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Figure 1: Two signals are sent over two channel and received as a sum. Then processed.

1 In General

Assume that a system has transmit antennas and one receive antenna. The
first antenna transmits the sequence

Sl[n] = {S[n]v _S[n + 1]7 S[n + 2]7 _S[n + 3]7 s }7 (1)
while the second antenna transmits the sequence
saln) = (sl + 1], sln]. sl + 3], sln + 21, ). 2)

The two signals s;[n] and s2[n] pass through (possibly time varying) channels
hi[n] and hg[n], respectively, in arriving at the single receive antenna. The
received signal is

y[n] = si[n] * haln] + sa[n] * hzln], (3)

where * denotes convolution.

Two output sequences are formed from the received signal. The first
is formed by downsampling y[n] by a factor of two. The second is formed
by delaying y[n] by one and then downsampling by two. Thus, as shown
graphically in Figure 1, the ouput sequences are

yOn] = y[2n] (4)
and
yWn] = y[2n +1]. (5)

As will be shown shortly, the output sequences y(®[n] and y[n] may be
expressed in terms of two subsequences formed from s[n], namely

sOn] = s[2n] (6)
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(@) (b)
Figure 2: Polyphase implementation of y(®)[n] and y™)[n].
and
sWn] = s[2n + 1]. (7)

The filtering and downsampling operations used to form y®[n] and 3" [n]
can be done efficiently using a polyphase implementation (c.f. [PM96]). The
polyphase implementations are

yOn] = s1[2n] * hy[2n] + s1[2n + 1] % hy[2n — 1]

+ 59[2n] * ho[2n] + s2[2n + 1] * hy[2n — 1] (8)
y O[] = yf2m — 1

= 51[2n — 1] % hy[2n] + s1[2n] * he[2n — 1]

+ s9[2n — 1] * ha[2n] 4 s2[2n] * hy[2n — 1]. (9)

See Figure 1 for a graphical description of the polyphase representation of
y©[n]. From Equations 1 and 2 we see that

s51[2n] = s[2n] = sO[n)], (10)
s12n + 1] = —s[2n + 1] = —sW[n], (11)
$3[2n] = s[2n + 1] = sW[n], (12)
and
5920 4 1] = s[2n] = sO[n]. (13)



Furthermore, we see that

si[2n — 1] % hy[2n] =s;[2n 4+ 1] % hy[2n — 2]
=s;[2n + 1] * h;[2(n — 1)]
=s;[2n + 1] * hgo) [n—1].

Thus, denoting h;[2n — m] as h(m)[n] we have

yO[n] =5 >[ 1 # (h"[n 1+h< '[n])
W] * < 0] + 2y [n])
= [ ] filn] + sWn] * foln],
where fi[n] = A0 [n] + A )[n] and f3[n] = —h(ll)[n] + hY [n], and
2n] * hgl)[n]
2n] * hgl)[n]

yOn] =s1[2n + 1] % bV — 1] + 5]
+spn+U*MHn—u [
O] # (A H+h“[n 1
+sWn] * (=h M—H+h9
()[
)

+ 51
+ 52

=S

Vnl * faln ] n]  fin).

where f3[n] = h{V[n] + 1 — 1] and fin] = —h{On — 1] + AV[n].

2  Summary

yOln] =sOn] « fi[n] + sD[n] « fo[n]

yOln] =sOn] * fo[n] + sWn] * faln],
where

Al = W+ wPm)

R = —2Vm + AR

fln] = B+ A1)

faln) = 2Pl -1 + A

(14)

(15)

(16)

(19)



3 Matrix Notation

Matrix notation provides a convenient way of representing the system outputs
that will be needed for equalization. The length N, vectors of outputs

vy = [ y@n] yOn — Ng+1] 1"

may be formed using convolution matrices. If the impulse response f;[n] is

i=1,2 (20)

non—zero for n = 0,..., L — 1 only, then its N, x (L + N, — 1) convolution
matrix is

o) .. flL—1] 0 0
0 filo] ... fill —1] 0 0
F; = 0 0 i10] fHlL=1 0 ... 0
| 0 0 £il0] fill =11 |
Letting
-[xw] @
we may write
y = Fs, (22)
where
y=[y©" yoT T, (23)
s = [ s()[n] sOn—-L—-Ngl " i=0,1 (24)
and
s=[s@" 0T T (25)

