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Abstract

This paper deals with synchronous Direct-Sequence CDMA transmission us-
ing orthogonal channel codes in frequency selective multi-path, motivated by the
forward link in 3G CDMA systems. The chip-level MMSE estimate of the (multi-
user) synchronous sum signal transmitted by the base, followed by a correlate
and sum, has been shown to perform very well in saturated systems. In this pa-
per, reduced-rank, chip-level MMSE estimation based on the Multi-stage Nested
Wiener Filter (MSNWF) �rst proposed by Goldstein and Reed is presented. Our
simulations show that, with perfect channel knowledge, only a small number of
stages is needed to achieve near full-rank MSE performance over a practical SNR
range. This is valid for the \edge of cell" scenario, where two base-stations are con-
tributing equal-power signals, as well as the single base-station case. Also, adaptive
MSNWF operating in a very low rank subspace and using a dedicated pilot channel
for training is shown to perform slightly better than RLS and signi�cantly better
than LMS.

1 Introduction

Chip-level downlink equalizers have been proposed to signi�cantly increase the capacity
for high-speed wireless communication links, such as cdma2000. In this case, the multi-
path delay spread may span a signi�cant portion of the symbol period, so that the multi-
path propagation channel is frequency-selective. As a result the orthogonality of the
Walsh-Hadamard spreading codes on the downlink is lost and there is signi�cant multi-
user access interference (MAI). When many or all users are active in the cell, the BER
curve of the standard RAKE receiver was shown to atten out at higher SNR [1]. Krauss
and Zoltowski [1] derived a chip-rate MMSE equalizer that minimizes the mean-square
error between the synchronous sum signal of all active users transmitted from a given base
station and its estimate, using two antennas on the mobile receiver. In this derivation, the
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sum of the chip sequences from all the users is modeled as i.i.d random sequence, resulting
in a \simple" chip-level equalizer that does not depend on the (Walsh-Hadamard) channel
code,or the base-station dependent long code. The equalizer is followed by correlation
with the desired user's spreading code and the output, downsampled by the spreading
factor, gives the symbol estimate. The derived chip-level MMSE estimators with perfect
channel knowledge was shown to outperform both ZF and RAKE [1].

However, for high data rate applications, the multi-path delay spread may span several
chips and so even this \simple" MMSE equalizer would require computation of a large
number of coe�cients, and may take an unacceptably long time to converge in adaptive
implementations. In this paper, we present a reduced-rank, chip-level MMSE estimator
based on the Multi-Stage Nested Wiener Filter(MSNWF) of Goldstein and Reed [2]. This
method does not require any knowledge of the eigenvectors of the channel covariance
matrix, and so involves much less computation than either the Principal Components
or the Cross-Spectral Components methods, the two most widely known reduced-rank
techniques. Our simulations show that, with perfect knowledge of the channel statistics,
the MSNWF requires only a small number of stages to achieve near full-rank MMSE
performance over a wide SNR range. This would imply a rapid convergence in an adaptive
implementation. We then use the adaptive algorithm developed by Honig and Goldstein
[3] to simulate the performance of the MSNWF when the channel is unknown and the
�lter is adapted using a pilot channel and known pilot symbols. The SINR vs. time plot
shows a convergence speed comparable to full-rank RLS and much faster than full-rank
LMS. The superior performance of the MSNWF is further illustrated by simulated BER
curves.

The results in this paper are for CDMA forward link with synchronous users, saturated
loading, frequency selective fading and long code scrambling. The channel is assumed to
be unvarying with time, which might be valid only over a short time interval.

2 Data and Channel Model
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Figure 1: Chip-level MMSE Equalization for DS-CDMA downlink with 1 base-station.

The channel model is shown in Figure 1. For the one base-station case, the impulse re-
sponse for the i-th antenna channel between the transmitter and receiver (mobile station)
is given by

hi(t) =
Nm�1X
k=0

hi[k]prc(t� �k) i = 1; 2: (1)

where prc(t) is the composite chip waveform ( including the matched low-pass �lters on
the transmit and receive end). The chip waveform is assumed to have a raised cosine
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spectrum. Nm is the total number of delayed paths, i.e. 'multipath arrivals', some of
which may have zero or negligible power, so that the channel impulse response is sparse.

The transmitted 'sum' signal may be described as

s[n] = cbs[n]
NuX
j=1

Ns�1X
m=0

bj[m]cj[n�Ncm] (2)

where cbs[n] is the base-station dependent long code, bj[m] is the bit/symbol sequence of
the j� th user, cj[n] is the j� th user's channel (short) code of length Nc, Nu is the total
number of active users, Ns is the number of bit/symbols transmitted during a given time
window.

