

CONJUGATE GRADIENT ADAPTIVE FILTERING WITH APPLICATION TO SPACE-TIME PROCESSING FOR WIRELESS DIGITAL COMMUNICATIONS

PI: Michael D. Zoltowski

Innovative Signal Processing for Military Digital Communications

6-8 June 2002, Burlington, VT

Linear MMSE and Wiener-Hopf Equations

$$E\{|d[n] - \mathbf{w}^H \mathbf{x}[n]|^2\} = \sigma_d^2 + \mathbf{w}^H \mathbf{r}_{dx} + \mathbf{r}_{dx}^H \mathbf{w} + \mathbf{w}^H \mathbf{R}_{xx} \mathbf{w}$$

- Gradient: $f(\mathbf{w}) = \mathbf{R}_{xx}\mathbf{w} \mathbf{r}_{dx}$
- Wiener-Hopf Eqns: $\mathbf{R}_{xx}\mathbf{w} = \mathbf{r}_{dx}$
- with sample data: $\hat{\mathbf{R}}_{xx}\mathbf{w} = \hat{\mathbf{r}}_{dx}$, where:

$$\hat{\mathbf{R}}_{xx} = \frac{1}{K} \sum_{n=0}^{K-1} \mathbf{x}[n] \mathbf{x}^{H}[n] \ (N \times N) \qquad \hat{\mathbf{r}}_{dx} = \frac{1}{K} \sum_{n=0}^{K-1} \mathbf{x}[n] d^{*}[n] \ (N \times 1)$$

 \bullet when weight vector dimension N is large, finite average performance can be enhanced via reduced-rank or reduced dimension subspace processing

$$\mathbf{w} = \alpha_1 \mathbf{t}_1 + \alpha_2 \mathbf{t}_2 + \dots + \alpha_D \mathbf{t}_D$$
 where D << N

 $-\{\mathbf{t}_1,\mathbf{t}_2,...,\mathbf{t}_D\}$: data-adaptive reduced-dimension subspace

Cayley-Hamilton Theorem and Krylov Subspaces

• Cayley-Hamilton Theorem dictates \mathbf{R}_{xx}^{-1} may be expressed as a linear combination of powers of \mathbf{R}_{xx} :

$$\mathbf{R}_{xx}^{-1} = \sum_{i=0}^{N-1} \alpha_i \mathbf{R}_{xx}^i = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{R}_{xx} + \alpha_2 \mathbf{R}_{xx}^2 + \dots + \alpha_{N-1} \mathbf{R}_{xx}^{N-1}$$

• Substituting into the closed-form solution for the optimum Wiener-Hopf weights $\mathbf{w} = \mathbf{R}_{xx}^{-1}\mathbf{r}_{dx}$:

$$\mathbf{w} = \{ \sum_{i=0}^{N-1} \alpha_i \mathbf{R}_{xx}^i \} \mathbf{r}_{dx}$$
$$= \alpha_0 \mathbf{r}_{dx} + \alpha_1 \mathbf{R}_{xx} \mathbf{r}_{dx} + \alpha_2 \mathbf{R}_{xx}^2 \mathbf{r}_{dx} + \dots + \alpha_{N-1} \mathbf{R}_{xx}^{N-1} \mathbf{r}_{dx}$$

- thus, we see how the Krylov subspace basis $\{\mathbf{r}_{dx}, \mathbf{R}_{xx}\mathbf{r}_{dx}, \mathbf{R}_{xx}^2\mathbf{r}_{dx}, ..., \mathbf{R}_{xx}^{N-1}\mathbf{r}_{dx}\}$ naturally arises
- theory of power iteration reveals that $\mathbf{R}_{xx}^{i}\mathbf{r}_{dx}$ converges rapidly to "largest" eigenvector of \mathbf{R}_{xx} as i increases \Rightarrow leads to very good approximation below where D << N

$$\mathbf{w}pprox\sum\limits_{i=0}^{D-1}eta_{i}\mathbf{R}_{xx}^{i}\mathbf{r}_{dx}$$