4 Symbol Recovery Through Equalization

Symbol estimates §9[n — D] and §M[n — D] are formed by choosing length
T

N, equalizing vectors g; = { 0] gi[1] gi[N, — 1] } , 0= 1,...,4,

according to some criterion. The recoverd signals are

(0) [n— D] =

5W[n —

aln]*yOh] + gl
Dl = gln]*xyOn] + gln]*yWn]

>
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The elementsof g;, 2 = 1,...,4, are chosen to minimize the means squared
error between the sent signals and the estimated signals. Denoting the vector

of equalizer taps as g; = [ ¢[0],...,¢:[Ng—1] ],7 =1,...,4, the estimates
of the signals are
and
§(1)[n — D] = gad'ly, (27)
where 1o = [ 81" 82" ] and gsa = [ gs" 4" |".
The minimum mean-square error error (MMSE) equalizers are the solu-
tions to
. . (0) 2
g1z = arg min £ ‘gy[n] — sV [n — D]‘ (28)
g
and
: 2
@05 = arg min  F {‘gy[n] — s - D } . (29)
g

where F;; = [F; F;], where Rnn is the 2N, x 2N, noise convariance matrix,
and where dp is a Ng+ L — 1-lengthed column vector of zeros with a one in
the Dth position.

Expressed in terms of the channel impulse responses hi[n] and ha[n], the
solutions to (28) and (29) are

g1z = (FF” + R,,)'F13p (30)
and

234 = (FFH + Rnn)_1F245D- (31)

These solutions assume that the symbols are white and i.i.d. with unit vari-
ance.



5 Observations

For best results, We must have D > 0. Otherwise ¢12 and ¢34 are linearly
related, and the BER is extremely high. If D = 0, there is no contribution
to the equalizers from hs[n].. It makes sense that D must be one or greater
because y[n] is delayed by one sample when forming y("[n], so we need to
delay by one sample before forming an estimate. Is there a way around this?
What about a different scheme for s;[n] and s3[n|?
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Figure 3: Title on figure

Figure 3 shows BER vs. equalizer length N, for channels of length 4.
(In this case, iy = [1 1 1 1] and hy =1 1 =1 —=1].) We do
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indeed see that the BER curve flattens out when N, is approximately three
times the length of the channel’s impulse response (i.e., at about N, = 12).
Thus, similar to previous work by Tom and Prof. Zoltowski, it appears that
equalizers of length 3 % L are adequate, even though an IIR filter is required
in theory.
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Figure 4 shows BER vs. equalizer delay D. Unlike Tom’s work where
he noticed little difference in BER for various delays D (see his most recent
journal article-the one that has Bill listed as an author [KHZ]), Figure 4
shows that BER is best for L < D < N, — L. However, within this range
there is little difference in BER. Thus, when trading delay for BER it is best
to choose D = L + 1 if the system can tolerate such a delay.

The equalizers can be written entirely in term of hq[n] and hy[n] and the
noise variance. We had hoped to find some symmetry buried in the structure



of the equalizers, but it does not appear that there is any. Analytic analysis
for simple cases (such as for Ng = 1) give little hope for finding the desired
symmetry. For the channels described above and for D = 1, the length 12
equalizers are

n 9 g2 E G4
0 0.0150 0.3792 —0.1752 —0.0588
1 —=0.0652 —0.1568 0.3729 —0.5912
2 0.3848 —0.5362 0.3548 —0.1581
3 0.3086 —0.1190 —0.0361 0.1899
4 —0.0262 0.1431 —0.0570 —0.0396
5 —0.0197 —0.0683 0.1346 —0.1995
6 0.1333 —0.1747 0.1086 —0.0353
7 0.0906 —0.0232 —0.0213 0.0649
8 —0.0162 0.0463 —0.0155 —-0.0188
9 —0.0038 —0.0239 0.0437 —0.0587
10 0.0369 —0.0421 0.0297 —0.0097
11 0.0186 —0.0046 —0.0021 0.0089

Even with great symmetry in hy[n] and hy[n], as we have above, the equalizers
are completely different.
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