The signal received at the i � th antenna (after convolving with a matched �lter
having a square-root raised cosine impulse response) is given by

yi(t) =
X
n

s[n]hi(t� nTc) i = 1; 2 (3)

where Tc is the duration of one chip.
For the sake of notational simplicity we assume a high enough chip rate so that the

multipath delays are integer multiples of the chip time Tc, and that we sample at an
o�set such that the delay of the �rst path is zero.

2.1 Edge of cell/Soft Hando�

We consider the interference problem when the desired user is at the edge of a cell so
that the total received signal at the mobile station is the sum of the contributions from
two base-stations, plus noise.

yi(t) = y
(1)
i (t) + y

(2)
i (t) + �i(t) i = 1; 2 antennas at receiver: (4)

where the superscript denotes the corresponding base-station and �i(t) is a noise process
assumed white and gaussian prior to coloration by the receiver chip-pulse matched �lter.

At each antenna, we oversample the signal yi(t) to obtain y1i[n] = yi(nTc) and y2i[n] =

yi(
Tc
2 + nTc). These discrete-time signals have corresponding impulse responses h(k)1i [n] =

h
(k)
i (t)jt=nTc and h

(k)
2i [n] = h

(k)
i (t)j

t=Tc

2
+nTc

for base-stations k = 1; 2.

In the \soft-hand-o�" mode, the desired user's data is transmitted simultaneously
from the two base-stations. At the receiver, two equalizers are designed, one for each
base-station. The output of each of the two chip-level equalizers is correlated with the
desired user's channel code times the corresponding base-station's long code. These two
signal estimates are averaged to get the symbol estimate for the soft-hand-o� mode. In
the "normal mode", the second base-station is considered interference.

3 Chip-level Minimum Mean-Square Error Estima-

tor

The chip-level MMSE equalizer is designed to minimize the mean-squared error between
the multi-user synchronous sum signal, s[n] and the sum of the equalizer outputs, as
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depicted in Figure 1. Given the orthogonality of the channel codes, an estimate of the
symbol, b̂j[m] can be obtained via a correlate and sum with cj and the base-station
dependent long code at the output of the chip-level MMSE equalizer, once per symbol.

Krauss and Zoltowski [1] made some simplifying assumptions to present a chip-level
MMSE equalizer that can be easily implemented. The sequence values for the multi-user
sum signal are assumed to be i.i.d. random variables. Otherwise the covariance matrix of
the sum signal s[n] is a complicated expression involving the Walsh-Hadamard spreading
codes that varies from index to index. The i.i.d. assumption is valid if the (long)
scrambling code is viewed as a random i.i.d. sequence and/or all users are active with
equal power. With this assumption, the covariance matrix of the signal is Efs[n]Hs[n]g =
�2sI and the MMSE equalizer was shown to be

gc
MMSE

= f�2sH
H
H+ �2nIg

�1H
H
�Dc (5)

where �Dc is a column vector of all zeros except 1 in the (Dc + 1) � th position, Dc is
the combined delay of the equalizer and channel, �2s ; �

2
n are the signal and noise powers

respectively, and H is the 2Ng � (L + Ng � 1) channel convolution matrix, Ng is the
length of the equalizer,

H =

2
664
H1
...
H2

3
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. . . . . . . . .
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. . . . . . . . .

0 0 0 hi[L� 1]

3
777777777777775

T

:

Equation (5) has the form of the well-known Wiener-Hopf solution

w = R�1
xx rdx (6)

where Rxx is the channel covariance matrix and rdx is the cross-correlation vector.
The MMSE is given by

MSE = �2sf1� �2s�
T

DH(�2sH
H
H+ �2nI)

�1H
H
�Dg (7)

In [1] and this paper, the delay Dc, 0 � Dc � Ng+L� 2 that yields the smallest MMSE
is calculated using the actual channel statistics and that Dc is used in all the simulations.
In [1], [4] [5], Krauss and Zoltowski showed that the MMSE signi�cantly outperforms the
RAKE receiver. This is clearly illustrated in Figure 2, which plots the di�erence in SNR
between the RAKE and MMSE receivers as a function of target uncoded (theoretical)
BER. We refer to [5] for details of the simulation results. For both normal and soft hand-
o� modes of operation, the RAKE requires much more power than the MMSE receiver.
This is more pronounced when soft hand-o� is unavailable. So MMSE equalization would
allow operation in SNR regions that would be impossible with RAKE receivers - especially
when a large number of channel codes are active relative to the spreading factor.
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Figure 2: Improvement in SNR from RAKE to MMSE