Equivalence Between MWF and Conjugate Gradients

• deriving a direct (no backwards recursion) weight update for MWF each time a new "stage" is added lead to a two-step (coupled) recursion

$$\mathbf{w}_i = \mathbf{w}_{i-1} + \gamma_i \mathbf{g}_i + \phi_i \mathbf{t}_i$$
$$\mathbf{g}_i = \eta_i \mathbf{g}_{i-1} + \zeta_i \mathbf{t}_i$$

- followed this through to a mathematical proof of exact equivalence between MWF and iterative search method of Conjugate Gradients (CG)
 - At each iteration/step, CG minimizes $E\{|d[n] \mathbf{w}^H \mathbf{x}[n]|^2\} = \sigma_d^2 + \mathbf{w}^H \mathbf{r}_{dx} + \mathbf{r}_{dx}^H \mathbf{w} + \mathbf{w}^H \mathbf{R}_{xx} \mathbf{w}$ over Krylov subspace generated by \mathbf{R}_{xx} and \mathbf{r}_{dx} , \Rightarrow same as MWF!!
- adding a **stage** to MWF equivalent to taking a **step** in CG search
- the fact that an iterative search algorithm is related to a reduced-rank adaptive filtering scheme is fascinating!

$\mathbf{w}_0 = 0$
$\mathbf{u}_1 = \hat{\mathbf{r}}_{dx}$
$\mathbf{t}_1 = -\mathbf{u}_1$
$\ell_1 = \mathbf{t}_1^H \mathbf{t}_1$
for $i = 1, \dots, D$
$\mathbf{v} = \mathbf{R}_{xx}\mathbf{u}_i$
$\eta_i = \ell_i/\mathbf{u}_i^H\mathbf{v}$
$\mathbf{w}_i = \mathbf{w}_{i-1} + \eta_i \mathbf{u}_i$
$\mathbf{t}_{i+1} = \mathbf{t}_i + \eta_i \mathbf{v}$
$\ell_{i+1} = \mathbf{t}_{i+1}^H \mathbf{t}_{i+1}$
$\Psi_i = \ell_{i+1}/\ell_i$
$\mathbf{u}_{i+1} = -\mathbf{t}_{i+1} + \Psi_i \mathbf{u}_i$
D: A DI I CO MONIME

Direct Block CG-MSNWF.

\mathbf{w}_i	objective function argument (EQ tap wts)
η_i	argument step size at step i
\mathbf{u}_i	conjugate direction at step i
ψ_i	conjugate direction step size at step i
\mathbf{t}_i	gradient (residual error) at step i

Description of Variables in CG Algorithm.

$\mathbf{w}_0 = 0$
$\mathbf{u}_1 = \hat{\mathbf{r}}_{dx}$
$\mathbf{t}_1 = -\mathbf{u}_1$
$\ell_1 = \mathbf{t}_1^H \mathbf{t}_1$
for $i = 1, \ldots, D$
$\mathbf{v} = \hat{\mathbf{R}}_{xx}\mathbf{u}_i$
$\eta_i = \ell_i/\mathbf{u}_i^H\mathbf{v}$
$\mathbf{w}_i = \mathbf{w}_{i-1} + \eta_i \mathbf{u}_i$
$\mathbf{t}_{i+1} = \mathbf{t}_i + \eta_i \mathbf{v}$
$\ell_{i+1} = \mathbf{t}_{i+1}^H \mathbf{t}_{i+1}$
$\Psi_i = \ell_{i+1}/\ell_i$
$\mathbf{u}_{i+1} = -\mathbf{t}_{i+1} + \Psi_i \mathbf{u}_i$
Cov. Block CG-MSNWF.

- straightforward per sample update CG (one step per unit time) has complexity comparable to RLS
- \bullet CG uses \mathbf{R}_{xx} directly
- in contrast, RLS recursively updates $\mathbf{R}_{xx}^{-1} \Rightarrow$ nonlinearly related
- results in a number of VIP advantages of *Direct* CG over Block Minimum Variance or RLS

