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Outline
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High-speed CDMA Forward Link

Interfering
Base-station

Base-station
Transmitting 

Mobile Receiver of Desired User

Down-link { Bottleneck in future cellular/PCS systems

� Internet usage is download oriented

� Number of users and data rate growing very fast

Samina Chowdhury
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Conventional Receiver : RAKE

Nc

h1[n]

y1[n]

y2[n]

h2[n]

noise

+

Matched Filter

Matched Filter

^bj[m]

Symbol Estimate

Base-station

s[n]

noise
+

+

c�bs[�n]c
�

j [�n]

�K

c�bs[�n]c
�

j [�n] h�ci
(1)

�1

+yi[n]

h�ci
(K)Delay

Delay

Correlation receiver

�i[n]

�1[n]

�2[n]

Maximal Ratio Combining
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CDMA Downlink : Problems

➢ Orthogonal Walsh-Hadamard codes used to spread data

symbols { perfect separation of desired signal in at fading

scenario.

➢ Walsh-Hadamard

codes have poor

auto-correlation and

cross-correlation

properties at non-

zero lag values

Correlation Lag

Samina Chowdhury
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➢ Frequency-selective

fading ➜

♦ Inter-Chip Interference

(ICI)

♦ Multiple-Access Interfer-

ence (MAI).
+

+

path 1

path 2

path 3

➢ Delay spread may induce Intersymbol Interference (ISI)

➢ RAKE receiver treats interference as white noise

➢ When many users are active, RAKE performance degrades
Samina Chowdhury
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Downlink Speci�c Linear Equalizers

Features
✬ Equalizer restores \chip sequence", followed by despreading

with channel code times long code

✬ The equalizer is independent of the user's channel code.

✬ Equalizer is unchanged over coherence time of downlink channel

✬ Multiple antennas at mobile receiver provide space-time

diversity - increases cost and power consumption of the mobile

unit

✬ Chip-level MMSE equalizer proposed independently by

I. Ghauri and D. Slock, C. Frank and E. Visotsky and later by

T. Krauss and M. D. Zoltowski.

Samina Chowdhury
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The MMSE solution is in the form

of the classical Wiener �lter

w = R�1
xx rdx

��
��

�
�
�*

-

-

Q
Q
QQs

x0

d0

-
+

^d0

�0

P

w

Drawbacks

✦ Direct computation of the MMSE equalizer requires estimate of

R�1
xx .

✦ Equalizer may have to be many chips in length | slow

convergence in adaptive implementations

Samina Chowdhury
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Proposed Solution :

✵ Implement a low-complexity reduced-rank approximation of

the full-rank chip-level MMSE equalizer.

✵ Compare performace of the reduced-rank equalizer to the

full-rank Wiener �lter and other reduced-rank equalizers.

✵ Evaluate convergence properties in stationary and

non-stationary environment.

Multi-Stage Nested Wiener Filter

First formulated by J.S. Goldstein and I.S. Reed

[1] J. S. Goldstein, I. S. Reed and L. L. Scharf. \A Multistage

Representation of the Wiener Filter based on Orthogonal Projections".

IEEE Trans. Information Theory, Nov. 1998.
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Multi-Stage Nested Wiener Filter : Properties

w2

w1

d0

x0

�2

�1

p1

B2

p2

d2

x2

B1

x1

d1

xN�3

pN�2

xN�2 = dN�1 = �N�1

dN�2

Analysis Filter bank

�0

wN�1BN�2

P

P

P

�N�2

wN�2

Synthesis Filter bank
P

✶ Forward Recursion :

pk =

E[xk�1 d
�

k�1]

jjE[xk�1 d�k�1]jj

Bk = null(pk) k = 1; : : :N � 2

✶ Backward Recursion :

wk = E[�kd
�

k�1]=E[j�kj
2] �k�1 = dk�1�w�k�k k = N � 1; : : : 1
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Multi-Stage Nested Wiener Filter Properties : Contd.