4 Reduced Rank Filtering

Recently, reduced rank techniques have received attention in the context of adaptive
linear equalization for Direct-Sequence Code-Division Multiple Access (DS-CDMA) sys-
tems. The received signal vector is projected onto a lower dimensional subspace, and the
Wiener �lter given by Equation (6) is constrained to lie in this subspace. This has the
advantage of reducing the number of �lter coe�cients to be estimated, and so increases
the speed of convergence dramatically for adaptive methods, if the subspace is chosen
properly. But the overall MMSE for the reduced-rank �lter may be higher than the
MMSE for the full-rank �lter.

The most widely used reduced rank techniques were based on eigen-decomposition of
the channel covariance matrix, Rxx. Let the full-rank problem be de�ned to be of di-
mension N . In the Principal Components method [6], the reduced rank �lter is projected
onto a D dimensional subspace with the largest energy. The basis of this subspace is the
eigenvectors of Rxx with the D largest singular values. This method is very e�ective if
the dimension of the signal subspace, K is less than D, but this is not true for CDMA
with many active users.

A newer technique, known as Cross Spectral methods [7] chooses a set of D eigen-
vectors of Rxx such that the mean-squared error is minimized as a function of rank.
It projects w onto a D-dimensional subspace using a 'cross-spectral metric' which is a
measure of the energy projected along the k�th basis vector of the range of Rxx and
chooses theeigenvectors with the D largest metrics. This technique can perform well for
D < K since it takes into account the energy in the subspace contributed by each user.

4.1 Multi-Stage Nested Wiener Filter

Goldstein and Reed [2] �rst formulated the MSNWF, which uses the information from
the channel covariance matrix, Rxx and cross-correlation vector, rdx to determine the
bases of the lower-dimension subpace that w is constrained to lie within. In contrast,
the reduced-rank methods mentioned above utilised information from rdx alone. The
MSNWF algorithm is depicted in Figure 3. At each stage, a rank one basis is selected
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Figure 3: Structure of successive stages of the Multistage Nested Weiner Filter.

based on maximal correlation between the desired signal, d0 and the observed signal x.
The detailed algorithm, as developed by Honig and Xiao [8] is shown in Table 1.

It follows that the matrix TD = [p1 B1p2 :::
QD�1
k=1 BkpD] forms an orthonormal basis

for the reduced dimension subspace and that the reduced dimension D � D correlation
matrix TH

DRxxTD is tri-diagonal [8]. Honig and Xiao [9] have shown that if the MSNWF
is terminated at stage D, then w is constrained to lie in the Krylov subspace spanned
by frdx;Rxxrdx;R

2
xxrdx; : : :R

D�1
xx rdxg.

Goldstein and Reed showed in [2] that if the decomposition is carried out for the
full N stages, then the multi-stage nested �lter is exactly equivalent to the full-rank
classical Wiener �lter. Furthermore, the �lter-bank structure whitens the error residue
at each stage, and compresses the colored portion of the observed data subspace and
hence is optimal in terms of reducing the MSE for a given rank [10]. The MSNWF
does not require any eigen-decomposition or inversion of the covariance matrix, and so
represents a signi�cant reduction in complexity over the full-rank Wiener solution and
other reduced-rank techniques. This is very important for practical implementations,
particularly if the rank one decomposition can be stopped after a few stages.

In [3], Honig and Goldstein applied adaptive MSNWF to the reverse link with asyn-
chronous users, at fading, no long code and training by pilot channel. Through theoret-
ical analysis and extensive supporting simulations, MSNWF was shown to achieve near
optimal SINR performance with a subspace of dimension roughly equal to D = 8 or less.
This astounding result, and the superior performance of full-rank MMSE over RAKE
motivated the application of MSNWF to chip-level MMSE Equalization for synchronous
CDMA in frequency selective multipath.

5 Application of MSNWF to CDMA Downlink

Our �rst set of results solves for chip-level MMSE equalization based on Equation (5)
when only one base-station is transmitting and �nds the "ideal" MSNWF solution after
various stages, assuming Rxx and rdx are known ( perfect channel estimation). The same
simulations are also done for the edge of cell situation, when two base-stations of equal
power are received at the mobile-station and the receiver uses soft hando�.