Auxiliary Vector Method Equivalent to Constrained Steepest Descent

$$\mathbf{w}_{1} = \hat{\mathbf{r}}_{dx}$$

$$\mathbf{P}^{\perp} = \mathbf{I} - \hat{\mathbf{r}}_{dx}\hat{\mathbf{r}}_{dx}^{H}/\hat{\mathbf{r}}_{dx}^{H}\hat{\mathbf{r}}_{dx}$$
for $i = 1, \dots, D$

$$\mathbf{g}_{i} = \mathbf{P}^{\perp}\{\hat{\mathbf{R}}_{xx}\mathbf{w}_{i} - \hat{\mathbf{r}}_{dx}\}$$

$$\alpha_{i} = \mathbf{g}_{i}^{H}\hat{\mathbf{R}}_{xx}\mathbf{g}_{i}/\mathbf{w}_{i}^{H}\hat{\mathbf{R}}_{xx}\mathbf{w}_{i}$$

$$\mathbf{w}_{i+1} = \mathbf{w}_{i} - \alpha_{i}\mathbf{g}_{i}$$
AV Method

- "adding Auxiliary Vector" ⇒ step of Constrained Steepest Descent search
- there is order in the universe!
- same computational advantages as CG since AV works on $\hat{\mathbf{R}}_{xx}$ directly

$\mathbf{w}_0 = \text{``smart''} \text{ initialize or }$
opt value from prior block
$\mathbf{t}_1 = \hat{\mathbf{R}}_{xx}\mathbf{w}_0 - \hat{\mathbf{r}}_{dx}$
$\mathbf{u}_1 = -\mathbf{t}_1$
$\ell_1 = \mathbf{t}_1^H \mathbf{t}_1$
for $i = 1, \ldots, D$
$\mathbf{v} = \hat{\mathbf{R}}_{xx}\mathbf{u}_i$
$\eta_i = \ell_i/\mathbf{u}_i^H\mathbf{v}$
$\mathbf{w}_i = \mathbf{w}_{i-1} + \eta_i \mathbf{u}_i$
$\mathbf{t}_{i+1} = \mathbf{t}_i + \eta_i \mathbf{v}$
$\ell_{i+1} = \mathbf{t}_{i+1}^H \mathbf{t}_{i+1}$
$\Psi_i = \ell_{i+1}/\ell_i$
$\mathbf{u}_{i+1} = -\mathbf{t}_{i+1} + \Psi_i \mathbf{u}_i$
CG-MWF.

$$\mathbf{w}_{1} = \hat{\mathbf{r}}_{dx}$$

$$\tilde{\mathbf{r}}_{dx} = \hat{\mathbf{r}}_{dx} / \sqrt{\hat{\mathbf{r}}_{dx}^{H} \hat{\mathbf{r}}_{dx}}$$
for $i = 1, ..., D$

$$\mathbf{u}_{i} = \hat{\mathbf{R}}_{xx} \mathbf{w}_{i}$$

$$\mathbf{g}_{i} = \mathbf{u}_{i} - (\tilde{\mathbf{r}}_{dx}^{H} \mathbf{u}_{i}) \tilde{\mathbf{r}}_{dx}$$

$$\mathbf{v}_{i} = \hat{\mathbf{R}}_{xx} \mathbf{g}_{i}$$

$$\alpha_{i} = \mathbf{g}_{i}^{H} \mathbf{v}_{i} / \mathbf{w}_{i}^{H} \mathbf{u}_{i}$$

$$\mathbf{w}_{i+1} = \mathbf{w}_{i} - \alpha_{i} \mathbf{g}_{i}$$
CSD-AV Method

• In solving an N-dimensional quadratric optimization problem, CG is guaranteed to get to the minimum in N steps, whereas convergence with Steepest Descent is only guaranteed with an infinite number of steps

$\mathbf{w}_0 = 0$
$\mathbf{u}_1 = \hat{\mathbf{r}}_{dx}$
$\mathbf{t}_1 = -\mathbf{u}_1$
$\ell_1 = \mathbf{t}_1^H \mathbf{t}_1$
for $i = 1, \dots, D$
$\mathbf{v} = \mathbf{X}\mathbf{X}^H\mathbf{u}_i$
$\eta_i = \ell_i/\mathbf{u}_i^H\mathbf{v}$
$\mathbf{w}_i = \mathbf{w}_{i-1} + \eta_i \mathbf{u}_i$
$\mathbf{t}_{i+1} = \mathbf{t}_i + \eta_i \mathbf{v}$
$\ell_{i+1} = \mathbf{t}_{i+1}^H \mathbf{t}_{i+1}$
$\Psi_i = \ell_{i+1}/\ell_i$
$\mathbf{u}_{i+1} = -\mathbf{t}_{i+1} + \Psi_i \mathbf{u}_i$
Direct Block CG-MSNWF.

