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1. Introduction

The Wiener �lter [1] estimates an unknown signal s0 [n] from the observation signal y0 [n]
in the Minimum Mean Square Error (MMSE) sense exploiting only second order statistics.
Thus, the Wiener �lter is easy to implement and therefore used in many applications. How-
ever, the resulting �lter needs the inverse of the covariance matrix of the observation. This
means observations y0 [n] of high dimensionality imply high computational complexity.

The Principal Component (PC) method [2] was the �rst approach to reduce the complex-
ity of the estimation problem. A pre-�lter matrix composed of the eigenvectors belonging to
the principal eigenvalues of the covariance matrix of the observation is applied to the obser-
vation signal to get a transformed signal of lower dimensionality. An alternative approach
is the Cross-Spectral (CS) metric introduced by Goldstein et. al. [3], where the columns of
the pre-�lter matrix are the eigenvectors which belong to the largest CS metric. Thus, it
considers not only the statistics of the observation signal but also the relation to the de-
sired signal. More recently, Goldstein et. al. developed the Multi-Stage Nested Wiener Filter
(MSNWF) [4] which approximates the Wiener �lter in reduced space without the computa-
tion of eigenvectors. The MSNWF shows that dimensionality reduction of the observation
signal based on eigenvectors is generally suboptimal. Applications like a space-time prepro-
cessor for GPS systems [5] and an equalizer �lter for a cdma2000 forward link receiver [6]
showed the extraordinary performance of the MSNWF.

Honig et. al. [7] observed that the MSNWF can be seen as the solution of the Wiener-
Hopf equation in the Krylov subspace of the covariance matrix of the observation and the
cross-correlation vector between the observation and the desired signal. Finally, in [8] it is
shown that the Arnoldi algorithm can be replaced by the Lanczos algorithm to generate the
basis vectors for the Krylov subspace since the covariance matrix is Hermitian. The resulting
algorithm is an order-recursive version of the MSNWF which recursively updates the �lter
and the Mean Square Error (MSE) at each step.

The contribution of this thesis is to derive the relationship between the Conjugate Gradi-
ent (CG) method and the Lanczos based implementation of the MSNWF. The CG method
was originally introduced by Hestenes and Stiefel [9] in 1952 to solve a system of linear equa-
tions. It searches for an approximate solution in the Krylov subspace similar to the Lanczos
based MSNWF. We transform the equations of the Lanczos based MSNWF algorithm to
yield a formulation of the CG algorithm, and �nally present a new implementation of the
MSNWF where the weight vector and the Mean Square Error (MSE) between the estimated
and desired signal is updated at each iteration step.

In the next chapter, we recapitulate the derivation of the Lanczos based MSNWF. Before
we show the relationship between the considered algorithms in Chapter 4, we review the
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2 1. Introduction

basics of the CG algorithm in Chapter 3. Finally, in Chapter 6, we apply the new formulation
of the MSNWF algorithm of Section 4.2 as a linear equalizer to an EDGE system and compare
its performance to the PC and CS method, which we brie
y introduce in Chapter 5. Due to
high bit error rates using correlation to estimate the covariance matrix of the observation
and the cross-correlation vector between the observation and the desired signal, we derive a
least squares method to estimate the statistics in Section 6.2.



2. Multi-Stage Nested Wiener Filter

2.1 Wiener Filter

One general problem in estimation theory is to regain an unknown desired signal s0 [n] 2 C
from the known observation signal y0 [n] 2 CN by using a linear �lter w 2 CN so that the
estimate ŝ0 [n] = wHy0 [n]. In this thesis, we assume that the desired and the observation
signal are zero-mean and multivariate zero-mean Gaussian processes, respectively.

The error between the desired signal s0 [n] and the estimate ŝ0 [n] can be written as

"0 [n] = s0 [n]� ŝ0 [n] = s0 [n]�wHy0 [n] ; (2.1)

whose variance is the mean square error

MSE0 = E
�j"0 [n]j2	 = �2s0 �wHry0;s0 � rHy0;s0w +wHRy0

w; (2.2)

where

�2s0 = E
�js0 [n]j2	 (2.3)

is the variance of the desired signal s0 [n],

ry0;s0 = E fy0 [n] s�0 [n]g (2.4)

is the cross-correlation vector between the observation signal y0 [n] and the desired signal
s0 [n], and

Ry0
= E

�
y0 [n]y

H
0 [n]

	
(2.5)

is the covariance matrix of the observation y0 [n].

"0 [n]
�

+
s0 [n]

y0 [n] ŝ0 [n]w
H

0

Fig. 2.1. Wiener Filter

The Wiener �lter w0 whose design structure is shown in Figure 2.1 minimizes the mean
square error MSE0. Thus, we get the design criterion

w0 = argmin
w

MSE0; (2.6)

3



4 2. Multi-Stage Nested Wiener Filter

which leads to the Wiener-Hopf equation

Ry0
w0 = ry0;s0: (2.7)

Its solution, the Wiener �lter

w0 = R�1
y0
ry0;s0; (2.8)

achieves the minimum mean square error

MMSE0 = �2s0 � rHy0;s0R�1
y0
ry0;s0: (2.9)

2.2 Multi-Stage Nested Wiener Filter (MSNWF)

Goldstein et. al. [4] developed the Multi-Stage Nested Wiener Filter (MSNWF) which ap-
proximates the solution of the Wiener-Hopf equation (cf. Equation 2.7) without computing
the inverse of the covariance matrix. For its derivation, we have to introduce a pre-�lter
matrix T 1 2 CN�N as shown in Figure 2.2 so that the transformed observation signal z1 [n]
becomes

z1 [n] = T H
1 y0 [n] : (2.10)

y0 [n] ŝz1
[n]

z1 [n]
T H

1
wH

z1

Fig. 2.2. Wiener Filter with Pre-Filter

The new Wiener �lter wz1 estimates the desired signal s0 [n] from the transformed ob-
servation signal z1 [n], i. e.

wz1 = R�1
z1
rz1;s0; (2.11)

where

Rz1 = E
�
z1 [n] z

H
1 [n]

	
= T H

1Ry0
T 1 (2.12)

is the covariance matrix of the transformed observation signal z1 [n] and

rz1;s0 = E fz1 [n] s�0 [n]g = T H
1 ry0;s0 (2.13)

is the cross-correlation vector between the transformed observation z1 [n] and the desired
signal s0 [n].

Theorem 2.1 If the pre-�lter matrix T 1 has full rank, the output ŝz1 [n] = wH
z1
z1 [n] of

the new Wiener �lter wz1 is the same as the output ŝ0 [n] of the Wiener �lter w0 without
pre-�ltering. Thus, the minimum mean square errors of both �lters are the same.
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Proof. Replacing Rz1 and rz1;s0 in Equation (2.11) by Equation (2.12) and (2.13), respec-
tively, yields

wz1 = T�1
1 R�1

y0
T

H;�1
1 T H

1 ry0;s0: (2.14)

Hence, the output of the Wiener �lter wz1 may be written as

ŝz1 [n] = wH
z1
z1 [n] = rHy0;s0R

�1
y0
T

H;�1
1 T H

1 y0 [n] = wH
0 y0 [n] = ŝ0 [n] ;

and the �rst part of Theorem 2.1 is proven. In order to complete the proof, use Equa-
tion (2.14) to compute the minimum mean square error (cf. Equation 2.9) as follows

MMSEz1 = �2s0 � rHz1;s0R�1
z1
rz1;s0 = �2s0 � rHy0;s0T 1T

�1
1 R�1

y0
T

H;�1
1 T H

1 ry0;s0 = MMSE0:

2

In order to end up with the MSNWF, we restrict ourselves on the special pre-�lter matrix
T 1 de�ned as

T 1 =
�
m1 B1

�
: (2.15)

Thus, the transformed observation signal z1 [n] becomes

z1 [n] =

�
mH

1 y0 [n]
BH

1 y0 [n]

�
=:

�
s1 [n]
y1 [n]

�
: (2.16)

We choose the vector m1 2 CN to have unit norm, i. e. km1k2 = 1, and the real part
of the correlation between the �ltered signal s1 [n] = mH

1 y0 [n] 2 C and the desired signal
s0 [n] is maximized by m1, hence,

m1 = argmax
m

E fRe (s1 [n] s�0 [n])g s.t. mHm = 1: (2.17)

By replacing s1 [n] as de�ned in Equation (2.16), we get

m1 = argmax
m

1

2

�
mHry0;s0 + rHy0;s0m

�
s.t. mHm = 1; (2.18)

which leads to the normalized matched �lter

m1 =
ry0;s0

ry0;s0

2 : (2.19)

Note that the matched �lter de�ned by the optimization criterion in Equation (2.17) does
not suppress any interference.