Next we use the class of training-based adaptive algorithms presented in [3] to simulate
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� Initialization: d0(n) = d(n) and x0(n) = x(n)

� Forward Recursion: For k = 1; 2; :::;D:

pk = Efd�k�1(n)xk�1(n)g=jjEfd
�

k�1(n)xk�1(n)gjj

dk(n) = pHk xk�1(n)

B = I� pkp
H
k

xk(n) = Bxk�1(n)

� Backward Recursion: For k = D;D � 1; :::; 1, with �D(n) = dD(n):

wk = Efd�k�1(n)�k(n)g=Efj�k(n)j
2g

�k�1(n) = dn�1(n)� w�

k�k(n)

It is easily shown that

pk+1 =
(I� pkp

H
k )Rk�1pk

jj(I� pkp
H
k )Rk�1pkjj

where

Rk+1 = (I� pk+1p
H
k+1)Rk(I� pk+1p

H
k+1)

for k = 0; 1; :::;D � 1, where p1 = rdx and R0 = Rxx.

Table 1: The basic MSNWF Algorithm

the performance of MSNWF when the channel is unknown, with contribution from only
one base-station. Although the MMSE equalizer described in this paper estimates the
chip-rate multi-user synchronous sum signal, it is not possible to train the equalizer on
this signal as that would require the knowledge of number of active users, all of the
active channel codes and the transmitted symbols. Instead, we use the pilot channel
of CDMA downlink, which has a known code and known symbols. Frank and Visotsky
[11] proved that for DS-CDMA with orthogonal spreading codes, the MMSE equalizer
is identical for all channel codes within a multiplicative constant, so the pilot code can
be used to train for any other channel code. After equalization, the "recovered" chip
signal is arranged into length Nc vectors, correlated with the pilot channel code times
the appropriate portion of the base-station long code and downsampled by the spread
factor. This 'pilot symbol estimate' is used to train the chip-level equalizers.

The MSNWF simulations are based on the "block-adaptive" training-based algorithm
[3] for �xed subspace dimension,D, but without compressing the dimension of the �lter pk
by 1 at every stage. As we stop after only a few stages, this does not involve a signi�cant
increase in computation, but assures a stable blocking matrix Bk. The algorithm is given
in Table 2.
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Block size = Nt symbols.

� Initialization: d0 = b and Y0(n) = Y(n) where
b is the length Nt vector of the pilot symbols,
Y =

h
y(1);y(2); � � � ;y(Nt)

i
;

y(i) is obtained from the chip-rate "sum" signals, correlated with the corresponding
long code chip signal and added over one symbol period.

� Forward Recursion: For k = 1; 2; :::;D:

ck = Yk�1d
H
k�1

�k = jjck

pk =
c

jj�kjj

dk = pHk Yk�1

Bk = I� pkp
H
k

Yk = BYk�1

� Backward Recursion: For k = D;D � 1; :::; 1, with �D(n) = dD(n):

wk = (�kd
H
k�1)=jj�kjj

2 = �k=jj�kjj
2

�k�1(n) = dn�1(n)� w�

k�k(n)

Table 2: Training-based block MSNWF Algorithm

6 Simulation Results

A wideband CDMA forward link was simulated similar to one of the options in the US
cdma2000 proposal [12]. The chip rate was 3.6864 MHz (Tc = 0:27�s), 3 times that
of IS-95. Simulations were performed for a "saturated cell", i.e. all 64 possible channel
codes are active. The spreading factor was Nc = 64 chips per bit. The data symbols were
BPSK, and spread with one of 64 Walsh-Hadamard codes with length 64 for each user.
All users were of equal power, and their signals were summed synchronously and then
multiplied with a QPSK scrambling code of length 32678, similar to the IS-95 standard.

The channels were modeled to have four equal-power multi-paths, the �rst one arriving
at 0, the last at 10�s (corresponding to about 37 chips) and the other two delays picked
at random in between 0 and 37 chips. The multi-path coe�cients are complex normal,
independent random variables with equal amplitude. The arrival times at antenna 1 and
2 are the same, but the multi-path coe�cients are independent.

In the two base-station case, the channels are scaled so that the total energy from
each of the two base-stations is equal at the receiver. Speci�cally,

MX
m=1

Efjy(1)m [n]j2g =
MX
m=1

Efjy(2)m [n]j2g: (8)

SNR is de�ned to be the ratio of the sum of the average powers of the received signals
over all the channels, to the average noise power, after chhip-matched �ltering. Since
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the spreading factor (number of chips per symbol) is equal to the number of users, and
each user contributes the same amount of power, this chip signal SNR is equal to the
post-correlation (or de-spread) symbol-rate SNR. The curves were generated by averaging
over many di�erent channels. Note that the abscissa in the graphs is the post-correlation
SNR for each user which includes a processing gain of 10log(64) � 18 dB.