✶ The pyramidal decomposition decorrelates x0 at lags greater

than one, resulting in an output ~dN =
h

d1 d2 � � � dN
iT

characterized by a tridiagonal covariance matrix

✶ The nested scalar Wiener �lters operate on ~dN to form an

uncorrelated error vector ~�N =
h

�1 �2 � � � �N
iT

✶ Choosing Bk = I � pkp
H

k results in �lters p1;p2; : : : ;pk; : : :

which are mutually orthogonal, and of the same length N
Samina Chowdhury
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Rank Reduction with the Multi-Stage Nested

Wiener Filter
✡ Rank Reduction is achieved by terminating the orthogonal

decomposition at some stage D < N � 1

✡ MD =
h

p1 p2 : : : pD
i

forms an orthonormal basis for wD

✡ wD lies in Krylov subspace spanned by

TD =
h

rdx Rxxrdx R2
xxrdx : : : RD�1

xx rdx
i

✡ As the number of stages increase, the process xk tends to

become white, and the �lter pk+1 goes to zero | the optimal

MSE is then achieved at that stage

Samina Chowdhury
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Simulation Parameters for CDMA Downlink

➣ Chip-rate 3.6864 MHz

(Tc = 0:27�s)

➣ Spreading factor = 64

➣ BPSK Data Symbols
➣ Walsh-Hadamard Chan-

nel Codes

➣ QPSK scrambling code,

length 32768.

➣ Square-root raised cosine

chip waveform, � = 0:22

➣ Receiver uses chip-

matched �ltering

➣ 4 equal power multipaths,

randomly in between 0 and

10 �s (� 37 chips)

➣ Arrival times at 2 anten-

nas the same, with inde-

pendent fading

➣ Saturated system - 64

equal power users

➣ Equalizer length 57 chips

➣ Delay Dc chosen so as to

minimize MSE

Samina Chowdhury
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Simulation Parameters : Two Base-stations

➣ Equal power received signals from two base-stations

➣ 4 equal power multipath arrivals from 2nd base-station, with

random delays and a maximum delay spread of 10 �s

➣ Received signal sampled at twice chip rate to get

y1i[n] = yi[nTc] and y2i[n] = yi[nTc + Tc=2]

➣ Soft Hand-o� { Desired signal transmitted from both

base-stations, receiver designs equalizers for both and combines

the two outputs
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Typical Channel Impulse Response
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Mean-Square Error vs. Dimension of Subspace for

Di�erent Reduced-Rank methods : One Base-station
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Mean-Square Error vs. Dimension of Subspace for

Di�erent Reduced-Rank methods : Two Base-stations
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BER vs. SNR for CDMA Downlink : One Base-station
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BER vs. SNR for CDMA Downlink : Two Base-stations
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Training based Adaptive MSNWF

✠ Cannot train the equalizer on the chip-rate `sum signal' as the

mobile does not know all the active channel codes and data

symbols

✠ Instead, we use the pilot channel of CDMA downlink, which

has a known code and known symbols

✠ We employ `block-adaptive' lattice-type MSNWF with

Initialization :

p1 =

NtX
i=1
x[i]d�0[i] = ^rdx

✠ We assume the channels are time invariant during the period of

interest

Samina Chowdhury
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✠ The symbol estimate is given by

^b1[m] =
Nc�1X

i=0

�
gHc y[n]
	

c�bs[n+ i]c�1[i]

� gHc C
H

1 [m]~y[m];

where n = mNc +Dc;

~y[m] =
h

y[n+Nc � 1] : : : y[n] : : : y[n�Ng + 1]
iT

C1[m] =
2

666666664
cbs[mNc+Nc�1]c1[Nc�1] 0 : : :

...

. . .

. . .

cbs[mNc]c1[0] : : : : : :

. . .

. . .

. . .