The columns of the matrixB1 2 CN�(N�1) in Equation (2.15) (in the following called the
blocking matrix) are chosen to be orthogonal to the matched �lter m1. Thus, the blocking
matrix B1 satis�es

BH
1m1 = 0 , span (B1) = null

�
mH

1

�
: (2.20)
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The obtained signal y1 [n] = BH
1 y0 [n] 2 CN�1 is uncorrelated with the desired signal s0 [n]

but includes interference.
With the special pre-�lter T 1 and the transformed observation z1 [n] de�ned by Equa-

tions (2.15) and (2.16), respectively, the cross-correlation vector rz1;s0 between z1 [n] and
s0 [n] and the covariance matrix Rz1 of z1 [n] (cf. Equations 2.13 and 2.12) may be written
as

rz1;s0 =

�
mH

1

BH
1

�
ry0;s0 =



ry0;s0

2 e1; (2.21)

Rz1 = E

��
s1 [n]
y1 [n]

� �
s�1 [n] yH1 [n]

��
=

�
�2s1 rHy1;s1
ry1;s1 Ry1

�
; (2.22)

with the variance of s1 [n]

�2s1 = E
�js1 [n]j2	 =mH

1Ry0
m1; (2.23)

the cross-correlation vector between y1 [n] and s1 [n]

ry1;s1 = E fy1 [n] s�1 [n]g = BH
1Ry0

m1; (2.24)

the covariance matrix of y1 [n]

Ry1
= E

�
y1 [n]y

H
1 [n]

	
= BH

1Ry0
B1; (2.25)

and ei denotes a unit norm vector with a one at the i-th position. Because of the sparse
structure of the cross-correlation vector rz1;s0, only the �rst column of the inverse of the
covariance matrix Rz1 has to be computed. Replacing Rz1 and rz1;s0 in Equation (2.11)
by Equation (2.21) and (2.22), respectively, and using the inversion lemma for partitioned
matrices (e. g. [1]) leads to

wz1 = R�1
z1
rz1;s0 = �1

�
1

�R�1
y1
ry1;s1

�
= �1

�
1

�w1

�
; (2.26)

with the factor

�1 =


ry0;s0

2

�
�2s1 � rHy1;s1R�1

y1
ry1;s1

��1
; (2.27)

and the reduced dimension Wiener �lter

w1 = R�1
y1
ry1;s1 2 CN�1: (2.28)

Applying the new Wiener �lter wz1 to the transformed observation z1 [n] yields �nally
the estimate

ŝ0 [n] = wH
z1

�
s1 [n]
y1 [n]

�
= �1

�
1 �wH

1

� � s1 [n]
y1 [n]

�
= �1

�
s1 [n]�wH

1 y1 [n]
�
: (2.29)

Figure 2.3 shows the resulting block diagram, which we derived from the Wiener �lter w0

shown in Figure 2.1. The reduced Wiener �lter w1 can be replaced in exactly the same way
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�

+ "1 [n]
y
0
[n] ŝ0 [n]

ŝ1 [n]

�1

BH

1
wH

1

s1 [n]

y
1
[n]

mH

1

Fig. 2.3. MSNWF after First Step

as the original Wiener �lter w0. This procedure can be repeated until the last Wiener �lter
wN�1 is a scalar.

The resulting �lter structure, the full-rank MSNWF, is shown in Figure 2.4 and can also
be seen as a �lter bank [8] as depicted in Figure 2.5. Note that both structures have the
same behavior as the Wiener �lter w0. In the sequel of this section, let i 2 f1; 2; : : : ; Ng. It
follows from the derivations above that the pre-�lter vector ti 2 CN may be written as

ti =

 
i�1Y
k=1

Bk

!
mi: (2.30)

mi 2 CN�(i�1) is the normalized matched �lter

mi =
ryi�1;si�1

ryi�1;si�1

2 ; (2.31)

which maximizes the real part of the cross-correlation between the new desired signal si [n] =
mH

i yi�1 [n] 2 C at stage i and the desired signal si�1 [n] at the previous stage i � 1 of the
MSNWF equivalent tom1 in Equation (2.19). ryi�1;si�1 denotes the cross-correlation vector
between yi�1 [n] and si�1 [n], i. e.

ryi�1;si�1 = E
�
yi�1 [n] s

�
i�1 [n]

	
= BH

i�1Ryi�2
mi�1

=

 
1Y

k=i�1

BH
k

!
Ry0

 
i�2Y
k=1

Bk

!
mi�1:

(2.32)

Bk 2 C(N�(k�1))�(N�k), k 2 f1; 2; : : : ; N � 1g, is the blocking matrix satisfying the following
equation:

BH
kmk = 0 , span (Bk) = null

�
mH

k

�
: (2.33)

Thus, similar to B1 above, the new observation signal yk [n] = BH
k yk�1 [n] 2 CN�k at

stage k is uncorrelated with the desired signal sk�1 [n] at stage k � 1. By the way, with
the knowledge of Bk and mi in Equation (2.30), it can easily be shown that the �lters
t2; t3; : : : ; tN are orthogonal to the �lter t1, but the set of vectors ft1; t2; : : : ; tNg is not
necessarily an orthogonal basis of CN . Finally, �i is a scalar Wiener �lter [8] which estimates
the desired signal si�1 [n] from the error "i [n] of the new desired signal si [n] to its estimate
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�

y
0
[n]

�

+
ŝ0 [n]

+

...
...

"1 [n]

"2 [n]
ŝ1 [n]

ŝ2 [n]

ŝN�1 [n]

s1 [n]

s2 [n]

= "N [n]

sN [n]

tH
1

tH
2

tH
N

�N

�2

�1

Fig. 2.5. MSNWF as a Filter Bank

ŝi [n], i. e. "i [n] = si [n]� ŝi [n] for i < N , and "N [n] = sN [n] for i = N , respectively. Hence,
it holds

�i = ��2"i r"i;si�1; (2.34)

with the variance of "i [n] (cf. Equation 2.9)

�2"i = E
�j"i [n]j2	 =

(
�2si � rHyi;siR�1

yi
ryi;si for i < N;

�2sN ; for i = N;
(2.35)

and the cross-correlation between "i [n] and si�1 [n]

r"i;si�1 = E
�
"i [n] s

�
i�1 [n]

	
=

(
mH

i ryi�1;si�1 �wH
i B

H
i ryi�1;si�1 =



ryi�1;si�1

2 for i < N;

m�
NryN�1;sN�1

=
��ryN�1;sN�1

�� for i = N:

(2.36)

The last equality holds because of Equations (2.31) and (2.33). Ryi
, i < N , is the covariance

matrix of yi [n] which may be written as

Ryi
= E

�
yi [n]y

H
i [n]

	
= BH

i Ryi�1
Bi =

 
1Y

k=i

BH
k

!
Ry0

 
iY

k=1

Bk

!
; (2.37)

and

wi =

(
R�1
y
i
ryi;si for i < N � 1;

��2yN�1
ryN�1;sN�1

= mN�N for i = N � 1;
(2.38)

is the Wiener �lter which estimates si [n] from yi [n]. Note that �i 2 R for all i because
�2"i 2 R as well as r"i;si�1 2 R.

For later derivations, we need the characteristic of the MSNWF that the pre-�ltered
observation vector s [n], de�ned as

s [n] =
�
s1 [n] s2 [n] � � � sN [n]

�T
; (2.39)
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has a tri-diagonal covariance matrix Rs [4, 8]. This is because the matched �ltersmi�1 and
mi of two arbitrary adjoining stages of the MSNWF are designed to maximize the real part
of the correlation between si�1 [n] and si�2 [n], and between si [n] and si�1 [n], respectively,
whereas the blocking matrix Bi�1 ensures that si [n] is uncorrelated with si�2 [n].

In order to obtain a reduced rank MSNWF, we only use the �rst D < N basis vectors
t1; t2; : : : ; tD to build the pre-�lter matrix

T (D) =
�
t1 t2 � � � tD

� 2 CN�D; (2.40)

which yields the observation vector s(D) [n] 2 CD of reduced length

s(D) [n] = T (D);Hy0 [n] : (2.41)

This is equivalent to stopping the replacements, we mentioned in the derivations above, after
D � 1 steps where the remaining Wiener �lter wD�1 is approximated by the matched �lter

mD. Next, we have to compute the Wiener �lter of length D, w
(D)
s , which estimates s0 [n]

from s(D) [n], i. e.

w(D)
s = R(D);�1

s r(D)
s;s0

=
�
T (D);HRy0

T (D)
��1

T (D);Hry0;s0; (2.42)

in order to get �nally an approximation of the Wiener �lter w0, the rank D MSNWF

w
(D)
0 = T (D)w(D)

s = T (D)
�
T (D);HRy0

T (D)
��1

T (D);Hry0;s0; (2.43)

which yields the mean square error

MSE(D) = �2s0 � rHy0;s0T (D)
�
T (D);HRy0

T (D)
��1

T (D);Hry0;s0: (2.44)

The covariance matrix R(D)
s and the cross-correlation vector r

(D)
s;s0 are de�ned in Section 2.3.

2.3 Lanczos Based MSNWF

In the following of this thesis, let the singular values of the blocking matrix Bi, i 2
f1; 2; : : : ; N � 1g, be �k = 0 for k > N � i and otherwise be unequal to 0 and the same,
i. e. �1 = : : : = �N�i = �. In addition, we assume that the pre-�lters have unit norm, i. e.
ktik2 = 1 for all i 2 f1; 2; : : : ; Ng. Thus, the set of �lters ft1; t2; : : : ; tNg in Figure 2.5 is an
orthonormal basis of CN .