- $\hat{\mathbf{R}}_{xx} = \sum_{\ell=n-M}^{n} \mathbf{x}[n]\mathbf{x}^{H}[n] = \mathbf{X}\mathbf{X}^{H}$ where \mathbf{X} contains the "snapshots" (as columns) obtained by sliding over one sample at a time
- both \mathbf{X} and \mathbf{X}^H are Toeplitz \Rightarrow use circulant extension of Toeplitz matrix "trick" twice successively
- FFT processing for reduced complexity \Rightarrow one-time FFT of data block outside CG loop (invoke Parseval's theorem)
- No need to compute or store $\hat{\mathbf{R}}_{xx}$ (no need to form \mathbf{X} either)

Circulant Extension for Toeplitz Matrix-Vector Product

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} r_0 & r_{-1} & r_{-2} \\ r_1 & r_0 & r_{-1} \\ r_2 & r_1 & r_0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ d.c. \\ d.c. \end{bmatrix} = \begin{bmatrix} r_0 & r_{-1} & r_{-2} & \vdots & r_2 & r_1 \\ r_1 & r_0 & r_{-1} & \vdots & r_{-2} & r_2 \\ r_2 & r_1 & r_0 & \vdots & r_{-1} & r_{-2} \\ r_{-2} & r_2 & r_1 & \vdots & r_0 & r_{-1} \\ r_{-1} & r_{-2} & r_2 & \vdots & r_1 & r_0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ 0 \\ 0 \end{bmatrix}$$

- Multiplication by circulant matrix effects circular convolution
- (i) compute 5 pt DFT of $\{r_0, r_1, r_2, r_{-2}, r_{-1}\}$, (ii) compute 5 pt DFT of $\{x_1, x_2, x_3, 0, 0\}$, (iii) pt-wise multiply, (iv) compute 5 pt inverse DFT of pt-wise product, (v) retain only first 3 values
- choose FFT length equal to power of two

• (i) compute 8 pt FFT of $\{r_0, r_1, r_2, 0, 0, 0, r_{-2}, r_{-1}\}$, (ii) compute 8 pt FFT of $\{x_1, x_2, x_3, 0, 0, 0, 0, 0, 0, 0, 0\}$, (iii) pt-wise multiply, (iv) compute 8 pt inverse FFT of pt-wise product, (v) retain only first 3 values

```
L=block length; N=FFT length; M=weight vector length; N=M+L-1
X = \text{fft}(xd,N); F = (\exp(-j*2*pi/N).\hat{0}:N-1]').*conj(X);
w=zeros(M,1); u=rdx; g=-u;
l=g'*g;
for i=1:Nstop,
d=ifft(X.*fft(u,N),N); y=d(end-L+1:end,1);
z=ifft(F.*fft(y,N),N); v=z(end-M+1:end,1);
eta=l/(u^*v);
w_old=w;
w=w_old+eta*u;
g_{old}=g;
g=g_old+eta*v;
l_old=l;
l=g'*g;
psi=l/l_old;
uold=u;
u=-g+psi*u_old;
end
```

$\mathbf{w}_0 = 0$
$\mathbf{u}_1 = \mathbf{r}_{dx} = \mathcal{oldsymbol{\mathcal{H}}} oldsymbol{\delta}_d$
$\mathbf{t}_1 = -\mathbf{u}_1$
$\ell_1 = \mathbf{t}_1^H \mathbf{t}_1$
for $i = 1, \dots, D$
$\mathbf{v} = \mathcal{H}\mathcal{H}^H\mathbf{u}_i$
$\mathbf{v} = \mathbf{v} + \sigma_n^2 \mathbf{u}_i$
$\eta_i = \ell_i/\mathbf{u}_i^H\mathbf{v}$
$\mathbf{w}_i = \mathbf{w}_{i-1} + \eta_i \mathbf{u}_i$
$\mathbf{t}_{i+1} = \mathbf{t}_i + \eta_i \mathbf{v}$
$\ell_{i+1} = \mathbf{t}_{i+1}^H \mathbf{t}_{i+1}$
$\Psi_i = \ell_{i+1}/\ell_i$
$\mathbf{u}_{i+1} = -\mathbf{t}_{i+1} + \Psi_i \mathbf{u}_i$
Indirect CG.