Figure 4(a) plots the Mean-Square Error for the di�erent reduced-rank methods as
a function of the subspace dimension, D. The channel statistics and noise power are
assumed to be known (i.e. perfect channel estimation). The dimension of the full space
is 114 (the equalizer length is 57 at each of 2 antennas, as multipath delay spread is
37 chips and the chip pulse waveform is cut o� after 5 chips at both ends). The MSE
for MSNWF is seen to drop dramatically with D, and achieves the performance of the
full-rank Wiener �lter at dimension approximately 5! In contrast, the PC method takes
longer than twice the delay spread, and the CS method does only slightly better.

Figure 5(a) displays the BER curves obtained with the MSNWF for di�erent sizes
of the reduced-dimension subspace. The channel statistics are assumed to be known
perfectly, so these curves serve as an informative upper bound on the performance. For
comparison, the BER curve for full-rankMMSE equalizer and the standard RAKE �lter is
also shown. It is observed that even a 2-stage reduced-rank �lter outperforms the RAKE
at all SNR's and only a small number of stages of the MSNWF are needed in order to
achieve near full-rank MMSE performance over a practical range of SNR's. Indeed, the
BER curve obtained stopping at stage 5 is nearly coincident with the full rank MMSE
solution over the range of SNR actual systems operate within in practice. This implies a
very signi�cant reduction in computation complexity over the full-rank solution.

Figures 4(b) and 5(b) display the similar plots, but for the "edge of cell" scenario, with
two base-stations contributing equal power signals at the receiver. In this case, there are
4 e�ective channels at the receiver, because we sampled the received signal at twice the
chip-rate at each antenna. It can be shown that the two polyphase channels created from
either antenna are nearly linearly dependent in the case of a sparse multipath channel
as in our simulations. The dimension of the full space is 2 times 114, 228 which makes
the full rank calculations very cumbersome. Amazingly, the MSE for MSNWF still goes
down very steeply with rank and achieves the asymptotic value for subspace dimension
of only 8 or so. Compared to the PC and CS methods, this is a huge di�erence in
e�ectiverank reduction. In the BER plots of Figure 5(b) the bit error is calculated for
the \soft hando�" mode. With perfect channel estimation, the MSNWF can achieve
error rates similar to the full-rank MMSE over practical SNR range after stopping at
stage as low as 5!

These plots suggest that MSNWF can achieve rapid adaptation in the case where the
chip-level MMSE equalizer is adapted based on a dedicated pilot channel. Our adaptive
simulations are for single base-station case only. The output SINR is calculated using
the formula derived by Krauss in [4] and plotted vs. time (in symbols) in Figure 6 for
the block-adaptive MSNWF at stages 5 and 10, and for the full-rank LMS and RLS
Algorithms, at a �xed SNR. This plot shows the rapid convergence of MSNWF to the
asymptotic SINR. As expected, the lower rank MSNWF converges slightly faster to a
lower SINR. The RLS curve shows irregularities at the beginning because it needs at
least 114 time-samples to estimate the time-average of Rxx, so at �rst it performs worse
than even MSNWF of stage 5. Even asymptotically it does not beat the MSNWF of
rank only 10! The LMS algorithm converges much slower and to a lower SINR.
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Figure 4: MSE vs Rank of Reduced Dimension Subspace
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Figure 5: BER for Di�erent Chip-level Equalizers for CDMA Downlink.

The BER curves in Figure 6 illustrate the performance of these equalizers after train-
ing with 200 symbols. At low SNR's, the BER for MSNWF stage 5 is actually slightly
lower than the BER for stage 10 or 15. This can be explained as the 'penalty' for learn-
ing the channels, i.e. in the presence of signi�cant noise, the MSNWF with the fewer
coe�cients to adjust performs better. But after about 9dB SNR, the signal power is
su�cient for training, and the higher stages of MSNWF yield better approximation of
the full-rank �lter.

It is noteworthy that over a practical SNR range, in this adaptive implementation,
the stage 5 MSNWF does better or almost as good as full-rank RLS! This improvement
comes with much lower computational complexity than the RLS. The LMS algorithm is
simpler, but performs quite poorly as its convergence is much slower.
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