In order to get a simpler formula for the computation of these basis vectors as by Equa-
tion (2.30), recall the optimization problem for the �rst step of the MSNWF development
given by Equation (2.17). Applying it to an arbitrary stage i 2 f1; 2; : : : ; Ng of the MSNWF
means maximizing the real part of the cross-correlation between the signals si [n] = tHi y0 [n]
and si�1 [n] = tHi�1y0 [n], i. e.

ti = argmax
t

E
�
Re
�
si [n] s

�
i�1 [n]

�	
or

ti = argmax
t

1

2

�
tHRy0

ti�1 + tHi�1Ry0
t
�

s.t.: tHt = 1 and

tHtk = 0; k 2 f1; 2; : : : ; i� 1g :
(2.45)
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We derive the solution of this optimization problem by using the Lagrange function

L (t; �1; �2; : : : ; �i) =
1

2

�
tHRy0

ti�1 + tHi�1Ry0
t
�� i�1X

k=1

�kt
Htk � �i

�
tHt� 1

�
: (2.46)

Therefore, solving the equation

@L (t; �1; �2; : : : ; �i)

@t�
=

1

2
Ry0

ti�1 �
i�1X
k=1

�ktk � �it = 0; (2.47)

yields the argument t which optimizes L (t; �1; �2; : : : ; �i). Choose the Lagrange multipliers
�k for k 2 f1; 2; : : : ; i� 1g as

�k =
1

2
tHkRy0

ti�1; (2.48)

in order to ful�ll the constraint that t is orthogonal to tk for the given k. Besides, remember
that tk are mutually orthonormal. Finally, we end up with

t =
1

2�i

 
1N �

i�1X
k=1

tkt
H
k

!
Ry0

ti�1 =
1

2�i

 
i�1Y
k=1

P k

!
Ry0

ti�1; (2.49)

if we substitute the sum with a product of projection matrices de�ned by

P k = 1N � tktHk : (2.50)

P k, k 2 f1; 2; : : : ; N � 1g, is the projector onto the space orthogonal to tk and 1N denotes
the N � N identity matrix. In order to �nish the derivation, we have to choose �i so that
the second constraint, i. e. tHt = 1, holds. This yields the result of the optimization

ti =

�
i�1Q
k=1

P k

�
Ry0

ti�1




�

i�1Q
k=1

P k

�
Ry0

ti�1






2

(2.51)

Note that the recursion formula in Equation (2.51) is the well-known Arnoldi algorithm [10,
11]. Hence, if the recursion is initialized with t1 = m1 and stopped after D � 1 steps, the
produced set of vectors ft1; t2; : : : ; tDg is an orthonormal basis of the D-dimensional Krylov
subspace

K(D)
�
Ry0

; ry0;s0
�
= span

��
ry0;s0 Ry0

ry0;s0 � � � RD�1
y0

ry0;s0
��
: (2.52)

Consequently, the rank D MSNWF where the �lters t1; t2; : : : ; tD are mutually orthogonal,
is equivalent [7, 8] to solving the Wiener-Hopf equation in K(D)

�
Ry0

; ry0;s0
�
. Finally, since

the covariance matrix Ry0
is Hermitian, the basis may also be computed by the Lanczos

algorithm

ti =
P i�1P i�2Ry0

ti�1

P i�1P i�2Ry0
ti�1




2

=
Ry0

ti�1 � tHi�2Ry0
ti�1ti�2 � tHi�1Ry0

ti�1ti�1

Ry0
ti�1 � tHi�2Ry0

ti�1ti�2 � tHi�1Ry0
ti�1ti�1




2

; (2.53)
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which has much less computational complexity and is therefore used in the algorithm pre-
sented at the end of this section.

Next, remember that the rank D MSNWF is w
(D)
0 = T (D)R(D);�1

s r
(D)
s;s0 (cf. Equations 2.42

and 2.43). The tri-diagonal covariance matrix of the pre-�ltered observation s [n], R(D)
s 2

R
D�D, and the cross-correlation vector between s [n] and the desired signal s0 [n], r

(D)
s;s0 2 RD,

may be written as

R(D)
s = T (D);HRy0

T (D) =

2
64 0
T (D�1);HRy0

T (D�1)

rD�1;D

0T rD�1;D rD;D

3
75 ; (2.54)

r(D)
s;s0

= T (D)ry0;s0 =

� 

ry0;s0

2
0

�
: (2.55)

The new entries of R(D)
s are simply

rD�1;D = tHD�1Ry0
tD and rD;D = tHDRy0

tD: (2.56)

The fact that R(D)
s is real-valued, and therefore w

(D)
s 2 RD can easily be derived. The

covariance matrix is real-valued if its entries ri�1;i = tHi�1Ry0
ti and ri;i = tHi Ry0

ti (cf.
Equation 2.56) are real numbers for all i 2 f1; 2; : : : ; Dg. It holds

r�i;i = tHi R
H
y0
ti = tHi Ry0

ti = ri;i; (2.57)

because Ry0
is Hermitian. Thus, ri;i 2 R. In order to show that ri�1;i 2 R use Equa-

tions (2.30), (2.37), (2.32) and (2.31). It follows

ri�1;i = tHi�1Ry0
ti =mH

i�1

 
1Y

k=i�2

BH
k

!
Ry0

 
i�1Y
k=1

Bk

!
mi

=mH
i�1Ryi�2

Bi�1mi = rHyi�1;si�1mi =


ryi�1;si�1

2 2 R:

In order to simplify the derivation of the Lanczos based MSNWF which we continue in
the following, de�ne

C(D) = R(D);�1
s =

h
c
(D)
1 � � � c

(D)
D

i
: (2.58)

The inversion lemma for partitioned matrices [1] yields

C(D) =

�
C(D�1) 0

0T 0

�
+ ��1D b(D)b(D);H; (2.59)

where

b(D) =

�
�rD�1;Dc(D�1)D�1

1

�
; (2.60)

and

�D = rD;D � r2D�1;Dc
(D�1)
D�1;D�1: (2.61)
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The variable c
(D�1)
D�1;D�1 denotes the last element of the last column c

(D�1)
D�1 of C(D�1) at the

previous step. Recall that only the �rst element of r
(D)
s;s0 is unequal 0 (cf. Equation 2.55),

thus, only the �rst column c
(D)
1 of the inverse C(D)

c
(D)
1 =

�
c
(D�1)
1

0

�
+ ��1D c

(D�1)
1;D�1

�
r2D�1;Dc

(D�1)
D�1

�rD�1;D

�
; (2.62)

where c
(D�1)
1;D�1 denotes the �rst element of c

(D�1)
D�1 , is needed for the computation of the Wiener

�lter w
(D)
s using Equation (2.42). We observe that the �lter at step D depends upon the �rst

column c
(D�1)
1 at step D� 1, the new entries of the covariance matrix rD�1;D and rD;D, and

the previous last column c
(D�1)
D�1 . Using again Equation (2.59), we get the following recursion

formula for the new last column

c
(D)
D = ��1D

�
�rD�1;Dc(D�1)D�1

1

�
; (2.63)

which only depends on the previous last column and the new entries of R(D)
s . Hence, we only

have to update the vectors c
(D)
1 and c

(D)
D at each iteration step. Moreover, the mean square

error at step D can be updated using the �rst entry c
(D)
1;1 of c

(D)
1 as follows (cf. Equation 2.44)

MSE(D) = �2s0 �


ry0;s0

22 c(D)

1;1 : (2.64)

Finally, substituting c
(i)
1 and c

(i)
i by c

(i)
�rst and c

(i)
last, respectively, and using the last ele-

ments of the vectors in Equation (2.63), i. e. c
(D)
D;D = ��1D , in order to replace c

(D�1)
D�1;D�1 in

Equation (2.61), yield the resulting Lanczos based implementation of the MSNWF given by
Algorithm 2.1 [8].
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Algorithm 2.1 Lanczos based MSNWF
t0 = 0

t1 = ry0;s0=


ry0;s0

2

r0;1 = 0; r1;1 = �1 = tH1Ry0
t1

c(1)�rst = c(1)last = r�11;1
5: MSE(1) = �2d0 �



ry0;s0

22 c(1)�rst

for i = 2 to D do

v = Ry0
ti�1 � ri�1;i�1ti�1 � ri�2;i�1ti�2

ri�1;i = kvk2
ti = v=ri�1;i

10: ri;i = tHi Ry0
ti

�i = ri;i � r2i�1;i�
�1
i�1

c
(i)
�rst =

�
c
(i�1)
�rst

0

�
+ ��1i c

(i�1)
last;1

�
r2i�1;ic

(i�1)
last

�ri�1;i

�

c
(i)
last = ��1i

�
�ri�1;ic(i�1)last

1

�
MSE(i) = �2d0 �



ry0;s0

22 c(i)�rst;1
15: end for

T (D) =
�
t1 t2 � � � tD

�
w

(D)
0 =



ry0;s0

2 T (D)c
(D)
�rst



3. Conjugate Gradient Method

3.1 Conjugate Gradient (CG) Algorithm

The iterative Conjugate Gradient (CG) algorithm was �rst introduced by Hestenes and
Stiefel [9] for solving a system Ax = b of N linear equations in N unknowns. The system
is assumed to have an exact solution which is given in N steps. Contrary to direct methods
(e. g. Gaussian elimination) where we get no solution until all steps of the algorithm are
processed, an iterative method yields an approximate solution at each iteration step and the
approximation improves from step to step. Hence, only iterative methods can be stopped
after D < N steps if we are not interested in the exact solution.