- $\mathbf{R}_{xx} = \mathcal{H}\mathcal{H}^H + \sigma_n^2 \mathbf{I}$, where \mathcal{H} is channel convolution matrix and σ_n^2 is noise power
- both \mathcal{H} and \mathcal{H}^H are Toeplitz \Rightarrow use circulant extension of Toeplitz matrix "trick" twice successively
- FFT processing for reduced complexity \Rightarrow one-time FFT of channel outside CG loop (invoke Parseval's theorem)
- No need to compute or store \mathbf{R}_{xx} (no need to form \mathcal{H} either)

```
N=FFT length; M=weight vector length;
H=fft(conj(h),N); F=(exp(-j*2*pi/N).[0:N-1]').*H; C=conj([H(1,1); H(end:-1:21)]);
w = zeros(M,1); u = h; g = -u;
l=g^{*}g;
for i=1:Nstop.
U=F.*fft(u,N); P=[U(1,1); U(end:-1:2,1)];
z=ifft(C.*P,N); v=z(end:-1:end-M+1,1) + noisepwr*u;
eta=l/(u^{*}v);
w_old=w;
w=w_old+eta*u;
g_{old}=g;
g=g_old+eta*v;
l_old=l;
l=g'*g;
psi=l/l_old;
uold=u;
u=-g+psi*u_old;
end
```

Simulation Parameters for FFT Based CG for QPSK EQ

- QPSK information symbols transmitted through simple frequency selective channel
- channel: 70% ghost at half-symbol delay with a phase of 165°
- with pulse shaping, channel is of length 13
- equalizer length is 20
- FFT length is 32

"Back of the Envelope" Calculation

Example: equalizer length, $N_q = 20$, and FFT length is N = 32

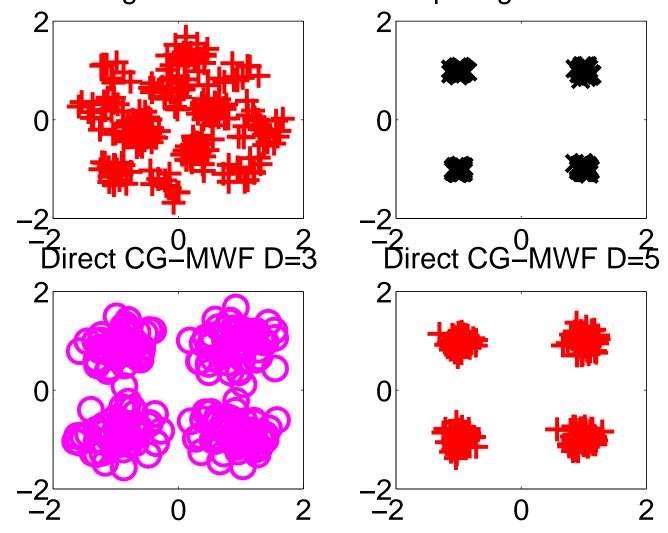
- Outside C-G loop, compute one-time FFT of channel
- Inside C-G loop, matrix vector product $\mathbf{R}_{xx}\mathbf{u}$ where \mathbf{R}_{xx} is $N_q \times N_q$ and **u** is $N_q \times 1$ is replaced by
 - (a) N pt FFT of \mathbf{u}

- e.g. requires 80 mults
- (b) Two pt-wise products of $N \times 1$ vectors e.g. requires 2*32 = 64 mults

