps is
a good approximation of the MMSE equalizer although it has much less computational complexity.

Figure 2 and 3 plot uncoded BER. Due to error control coding, an uncoded BER of 10−1 results in acceptable
speech transmission.

7 Conclusion

In this paper we derived the relationship between the Lanczos based implementation of the MSNWF and the CG
method. A new implementation of the MSNWF is obtained by transforming its formulas into those of the CG
algorithm. Simulation results of an application to an EDGE system showed that despite the reduced computational
complexity, the CG based MSNWF yields almost the same results as the MMSE equalizer.
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