The CG algorithm belongs to the Conjugate Directions (CD) methods because the ap-
proximate solution is searched on mutually A-conjugate search directions. Two vectors x1

and x2 are A-conjugate if

xH1Ax2 = xH
2Ax1 = 0; (3.1)

where A is assumed to be Hermitian. Moreover, the CG method is a special case of the CD
method because in addition to the A-conjugate search directions, the residuals of di�erent
iteration steps are mutually orthogonal. In the following, the matrix A 2 CN�N is assumed
to be Hermitian and positive de�nite.

Algorithm 3.1 First Implementation of CG Algorithm

x(0) = 0

p1 = �r1 = b

for i = 1 to D do


i = � �pHi ri� = �pHi Api�
5: x(i) = x(i�1) + 
ipi

ri+1 = ri + 
iApi
�i =

�
pHi Ari+1

�
=
�
pHi Api

�
pi+1 = �ri+1 + �ipi

end for

One possible implementation of the CG method is given by Algorithm 3.1 which we use
in order to explain its functionality. Note for this chapter that all lines of the algorithm hold
for i 2 f1; 2; : : : ; Dg. The fundamental recursion formula which updates the approximate
solution of the system Ax = b is Line 5 of Algorithm 3.1, where the new approximation
x(i) lies on the line through the old approximation x(i�1) in the direction pi, the so-called

15
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search direction. The weight factor 
i can be understood with its de�nition in Line 4 of
Algorithm 3.1 and the introduction of the error function e (x) as the A-norm of the error
of the approximate solution x to the exact solution x(N), i. e.

e (x) =


x(N) � x



A
=
�
x(N) � x�HA �x(N) � x� = xHAx� xHb� bHx+ x(N);Hb: (3.2)

It can easily be shown that the choice of 
i ensures that the updated approximate solution
x(i) minimizes the error function e (x) on the line x = x(i�1) + 
pi. It holds


i = argmin


e
�
x(i�1) + 
pi

�
: (3.3)

Line 6 of Algorithm 3.1 updates the residual ri de�ned as

ri = Ax(i�1) � b: (3.4)

Note that the residual ri belongs to the approximation x(i�1). The index mismatch is useful
for the derivations we make in Chapter 4. The recursion formula for the residuals can easily
be derived as follows

ri+1 = Ax(i) � b = A
�
x(i�1) + 
ipi

�� b = ri + 
iApi;

by using Line 5 of Algorithm 3.1. Finally, the search direction pi is updated by the remaining
Lines 7 and 8 of Algorithm 3.1 which ensure the A-conjugacy of the vector pi to any vector
pj, i 6= j.

Next, we derive another realization of the CG algorithm by changing Lines 4 and 7 of
Algorithm 3.1. For the derivation we have to use the relations of Theorem 3.1 which will be
proven in the next section. Considering Line 8 of Algorithm 3.1 and Equation (3.9) leads to
another expression for �pHi ri in Line 4 of Algorithm 3.1 as follows

�pHi ri = rHi ri + �i�1p
H
i�1ri = rHi ri: (3.5)

Apply Lines 6 and 8 of Algorithm 3.1 in order to replace the expressions pHi A and pi in
Line 7 of Algorithm 3.1, respectively. We get by using Equations (3.8) and (3.9):

pHi Ari+1

pHi Api
=


�1i
�
rHi+1 � rHi

�
ri+1


�1i
�
rHi+1 � rHi

� ��ri + �i�1pi�1
� = rHi+1ri+1

rHi ri
; (3.6)

and end up with the CG implementation given by Algorithm 3.2.

Note for later that pHi ri 2 R because of Equation (3.5). In addition, pHi Api 2 R since
A is Hermitian (similar to Equation 2.57). It follows that 
i 2 R and Equation (3.6) implies
that �i 2 R, too.

Algorithm 3.2 has much less computational complexity as we show in Section 4.2 and
should be preferred, therefore. However, it is easier to derive the Lanczos based MSNWF
using Algorithm 3.1 (cf. Section 4.1).
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Algorithm 3.2 Second Implementation of CG Algorithm

x(0) = 0

p1 = �r1 = b

for i = 1 to D do


i =
�
rHi ri

�
=
�
pHi Api

�
5: x(i) = x(i�1) + 
ipi

ri+1 = ri + 
iApi
�i =

�
rHi+1ri+1

�
=
�
rHi ri

�
pi+1 = �ri+1 + �ipi

end for

3.2 Basic Relations

In this section, we prove the most important relations of the CG method implemented by
Algorithm 3.1. We have already used one of the resulting theorems in Section 3.1 in order
to derive a second possible CG realization given by Algorithm 3.2. Moreover, they will help
us in order to see the basic relationship between the Lanczos based MSNWF and the CG
algorithm in Chapter 4. In the following of this section, assume that i; j 2 f1; 2; : : : ; Dg.
Theorem 3.1 The set of search directions fp1;p2; : : : ;pDg and the set of residuals
fr1; r2; : : : ; rDg generated by Algorithm 3.1 satisfy the relations

pHi Apj = 0; 8i 6= j; (3.7)

rHi rj = 0; 8i 6= j; (3.8)

pHi rj = 0; 8i < j: (3.9)

Thus, the search directions p1;p2; : : : ;pD are mutually A-conjugate and the residuals
r1; r2; : : : ; rD are mutually orthogonal.

Proof. The proof will be made by induction. First, the vectors r1, p1 = �r1, and r2 satisfy
the relations in Theorem 3.1 since

�rH1 r2 = pH1 r2 = pH1 r1 + 
1p
H
1Ap1 = 0;

where we used Lines 6 and 4 of Algorithm 3.1.
Second, assume that Equations (3.7), (3.8), and (3.9) hold for the set of search directions�

p1;p2; : : : ;pn�1
	
and for the set of residuals fr1; r2; : : : ; rng. In order to prove Theo-

rem 3.1, we �nally have to show that the vectors pn and rn+1 can be added to these sets.
This holds for pn if we prove that

pHi Apn = 0; 8i < n: (3.10)

The dot product of Line 6 of Algorithm 3.1 with pn reads as

rHi+1pn = rHi pn + 
ip
H
i Apn:

Therefore, if rHi+1pn = rHi pn, Equation (3.10) is proven. First, let i < n� 1. In order to get
an expression for rHi+1pn, consider Lines 8 and 6 of Algorithm 3.1:

rHi+1pn = �rHi+1rn + �n�1r
H
i+1pn�1

= �rHi+1rn + �n�1r
H
i pn�1 + �n�1
ip

H
i Apn�1 = �n�1r

H
i pn�1:

(3.11)
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Note that rHi+1rn = 0 and pHi Apn�1 = 0 due to the induction assumption. Using again Line 8
of Algorithm 3.1 yields for the expression rHi pn

rHi pn = �rHi rn + �n�1r
H
i pn�1 = �n�1r

H
i pn�1: (3.12)

If we compare Equations (3.11) and (3.12) we see that rHi+1pn = rHi pn and thus, Equa-
tion (3.10) holds for i < n � 1. Now, consider i = n � 1. Replacing i + 1 by n in Line 8 of
Algorithm 3.1, multiplying it on the left side by pHn�1A and using Line 7 of Algorithm 3.1
leads to

pHn�1Apn = �pHn�1Arn + �n�1p
H
n�1Apn�1 = 0;

which completes the proof of Equation (3.10).
It remains to show that the residual rn+1 can be added, too. Therefore, we have to show

that

rHi rn+1 = 0; 8i < n+ 1; (3.13)

pHi rn+1 = 0; 8i < n+ 1: (3.14)

Set i = n in Line 6 of Algorithm 3.1, multiply it on the left side by rHi and use again Line 8
of Algorithm 3.1 in order to replace rHi to get

rHi rn+1 = rHi rn + 
nr
H
i Apn = rHi rn + 
n�i�1p

H
i�1Apn � 
np

H
i Apn: (3.15)

At once, it can be seen that rHi rn+1 = 0 for i < n due to the assumption that the vector
rn is already included in the set of residuals which ful�ll the relations in Theorem 3.1, i. e.
rHi rn = 0, and due to Equation (3.10) which we have already proven above. For i = n,
Equation 3.15 simpli�es by applying again the already established relation pHn�1Apn = 0,
Lines 4 and 8 of Algorithm 3.1, and the induction assumption that pHn�1rn = 0 as follows

rHnrn+1 = rHnrn � 
np
H
nApn = rHnrn + pHnrn = �n�1p

H
n�1rn = 0;

and Equation (3.13) is established. The remaining Equation (3.14) can be proven in a similar
way. Set again i = n in Line 6 of Algorithm 3.1 and compute the dot product with pi. It
follows

pHi rn+1 = pHi rn + 
np
H
i Apn = 0;

where we applied for the case i = n, Line 4 of Algorithm 3.1, and for i < n, Equation (3.10)
and the induction assumption that pHi rn = 0. Thus, Equation (3.14) is true and Theorem 3.1
is proven. 2

Theorem 3.2 The following identity of subspaces in CN holds at iteration step i

span
��
x(1) x(2) � � � x(i)

��
= span

��
p1 p2 � � � pi

��
= span

��
r1 r2 � � � ri

��
= span

��
b Ab � � � Ai�1b

��
= K(i) (A; b) :

(3.16)

Hence, after D iteration steps, the approximate solution x(D) of the system Ax = b lies in
the D-dimensional Krylov subspace K(D) (A; b).
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Proof. Again, we prove by induction. Set i = 1. Due to the initialization and Line 5 of
Algorithm 3.1, it holds the following relations:

x(1) = 
1p1; p1 = �r1; r1 = �b:
Thus, x(1), p1, r1, and b span the same subspace and Equation (3.16) is true for i = 1. Now
we have to prove that the identity holds for i = n if we assume that it holds for i = n� 1.