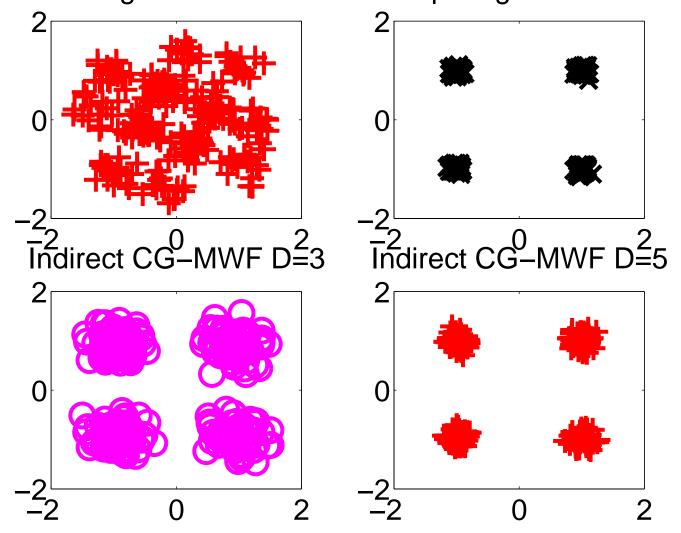
(c) N pt inverse FFT

- e.g. requires 80 mults
- \mathbf{R}_{xx} is 20×20 and \mathbf{u} is 20×1 , such that computing $\mathbf{R}_{xx}\mathbf{u}$ requires $\approx 20^2 = 400 \text{ mults}$
- \bullet even for this simple example where N is quite small, the computation needed for the matrix-vector product at **EACH** step of CG is reduced **FROM** $20^2 = 400 \text{ TO } 2 * 80 + 64 = 224 \text{ mults}$
- further, don't ever need to form or store \mathbf{R}_{xx}

FFT Direct CG Applied to Equalization of QPSK Recvd Signal Constellation Computing Full Inverse



FFT Indirect CG Applied to Equalization of QPSK Recvd Signal Constellation Computing Full Inverse



$$\hat{\mathbf{r}}_{dx}[0] = \mathcal{H}\boldsymbol{\delta}_{d}$$

$$\hat{\mathbf{R}}_{xx}[0] = \hat{\mathcal{H}}\mathcal{H}^{H} + \hat{\sigma}_{n}^{2}\mathbf{I}$$
for $n = 1, ..., N$

$$\hat{\mathbf{R}}_{xx}[n] = \{(n + k_{w})\hat{\mathbf{R}}_{xx}[n - 1] + \mathbf{x}[n]\mathbf{x}^{H}[n]\}/(n + k_{w} + 1)$$

$$\hat{\mathbf{r}}_{dx}[n] = \{(n + k_{w})\hat{\mathbf{r}}_{dx}[n - 1] + d^{*}[n]\mathbf{x}[n]\}/(n + k_{w} + 1)$$

$$\mathbf{w}_{0}[n] = \mathbf{w}_{D}[n - 1]$$

$$\mathbf{u}_{1}[n] = \mathbf{u}_{D}[n - 1]$$
for $i = 1, ..., D$ (typ. $D = 1$)
$$\mathbf{v}[n] = \hat{\mathbf{R}}_{xx}[n]\mathbf{u}_{i}[n]$$

$$\eta_{i}[n] = \mathbf{t}_{i}^{H}[n]\mathbf{t}_{i}[n]/\mathbf{u}_{i}^{H}[n]\mathbf{v}[n]$$

$$\mathbf{w}_{i}[n] = \mathbf{w}_{i-1}[n] + \eta_{i}[n]\mathbf{u}_{i}[n]$$

$$\mathbf{t}_{i+1}[n] = \hat{\mathbf{R}}_{xx}[n]\mathbf{w}_{i}[n] - \hat{\mathbf{r}}_{dx}[n]$$

$$\Psi_{i+1}[n] = \mathbf{t}_{i+1}^{H}[n]\mathbf{t}_{i+1}[n]/\mathbf{t}_{i}^{H}[n]\mathbf{t}_{i}[n]$$
Hybrid per-sample CG.

- Key feature of per sample update CG ⇒ amenability to "smart" initialization
- equalization example: employ semi-blind (training sequence plus signal properties) estimate of propagation channel to form initial estimate of both \mathbf{R}_{xx} and \mathbf{r}_{dx}
- then weighted running estimate of \mathbf{R}_{xx} and weighted decision directed updating of \mathbf{r}_{dx}
- not possible with RLS since it recursively updates $\mathbf{R}_{xx}^{-1} \Rightarrow$ how to "smartly" initialize \mathbf{R}_{xx}^{-1} ??