0 : : : cbs[mNc]c1[0]
3

777777775
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SINR vs. Dimension of Reduced-Rank Subspace for

MSNWF, One Base-station
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Output SINR vs. Time for Di�erent Adaptive Equalizers

One Base-station
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SINR vs. Time for Di�erent Adaptive Equalizers,

Two Base-stations, Soft Hando�
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BER Performance of Adaptive Equalizers,

One Base-station
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BER Performance of Adaptive Equalizers,

Two Base-stations, Soft Hando�
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Future Work : Reduced-Rank Adaptive

Equalization
✦ Simulate time-varying Rayleigh-faded channels

➺ Arrival times are �xed, but multipath gains vary

➺ Multipath delays change slowly

✦ Compare `block-adaptive' vs. `symbol-recursive' MSNWF

algorithms as the Doppler spread is increased

✦ Devise a better training method that would not require

correlation with long code over the e�ective delay spread
Samina Chowdhury
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Complexity Issues

✬ In block-adaptive `lattice' MSNWF, no need to store any

N �N matrices
✬ a D-stage `lattice' MSNWF has complexity in the order of

O(NNtD), where Nt is the block size

✬ The RLS algorithm requires O(N2) computations for each

iteration

✬ Symbol update MSNWF algorithm requires O(N2D)

computations per iteration

✬ We propose to do a thorough analysis of the computational

complexity of the MSNWF.
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SINR vs. Time for Structured Projected Equalizers

Arrival Times at Exact Chip Periods
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SINR vs. Time for Adaptive Equalizers using MSNWF
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Generalized Arrival Times

When the multipath arrival times are not exact multiples of Tc

hi = Ghci

is only an approximate relation.

Gm now contains two consecutive columns of ~IG for each

multipath arrival | corresponding to b�k=Tcc and d�k=Tce .

Simulations

➻ 4 multipaths, one at 0, other 3 uniformly distributed within

10�s, but at least Tc = 0:27�s apart.
➻ Dimension of projected �lter is now 2� 7 = 14.
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SINR vs. Time for Structured Projected Equalizers,

Random Arrival Times
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Future Work : Structured Projected Equalizers

✠ Incorporate delay estimation in a blind or semi-blind fashion

➺ Multipath delays change relatively slowly compared to the

complex gains

➺ CDMA mobile receivers perform block serial search - the

coherent correlations are combined in energy

➺ Synchronous sum signal has a gain of 10log(64) � 18 dB

➺ Multiple antennas at the receiver provide diversity

➺ If estimates are \noisy", we can take 2/3 consecutive

columns of G centered on estimated delays

✠ Sample at twice chip-rate to improve performance with random

arrival times

✠ Implement real-time, low-complexity estimation of R�1
xx
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Space-Time Coding

✳ Transmit diversity scheme using multiple transmit antennas

and spreading the user's symbols across time and space.

✳ We will investigate space-time spreading using multiple

transmit and receive antennas without signi�cantly increasing

the processing complexity.

✳ Design linear receivers for space-time coding that will perform

better than Rake.
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Frequency-Domain Processing

✳ For systems operating at 2 GHz, there is a strong potential for

time and frequency selectivity in the channels.

✳ In rapidly varying channels with high delay-spread,processing

space-time block codes completely in the frequency-domain can

be very e�ective

✳ Data-blocks are transformed into the frequency domain via

FFT and then equalization is performed in the frequency

domain.

✳ Advantages | very low complexity growth with block size N ,

faster convergence and robustness.
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Decision-Directed/Multi-User Detection

✳ How to optimally use the `detected' symbols to improve

performance { \hard" vs. \soft" feedback.

✳ Successive and Parallel Interference Cancellation have been

proposed to combat MAI.
✳ Multi-user detection combined with space-time processing

yields substantial gain over single-user based methods.

✳ Iterative linear and non-linear MUD schemes approach

optimum performance with reasonable complexity
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Conclusions

✵ Reduced-rank MMSE equalizers obtained via MSNWF

demonstrate near full-rank performance after only a few stages.

✵ The convergence speed of MSNWF is similar to full-rank RLS,

and has better performance with low sample support.

✵ The block-adaptive MSNWF can be implemented with very

low complexity

✵ The MSNWF is promising for time-varying channels.

Samina Chowdhury



Conclusions 49'
&

$
%

Conclusions

✵ Structured equalizers exploit the sparseness of the multipath

channel to substantially reduce the number of parameters.

✵ The convergence rate of structured MMSE equalizer was

signi�cantly better than unstructured MSNWF operating in a

subspace of similar rank.

✵ Structured equalizer showed excellent convergence even when

the underlying assumption was not accurate.
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