In order to prove that x(n) lies in the subspace spanned by the vectors p1;p2; : : : ;pn,
consider Line 5 of Algorithm 3.1. With the initialization x(0) = 0 and 
k 2 R, we get for
x(n) the linear combination

x(n) =
nX

k=1


kpk; (3.17)

which establishes the �rst equality in Equation (3.16).
For the remaining equalities, we need the induction assumption in the form that pn�1

and rn�1 can be already expressed by the linear combinations

pn�1 =
n�1X
k=1

'krk =
n�1X
k=1

�kA
k�1b and (3.18)

rn�1 =
n�1X
k=1

�kA
k�1b; (3.19)

respectively, where 'k; �k; �k 2 R. Considering Line 8 of Algorithm 3.1 and applying Equa-
tion (3.18) leads to the linear combination

pn = �rn + �n�1

n�1X
k=1

'krk;

which proves that the search direction pn lies in the subspace spanned by the residuals
r1; r2; : : : ; rn and the second equality in Equation (3.16) holds.

It remains to show that the residual rn lies in the Krylov subspace K(n) (A; b). Use Line 6
of Algorithm 3.1 with i = n� 1 and replace rn�1 and pn�1 by Equations (3.19) and (3.18),
respectively. It follows the linear combination

rn =
n�1X
k=1

�kA
k�1b+ 
n�1A

n�1X
k=1

�kA
k�1b = �1b+

n�1X
k=1

(�k+1 + 
n�1�k)A
kb;

where �n := 0. Therefore, rn lies in the subspace spanned by b;Ab; : : : ;An�1b, i. e. the
Krylov subspace K(n) (A; b). Finally, the last sentence of Theorem 3.2 is true if i = D and
the proof is �nished. 2

Theorem 3.3 The fact that the search directions p1;p2; : : : ;pi are mutually A-conjugate
ensures that the choice of 
i in Line 4 of Algorithm 3.1 minimizes the error function e

�
x(i)
�

not only on the line x(i�1) + 
pi but also in the whole Krylov subspace K(i) (A; b), i. e.

e
�
x(i)
�
= e

 
iX

k=1


kpk

!
= min


0
1
;
0
2
;::: ;
0

i

e

 
iX

k=1


0kpk

!
: (3.20)
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Proof. Using the de�nition of the error function in Equation (3.2) yields

e

 
iX

k=1


0kpk

!
=

 
iX

k=1


0kp
H
k

!
A

 
iX

k=1


0kpk

!
�

iX
k=1


0k
�
pHk b + bHpk

�
+ x(N);Hb:

The �rst term on the right hand side can be simpli�ed if we remember the A-conjugacy of
the search directions (cf. Equation 3.7) and thus, all terms may be written under one sum
symbol, i. e.

e

 
iX

k=1


0kpk

!
=

iX
k=1

�

0k

2
pHkApk � 
0k

�
pHk b+ bHpk

��
+ x(N);Hb: (3.21)

Hence, for k 2 f1; 2; : : : ; ig, the optimization leads to the system of decoupled linear equa-
tions

@e

�
iP

k=1


0kpk

�
@
0k

= 2
0kp
H
kApk �

�
pHk b+ bHpk

�
= 0; (3.22)

and the optimum can be found by considering every 
0k on its own. Therefore, the A-
conjugacy of the search directions leads to the fact that the optimization at each iteration
step on a line in the search direction is equal to the optimization including the whole Krylov
subspace K(i) (A; b). Finally, Equation (3.22) yields the optimum for


0k =
pHk b+ bHpk
2pHkApk

: (3.23)

In order to �nish the proof, we have to show that pHk b = bHpk or pHk b 2 R, respectively.
This can be done by transforming the term pHk rk 2 R (cf. Equation 3.5) using Line 6 of
Algorithm 3.1 recursively:

pHk rk = pHk rk�1 + 
k�1p
H
kApk�1 = pHk rk�1 = : : : = pHk r1 = �pHk b 2 R: (3.24)

Consequently, 
0k = 
k as given by Line 4 of Algorithm 3.1 and Theorem 3.3 is proven. 2



4. Relationship between MSNWF and CG Algorithm

4.1 Transformation of MSNWF to CG

In numerous papers and books (e. g. [8, 11]), it was mentioned that the Lanczos algorithm
which is used by the special implementation of the MSNWF derived in Section 2.3, is only
a version of the CG algorithm. If we compare the optimization functions in Equations (2.2)
and (3.2), we see that they are the same except for a constant which does not change the so-
lution of the optimization. Moreover, with the proof of Theorem 3.3, we have shown that not
only the MSNWF but also the CG algorithm �nds the approximate solution of the Wiener-
Hopf equation (cf. Equation 2.7) in the Krylov subspace K(D)

�
Ry0

; ry0;s0
�
. Consequently,

both methods yield the same result. In order to establish the equivalence of both algorithms
we transform [12] the formulas of the Lanczos based MSNWF to those of the CG algorithm
in this section. Again, in this chapter, i 2 f1; 2; : : : ; Dg.

First, we derive some fundamental analogies. Assume that i � 2. Using Lines 17 and 12
of Algorithm 2.1, and by setting T (i) =

�
T (i�1) ti

�
, it holds for w

(i)
0 that

w
(i)
0 =



ry0;s0

2 T (i)c
(i)
�rst = w

(i�1)
0 + �iui; w

(1)
0 =



ry0;s0

2 r�11;1t1; (4.1)

where �i and ui are de�ned as

�i =


ry0;s0

2 %�1i ��1i ri�1;ic

(i�1)
last;1; (4.2)

ui = %i

�
ri�1;iT

(i�1)c
(i�1)
last � ti

�
; (4.3)

and where %i 2 R n f0g is an arbitrary factor whose meaning is explained later. Multiplying
Line 13 of Algorithm 2.1 on the left side by T (i) and using Equation (4.3) leads to

T (i)c
(i)
last = ���1i

�
ri�1;iT

(i�1)c
(i�1)
last � ti

�
= �%�1i ��1i ui: (4.4)

Substituting i by i+1 in Equation (4.3) and replacing T (i)c
(i)
last by using Equation (4.4) yields

a recursion formula for ui+1 and D > i � 1

ui+1 =  iui � gi+1; u1 = �%1t1; (4.5)

where

 i = �%i+1%�1i ��1i ri;i+1; (4.6)

gi+1 = %i+1ti+1: (4.7)

21
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In Equations (4.1) and (4.5), we observe analogous terms if we compare them with Lines 5
and 8 of Algorithm 3.1. The vectors ui and gi seem to be equivalent to the search direction
pi and the residual ri of the CG algorithm, respectively. Besides, remember that in the
Lanczos based MSNWF, the linear system to be solved is the Wiener-Hopf equation where
the solution is the Wiener �lter w0. In the sequel, we prove that the analogous remaining
formulas of the CG algorithm can be derived from the MSNWF.