CG Applied to DFE

• Wiener-Hopf equations for Decision Feedback Equalizer:

$$egin{bmatrix} \mathbf{R}_{yy} & \mathbf{R}_{ys} \ \mathbf{R}_{H}^{H} & \mathbf{R}_{ss} \end{bmatrix} egin{bmatrix} \mathbf{g}_{F} \ \mathbf{g}_{B} \end{bmatrix} = egin{bmatrix} \mathbf{r}_{dy} \ \mathbf{r}_{ds} \end{bmatrix}, \ \mathbf{r}_{dy} &= \sigma_{s}^{2} \mathcal{H} oldsymbol{\delta}_{D} \ \mathbf{R}_{yy} &= \sigma_{s}^{2} \mathcal{H} \mathcal{H}^{H} + N_{0} \mathbf{I}_{N_{F}} \ \mathbf{R}_{ys} &= \sigma_{s}^{2} \mathcal{H} \Delta_{K} \ \mathbf{R}_{ss} &= \sigma_{s}^{2} \mathbf{I}_{N_{B}} \ \mathbf{r}_{ds} &= \mathbf{0} \end{bmatrix}$$

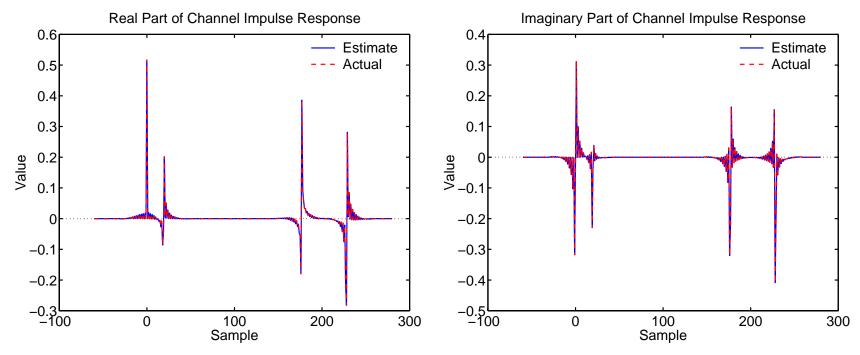
- Digital TV application: number of feedforward taps, N_F , and number of feedback taps, N_B , are on the order of 500
 - ideal application for CG!
- if initial channel estimate is available, can initialize all matrices needed to form Wiener-Hopf equations

Channels Employed in Digital TV Example

Chan	Path 2 Delay Gain Phase			Path 3			Path 4		
	Delay	Gain	Phase	Delay	Gain	Phase	Delay	Gain	Phase
1	19.4	-6.45	291.2	176.7	-0.97	303.5	228.1	-0.28	245.0
2	-13.8	-7.98	146.8	84.9	-2.39	285.2	220.2	-5.59	342.8
3	-27.2	-13.86	91.5	68.8	-4.97	289.0	197.7	-4.67	182.5
4	8.9	-8.33	328.3	25.6	-4.99	299.1	26.8	-1.67	0.8

Delays, gains (dB), and phases of the paths relative to main path of four simulated channels Including power of all four interfering paths, SNR = 30 dB.

Channel Estimates for Digital TV Example

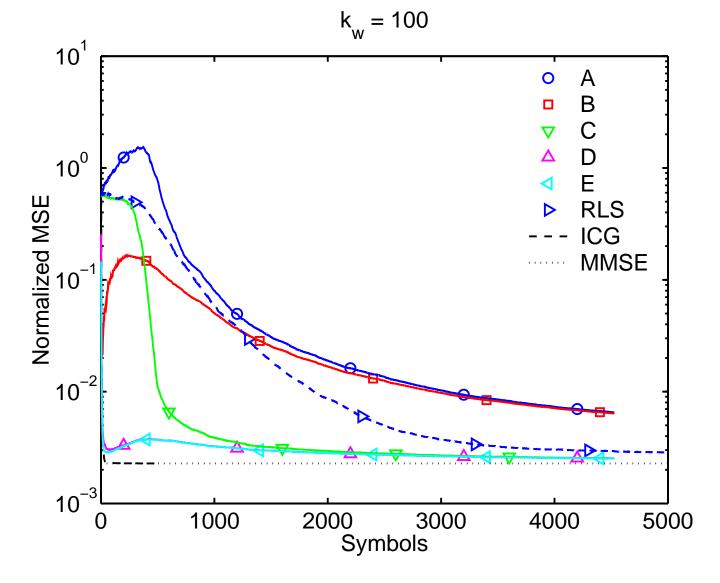


True and estimated and channel impulse responses at an SNR of 30 dB.