Proposition 4.1 The vectors gi can be updated by the recursion formula

gi+1 = gi + �iRy0
ui; g1 = %1t1; %1 = � 

ry0;s0

2 ; (4.8)

where the de�nition of �i is given in Equation (4.2) and where

�1 := r�11;1: (4.9)

Proof. We prove by induction. First, set i = 1. Recall that u1 = �%1t1 = �g1 and we get
by using the initialization of Equations (4.8) and (4.9), and Lines 7 to 9 of Algorithm 2.1

g1 + �1Ry0
u1 = %1�1

�
��11 t1 �Ry0

t1
�
=


ry0;s0

2 r�11;1r1;2t2 = %2t2 = g2:

The last equality holds if we de�ne %2 as

%2 =


ry0;s0

2 r�11;1r1;2: (4.10)

Now assume that Equation (4.8) holds for i = n� 1. This leads to

Ry0
un�1 = ��1n�1

�
gn � gn�1

�
: (4.11)

In order to prove Equation (4.8) for i = n if it holds for i = n� 1, we need a transformation
of Equation (4.5). Substituting i + 1 by n and multiplying the equation on the left side by
Ry0

yields

Ry0
un =  n�1Ry0

un�1 �Ry0
gn: (4.12)

Finally, we get by using Equations (4.12), (4.11), and (4.7)

gn + �nRy0
un = gn � �nRy0

gn + �n n�1Ry0
un�1

= gn � �nRy0
gn + ��1n�1�n n�1

�
gn � gn�1

�
= �%n�nRy0

tn + %n
�
1 + ��1n�1�n n�1

�
tn � %n�1�

�1
n�1�n n�1tn�1: (4.13)

On the other hand, setting i = n + 1 in Lines 7 to 9 of Algorithm 2.1 and multiplying the
recursion formula by %n+1 on both sides yields

%n+1tn+1 = %n+1r
�1
n;n+1Ry0

tn � %n+1r
�1
n;n+1rn;ntn � %n+1r

�1
n;n+1rn�1;ntn�1: (4.14)

Recalling Equation (4.7) and comparing Equation (4.13) with (4.14), Proposition 4.1 is
proven if the following three equations are true:

�%n�n = %n+1r
�1
n;n+1; (4.15)

%n
�
1 + ��1n�1�n n�1

�
= �%n+1r�1n;n+1rn;n; (4.16)

%n�1�
�1
n�1�n n�1 = %n+1r

�1
n;n+1rn�1;n: (4.17)
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Using Equations (4.15), (4.2), and Line 13 of Algorithm 2.1 in order to calculate %n+1 for
D > n � 2 as follows

%n+1 = �%n�nrn;n+1 = � 

ry0;s0

2 ��1n rn;n+1rn�1;nc
(n�1)
last;1 =



ry0;s0

2 rn;n+1c(n)last;1:

If we substitute n+1 by i and include Equation (4.10) for i = 2, %i for i � 2 is given by the
formulas

%i =


ry0;s0

2 ri�1;ic(i�1)last;1; (4.18)

%i = �%i�1�i�1ri�1;i: (4.19)

We get simpler formulas for �i and  i if we plug Equations (4.18) and (4.19) in Equations (4.2)
and (4.6), respectively. Consequently, it holds

�i = ��1i ; 8i; (4.20)

 i = ��2i r2i;i+1; 8i < D: (4.21)

In order to prove Equation (4.16) use Equations (4.19), (4.20), (4.21), and Line 11 of Algo-
rithm 2.1. It follows

%n
�
1 + ��1n�1�n n�1

�
= �%n+1��1n r�1n;n+1

�
1 + ��1n ��1n�1r

2
n�1;n

�
= �%n+1r�1n;n+1

�
�n + r2n�1;n�

�1
n�1

�
= �%n+1r�1n;n+1rn;n:

With the same equations, we get

%n�1�
�1
n�1�n n�1 = %n+1�

�2
n�1 n�1r

�1
n�1;nr

�1
n;n+1 = %n+1r

�1
n;n+1rn�1;n:

Thus, Equations (4.15), (4.16), and (4.17) hold and Proposition 4.1 is proven. 2

Note that with the de�nition of �1 by Equation (4.9), Equation (4.1) also holds for i = 1,

where w
(0)
0 := 0, as well as for i > 1.

Proposition 4.2 The vector gi is a residual vector for i 2 f1; 2; : : : ; D + 1g, i. e.

gi = Ry0
w

(i�1)
0 � ry0;s0; (4.22)

and the absolute value of the factor %i is its length.

Proof. Again, this proposition can be proven by induction. Set i = 1. It holds that

Ry0
w

(0)
0 � ry0;s0 = � 

ry0;s0

2 t1 = g1;

by applying the de�nition w(0)
0 = 0, Line 2 of Algorithm 2.1, and Equation (4.8). Assume

that Equation (4.22) holds for i = n� 1. Hence, we get for i = n (cf. Equation 4.1)

Ry0
w

(n�1)
0 � ry0;s0 = Ry0

w
(n�2)
0 � ry0;s0 + �n�1Ry0

un�1 = gn�1 + �n�1Ry0
un�1 = gn;

which establishes Equation (4.22). The last equality holds because of Proposition 4.1. In
order to �nish the proof of Proposition 4.2, remember that the vectors ti have unit length
(cf. Lines 7 to 9 of Algorithm 3.1). Hence, Equation (4.7) shows that j%ij is the length of the
residual gi. 2
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Up to now we showed, in addition to Equations (4.1) and (4.5), that the residuals gi are
updated by a similar formula as the residuals ri in Line 6 of Algorithm 3.1. It remains to
show that the computation of the weight factors  i and �i is analogous to those in the CG
method (cf. Lines 4 and 7 of Algorithm 3.1). These derivations are easier if we �rst prove
the following proposition.

Proposition 4.3 The vectors uj and gi satisfy the relation

uH
j Ry0

gi = 0; 8j � i� 2: (4.23)

Proof. First, let j = 1 and i � 3, but �xed. With Equations (4.5) and (4.7) we get

uH
1Ry0

gi = �%1%itH1Ry0
ti = �%1%ir1;i = 0:

The last equality holds, because rj;i are the elements of the tridiagonal matrix R(D)
s (cf. Sec-

tion 2.2 and 2.3) and thus, rj;i = tHj Ry0
ti = 0 for all j � i� 2. Assume that Equation (4.23)

holds for j = n� 1. Then, we get for j = n

uH
nRy0

gi =  n�1u
H
n�1Ry0

gi � gHnRy0
gi = �%n%itHnRy0

ti = �%n%irn;i = 0;

if we use again Equations (4.5) and (4.7). 2

Proposition 4.4 The factor  i in Equation (4.5) satis�es the relation

 i =
uH
i Ry0

gi+1

uH
i Ry0

ui

; (4.24)

and thus, fu1;u2; : : : ;uDg is a set of Ry0
-conjugate vectors, i. e.

uH
j Ry0

ui = 0; 8j 6= i: (4.25)

Proof. Replace i+1 by i� 1 in Equation (4.5) and multiply it on the right side with Ry0
gi

in order to get

uH
i�1Ry0

gi =  i�2u
H
i�2Ry0

gi � gHi�1Ry0
gi = �%i�1%iri�1;i: (4.26)

The last equality holds because of Proposition 4.3 and Equation (4.7).
In order to obtain a similar expression for the denominator on the right side of Equa-

tion (4.24), substitute ui given by Equation (4.5) and use Equations (4.7), (4.19), (4.20),
(4.21), (4.26), and Line 10 of Algorithm 2.1. It follows

uH
i Ry0

ui = gHi Ry0
gi �  i�1g

H
i Ry0

ui�1 �  i�1u
H
i�1Ry0

gi +  2
i�1u

H
i�1Ry0

ui�1

= %2i

�
ri;i � 2r2i�1;i�

�1
i�1 + r2i�1;i�

�1
i�1

uH
i�1Ry0

ui�1

%2i�1�i�1

�
:

Comparing the equation above with Line 11 of Algorithm 2.1 leads to

uH
i Ry0

ui = %2i�i: (4.27)

Substituting i by i+1 in Equation (4.26), dividing it by the left side of Equation (4.27),
and using again Equations (4.19), (4.20), and (4.21), yields �nally Equation (4.24). Thus,
similar to �i in Algorithm 3.1,  i, Equations (4.5), and (4.8) ensure that the vectors ui are
mutually Ry0

-conjugate (cf. Theorem 3.1). 2



4.1 Transformation of MSNWF to CG 25

Proposition 4.5 The following equation holds:

�i = � uH
i gi

uH
i Ry0

ui

: (4.28)

Hence, the value of �i above minimizes the error function

e (w) = wHRy0
w �wHry0;s0 � rHy0;s0w +wH

0 ry0;s0 (4.29)

on the line w = w
(i�1)
0 + �iui.

Proof. Replacing gi by Equation (4.22), uH
i Ry0

ui by Equation (4.27) and using recursively
Equation (4.1) yields

� uH
i gi

uH
i Ry0

ui

= �%�2i ��1i uH
i

�
Ry0

w
(i�1)
0 � ry0;s0

�

= %�2i ��1i uH
i

 
ry0;s0 �Ry0

i�1X
k=1

�kuk

!

= %�2i ��1i uH
i ry0;s0:

The last equality holds because the vectors ui are mutually Ry0
-conjugate (cf. Equa-

tion 4.25). Now, we have to show that %�2i ��1i uH
i ry0;s0 = �i. First, set i = 1. It holds

by using u1 = �%1t1, %1 = � 

ry0;s0

2, Line 2 of Algorithm 2.1, and Equation (4.20) that

%�21 ��11 uH
1 ry0;s0 = ��11 = �1:

Then, set i � 2, substitute ui by Equation (4.3), and remember that tHi ry0;s0 = 0 for all
i � 2. It follows

%�2i ��1i uH
i ry0;s0 = %�1i ��1i ri�1;ic

(i�1);T
last T (i�1);Hry0;s0 � %�1i ��1i tHi ry0;s0

=


ry0;s0

2 %�1i ��1i ri�1;ic

(i�1)
last;1 = �i;

if we recall the de�nition of �i in Equation (4.2). Therefore, �i in Equation (4.8) minimizes the
error function in the same way as 
i in Line 5 of Algorithm 3.1 and the proof of Proposition 4.5
is completed. 2

We see that Equations (4.28) and (4.24) which compute the weight factors  i and �i
are similar to the remaining Lines 4 and 7 of Algorithm 3.1. To put it in a nutshell, all the
formulas, we derived from the Lanczos based MSNWF, are the same as those of the CG
algorithm if we make the following equivalences:

approximate solution: w
(i)
0 $ x(i); �i $ 
i; (4.30)

search directions: ui $ pi;  i $ �i; (4.31)

residuals: gi $ ri: (4.32)

In the next Section, we use the derived equations to present a CG based implementation
of the MSNWF.
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4.2 CG Based Implementation of MSNWF

In Section 4.1 we have derived that the Lanczos based MSNWF can be expressed by the
formulas of the CG algorithm. Thus, Equations (4.28) and (4.24) can be replaced in the same
manner as Lines 4 and 7 of Algorithm 3.1 by Lines 4 and 7 of Algorithm 3.2, respectively.
It follows if we remember the equivalences we found in Equations (4.30), (4.31), and (4.32)

�i =
gHi gi

uH
i Ry0

ui
; (4.33)

 i =
gHi+1gi+1

gHi gi
: (4.34)

This replacement reduces computational complexity because the matrix vector multiplication
Ry0

gi+1 in Equation (4.24) is avoided. Besides, the only matrix vector product left, Ry0
ui,

which is needed in Equation (4.8) has already been computed in Equation (4.33) before.
Therefore, the resulting computational complexity for a rank D MSNWF is O (N2D), since
only one matrix vector multiplication with O (N2) has to be performed at each step.

Compared to the Lanczos implementation of the MSNWF, the CG algorithm does not
compute the mean square error MSE(i) at each step. To get such a recursion formula for
MSE(i) in the CG implementation consider the �rst elements in Line 12 of Algorithm 2.1. It
holds for i � 2 that

c
(i)
�rst;1 = c

(i�1)
�rst;1 + ��1i r2i�1;ic

(i�1);2
last;1 : (4.35)

Apply this equation to replace c
(i)
�rst;1 in Line 14 of Algorithm 2.1

MSE(i) = MSE(i�1) � 

ry0;s0

22 ��1i r2i�1;ic
(i�1);2
last;1 = MSE(i�1) � %2i �i; (4.36)

where MSE(1) is de�ned by Line 4 of Algorithm 2.1. The last equality holds because of
Equations (4.18) and (4.20). The fact that j%ij is the length of the residual gi and that
MSE(1) = �2s0 � %21�1, yields the recursion formula

MSE(i) = MSE(i�1) � �ig
H
i gi; MSE(0) = �2s0 : (4.37)

Finally, summarizing Equations (4.33), (4.1), (4.37), (4.8), (4.34), and (4.5) leads to a
CG implementation of the MSNWF which is given by Algorithm 4.1. Note that P. S. Chang
and A. N. Willson, Jr., presented a similar algorithm to solve the Wiener-Hopf equation
in [13]. However, we derived the CG algorithm from the MSNWF and in addition, our
implementation computes the mean square error at each iteration step. In the following
section, the resulting CG MSNWF algorithm is employed as a linear equalizer to an EDGE
system.
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Algorithm 4.1 CG based MSNWF

w
(0)
0 = 0

u1 = �g1 = ry0;s0
l1 = gH1 g1
MSE(0) = �2s0

5: for i = 1 to D do

v = Ry0
ui

�i = li=
�
uH
i v
�

w
(i)
0 = w

(i�1)
0 + �iui

MSE(i) = MSE(i�1) � �ili
10: gi+1 = gi + �iv

li+1 = gHi+1gi+1
 i = li+1=li
ui+1 = �gi+1 +  iui

end for





5. Further Methods for Dimension Reduction

5.1 Principal Component Method

The Principal Component (PC) method [2] is another way to decrease computational com-
plexity by considering a transformed observation signal of reduced dimension. The original
Wiener �lter w0 2 CN is replaced by the pre-�lter T

(D)
PC 2 CN�D, D < N , followed by a

Wiener �lter of reduced dimension, w
(D)
sPC 2 CD, which estimates the desired signal s0 [n]

from the transformed observation s
(D)
PC [n] = T

(D);H
PC y0 [n]. The resulting �lter structure is

shown in Figure 5.1. Due to the dimension reduction caused by the pre-�lter, the result
yields only an approximate solution of the Wiener-Hopf equation (cf. Equation 2.7).

y0 [n] ŝ
(D)
0;PC [n]

s
(D)
PC [n]

T
(D);H
PC w(D);H

sPC

Fig. 5.1. PC Filter

In order to build the pre-�lter matrix of the PC method, we need the eigenvector decom-
position of the covariance matrix of the observation signal y0 [n], i. e.

Ry0
= Q�QH; (5.1)

where

Q =
�
q1 q2 : : : qN

�
(5.2)

is the orthonormal modal matrix and

� = diag (�1; �2; : : : ; �N) (5.3)

is a diagonal matrix of the eigenvalues of Ry0
. Without loss of generality, we assume that

�1 � �2 � : : : � �N . Then, the pre-�lter matrix T
(D)
PC is obtained by using the �rst D

eigenvectors corresponding to the largest eigenvalues, i. e.

T
(D)
PC =

�
q1 q2 : : : qD

�
: (5.4)

In Section 2.2, we have derived the reduced rank MSNWF which can be seen as a pre-
�lter T (D) followed by a Wiener �lter w

(D)
s , too. Thus, similar to Equation (2.43), the PC

29



30 5. Further Methods for Dimension Reduction

approximation of the Wiener �lter w0 may be written as

w
(D)
0;PC = T

(D)
PCw

(D)
sPC

= T
(D)
PC

�
T

(D);H
PC Ry0

T
(D)
PC

��1
T

(D);H
PC ry0;s0

= T
(D)
PC�

(D);�1
PC T

(D);H
PC ry0;s0

(5.5)

with the diagonal matrix

�
(D)
PC = diag (�1; �2; : : : ; �D) 2 CD�D: (5.6)

Because of the reduced dimension of the pre-�ltered observation s
(D)
PC [n], the inversion of

its covariance matrix R(D)
sPC

= T
(D);H
PC Ry0

T
(D)
PC = �

(D)
PC has less computational complexity

compared to the inversion of the covariance matrix of the original observation signal, Ry0
,

but the used eigenvector decomposition has a complexity of O (N2D) if we only compute
the eigenvectors which correspond to the largest eigenvalues of Ry0

.
Contrary to the MSNWF and the CG algorithm (cf. Chapters 2, 3, and 4), the PC method

searches for the approximate solution of the Wiener-Hopf equation in a subspace spanned by
the eigenvectors corresponding to the largest eigenvalues of the covariance matrix, instead
of searching in the Krylov subspace K(D)

�
Ry0

; ry0;s0
�
. Hence, the PC algorithm does not

consider the cross-correlation between the observation y0 [n] and the desired signal s0 [n],
i. e. it uses the signal components with the largest power without distinguishing between the
desired signal and interference.

5.2 Cross Spectral Method

Goldstein et. al. [14] introduced the Cross Spectral (CS) metric in order to include the
information of the cross-correlation between the observation y0 [n] and the desired signal
s0 [n] in the choice of the eigenvectors of the covariance matrix Ry0

for the composition of
the pre-�lter matrix. The result is an improved approximate solution of the Wiener-Hopf
equation compared to the PC method.

y0 [n] ŝ
(D)
0;CS [n]

s
(D)
CS [n]

T
(D);H
CS w(D);H

sCS

Fig. 5.2. CS Filter

Figure 5.2 shows the CS �lter structure. The columns of the pre-�lter matrix T
(D)
CS 2

C
N�D, D < N , are the eigenvectors of Ry0

corresponding to the largest CS metric which

is explained in the next paragraph, and the Wiener �lter w(D)
sCS 2 CD estimates s0 [n] from

s
(D)
CS [n]. The resulting CS �lter

w
(D)
0;CS = T

(D)
CS �

(D);�1
CS T

(D);H
CS ry0;s0; (5.7)

if we make the corresponding substitutions in Equation (5.5).
It remains to derive the CS metric. First, recall the eigenvector decomposition of Ry0

in

Equation (5.1). Then, replace the matrix T (D) in Equation (2.44) by the CS pre-�lter T
(D)
CS .
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It follows for the mean square error

MSE
(D)
CS = �2s0 � rHy0;s0T

(D)
CS

�
T

(D);H
CS Ry0

T
(D)
CS

��1
T

(D);H
CS ry0;s0

= �2s0 � rHy0;s0T
(D)
CS �

(D);�1
CS T

(D);H
CS ry0;s0

= �2s0 �
X
i2M

��qHi ry0;s0��2
�i

;

(5.8)

where the diagonal matrix �
(D)
CS contains the eigenvalues �i, i 2 M, of the covariance matrix

Ry0
, and the pre-�lter matrix T

(D)
CS the corresponding eigenvectors qi. The set M is chosen

to ensure that the mean square error MSE
(D)
CS is minimum. Thus, the following optimization

problem has to be solved

M = arg max
M0�f1;2;::: ;Ng

jM0j=D

X
i2M0

��qHi ry0;s0��2
�i

; (5.9)

and the CS metric which decides whether a eigenvector qi is chosen as a column of T
(D)
CS or

not, is the term
��qHi ry0;s0��2 =�i.