Various Initialization Schemes for a DFE

- A. Minimal initialization. This is identical to the first set of results above.
- B. Matrix initialization. In this case, we initialize the correlation matrices using the actual channel and noise variance N_0 .
- C. Feedback tap initialization. Here, we fill the feedback taps with training symbols prior to beginning adaptation. The correlation matrices are not initialized using the channel.
- D. Matrix and feedback tap initialization. This is a combination of cases B and C. We initialize the matrices using the actual channel and noise variance, and we fill the feedback taps with training symbols.
- E. Matrix and feedback tap initialization with equalizer tap weight initialization. This case is identical to case D except, in addition, we provide a simple initialization of the equalizer tap weights using the negative of the post-cursor portion of the channel.

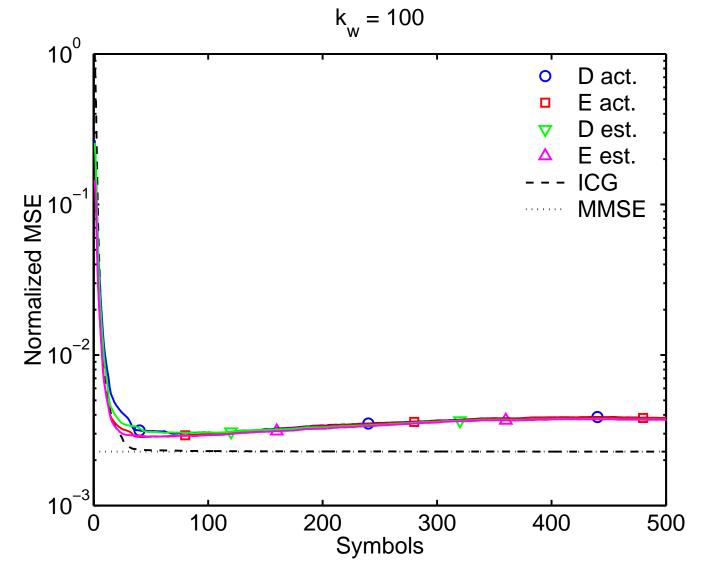
DFE Learning Curves for CG-MSNWF with Various Initializations



PI: Michael D. Zoltowski

23

Zoomed-In DFE Learning Curves for CG-MSNWF



Summary: Advantages of CG over RLS

- CG implicitly effects reduced-rank adaptive filtering thereby offering performance benefits over RLS under low sample support conditions
- CG works on \mathbf{R}_{xx} directly \Rightarrow RLS implicitly/explicitly works on \mathbf{R}_{xx}^{-1}
 - CG can take advantage of initial estimate of \mathbf{R}_{xx} ; e.g., formed while searching for training sequence or from channel estimate formed simply from correlation performed to detect training sequence
 - CG can exploit Toeplitz structure of \mathbf{R}_{xx} to use FFT's for reduced computational complexity (\mathbf{R}_{xx}^{-1} is not Toeplitz)
 - CG can work with a weighted combination of an \mathbf{R}_{xx} estimated directly from data and an \mathbf{R}_{xx} formed from parametric model
- CG is not incommensurate with Principal Components ⇒ can apply CG in a space spanned by eigenvectors for array processing applications
- for spectral estimation via $S(\theta) = 1/\mathbf{s}^H(\theta)\mathbf{R}_{xx}^{-1}\mathbf{s}(\theta) \Rightarrow \text{CG}$ solution to $\mathbf{R}_{xx}\mathbf{w}(\theta) = \mathbf{s}(\theta)$ used to initialize CG sol'n $\mathbf{R}_{xx}\mathbf{w}(\theta + \Delta) = \mathbf{s}(\theta + \Delta)$ (might require only single step of CG for each search angle)