The CS method approximates the Wiener �lter w0 in a subspace spanned by the set of
eigenvectors fqiji 2 Mg, i. e. the eigenvectors of Ry0

with the largest CS metric. Therefore,
the selection criterion considers the cross-correlation vector ry0;s0, but note that the spanned
subspace is not the Krylov subspace K(D)

�
Ry0

; ry0;s0
�
used by the MSNWF. Unfortunately,

the complexity for the CS algorithm is O (N3) because all eigenvectors of the eigenvector
decomposition have to be computed before we can select the vectors with the largest CS
metrics. In Section 6.3 we will see the performance of the PC and the CS method compared
to the CG implementation of the MSNWF.





6. Application to an EDGE System

6.1 Transmission System

In the following of this thesis, we apply the derived linear equalizer �lters to an Enhanced
Data rates for GSM Evolution (EDGE) system depicted in Figure 6.1. The EDGE radio
interface can be used in existing GSM systems in order to increase data rates while reusing
the same frequency bands and burst structure. EDGE was standardized [15] as Phase 2+ of
GSM by the European Telecommunications Standards Institute (ETSI).
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Fig. 6.1. EDGE Transmission System

First, the data bits b [`] 2 f0; 1g of the source are mapped to the 8PSK symbols s [m] 2 C
in the way given by Table 6.1. Due to the serial/parallel-converter, the bit clock is three times
the symbol clock which is expressed by the di�erent arguments ` and m. The symbols are
grouped in the burst structure given by Figure 6.2. The duration of an EDGE burst is
approximately 577�s and it contains 116 data symbols, 26 known training symbols, and 3

33
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tail symbols at the beginning and the end, respectively. The guard period at the end of the
burst lasts 8:25 symbol times.

Data Bits Symbol

b [3m] b [3m + 1] b [3m + 2] s [m]

1 1 1 1

0 1 1 1=
p
2 + j=

p
2

0 1 0 j

0 0 0 �1=p2 + j=
p
2

0 0 1 �1
1 0 1 �1=p2� j=

p
2

1 0 0 �j
1 1 0 1=

p
2� j=

p
2

Table 6.1. 8PSK Symbol Mapping

326

156:25TS = 15=26ms � 577�s

TrainingTS TS
3 58 58

GP
8.25

Data Symbols Data Symbols

Fig. 6.2. Normal EDGE Burst (TS: Tail Symbols, GP: Guard Period)

Then, the 8PSK symbols modulate the linear pulse shaping �lter which is the linearized
GMSK impulse

g (t) =

8<
:

3Q
i=0

R (t + iTS) for 0 � t � 5TS;

0 else;
(6.1)

where

R (t) =

8>>>>><
>>>>>:

sin

�
�

tR
0

S (t0) dt0
�

for 0 � t � 4TS;

sin

 
�
2
� �

t�4TSR
0

S (t0) dt0

!
for 4TS � t � 8TS;

0 else;

(6.2)

with

S (t) =
1

2TS

�
Q

�
0:6 �

t� 3
2
TS

TS
p
ln 2

�
�Q

�
0:6 �

t� 5
2
TS

TS
p
ln 2

��
: (6.3)

The function Q (t) is the Gaussian error integral

Q (t) =
1p
2�

tZ
�1

e�
t
02

2 dt0; (6.4)
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and TS = 48=13�s � 3:69�s is the symbol duration. Figure 6.3 shows the impulse g (t)
for t 2 [0; 5TS], which is the main component in a Laurent decomposition [16] of GMSK
modulation and contains more than 99:5% of signal energy. It can be seen that g (t) is
unequal zero for �ve symbol times. Thus, we have severe inter-symbol interference even for

at fading channels.

g
(t
)

t=TS

0
0

1

1 2 3 4 5

0.2

0.4

0.6

0.8

Fig. 6.3. Linearized GMSK impulse

The base band signal

x [n] =
X
m

s [m] g
��n

�
�m

�
TS
�
; (6.5)

where � is the oversampling factor, propagates over Rayleigh multi-path fading channels (cf.
Figure 6.1) with the impulse responses of length L0, h01 [n] and h

0
2 [n], respectively. Besides,

�1 [n] and �2 [n] denote additive white Gaussian noise.
The signals y1[n] and y2[n], received from two antennas, are processed by a linear equal-

izer �lter to get an estimation ŝ [m] of the transmitted symbol s [m]. In the simulations of
Section 6.3, we will use the MMSE, PC, and CS equalizer to have a comparison to the CG
implementation of the MSNWF. Note that the linear equalizer block in Figure 6.1 includes
an estimation of the statistics which is explained in Section 6.2. Finally, a hard decision
followed by a parallel/serial-converter yields an estimation b̂ [`] of the data bits b [`] which
are compared to the transmitted data bits to compute the bit error rate (BER).

6.2 Estimation Techniques

All the equalizer �lters mentioned above require an estimation of the covariance matrix of
the observation y0 [n] and some of them need in addition an estimate of the cross-correlation
vector between the observation y0 [n] and the desired signal s0 [n]. In this section, we present
two possible techniques to estimate these second order statistics.
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The �rst way to estimate the statistics is correlation. Therefore, it is necessary to de�ne
the structure of the observation vector y0 [n] 2 CN . If we set

y0;1 [n] =
�
y1 [n] y1 [n+ 1] � � � y1

�
n + N

2
� 1
� �T

;

y0;2 [n] =
�
y2 [n] y2 [n+ 1] � � � y2

�
n + N

2
� 1
� �T

; (6.6)

y0 [n] =

�
y0;1 [n]
y0;2 [n]

�
;

the cross-correlation vector ry0;s0 is estimated by

r̂(C)y0;s0
=

1

Kr

Kr�1X
k=0

y0 [k] s
�
0 [k] ; (6.7)

and the covariance matrix Ry0
by

R̂
(C)

y0
=

1

KR

KR�1X
k=0

y0 [k]y
H
0 [k] : (6.8)

KR is the number of samples available to estimate Ry0
and Kr is the number of samples

for the estimation of ry0;s0. Note that Kr is also the number of training symbols because
the knowledge of the desired signal s0 [n] is necessary (cf. Equation 6.7) in order to compute
r̂(C)y0;s0

. In general, KR > Kr since the covariance matrix Ry0
can also be estimated without

the knowledge of training symbols.
The second technique estimates the channel via least squares method and uses the result

to compute an estimate of the covariance matrix Ry0
and the cross-correlation vector ry0;s0.

Before we apply the least squares method, it is useful to derive a matrix-vector representation
of the transmission system. In the sequel of this section, the index i 2 f1; 2g indicates the
antenna to which the term corresponds. Note that the following formulas can easily be
generalized for an arbitrary number of antennas.

First, we de�ne the channel vector h0i as

h0i =
�
h0i [0] h0i [1] � � � h0i [L

0 � 1]
�T
: (6.9)

Then, we introduce a new channel vector hi 2 CL, L = L0 + 5�, which also includes the
sampled pulse shaping �lter g (t), i. e.

hi = Gh
0
i: (6.10)

The pulse shaping matrix G 2 CL�L0 is the convolution (Toeplitz) matrix

G =

2
66666666664

g [0]
g [1] g [0]
... g [1]

. . .

g [5�]
...

. . . g [0]
g [5�] g [1]

. . .
...

g [5�]

3
77777777775
; g [k] = g

�
k

�
TS

�
; k 2 f0; 1; : : : ; 5�g : (6.11)
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Another representation of G may be obtained by de�ning the L� L nilpotent shift matrix

�L =

�
0TL�1 0
1L�1 0L�1

�
; (6.12)

where 0L�1 is the (L� 1)� 1 zero vector and 1L�1 is the (L� 1)� (L� 1) identity matrix.
De�ning �0

L = 1L and the inverse ��1L = �T
L, yields �nally

G =

 
5�X
k=0

g [k]�k
L

!�
1L0

05��L0

�
; (6.13)

with the 5�� L0 zero matrix 05��L0.
The transmission of the training sequence over the system given by Figure 6.1 can be

expressed by the following equation:

yi =H
(Kr)
i s+ �i; i 2 f1; 2g : (6.14)

The vector s 2 CKr contains all the training symbols of one burst, i. e.

s =
�
s [nt] s [nt + 1] � � � s [nt +Kr � 1]

�T
; (6.15)

where the sequence begins at the (nt + 1)-th symbol of the burst. The noise vector �i 2
C
�(Kr�1)+1, added to branch i, is de�ned as

�i =
�
�i [nt] �i [nt + 1] � � � �i [nt + � (Kr � 1)]

�T
; (6.16)

and the received signal vector yi 2 C�(Kr�1)+1 at the i-th antenna as

yi =
�
y [nt] y [nt + 1] � � � y [nt + � (Kr � 1)]

�T
: (6.17)

Finally, the channel matrix H
(Kr)
i 2 C(�(Kr�1)+1)�Kr may be written as

H
(Kr)
i =

h
h
(1)
i h

(2)
i � � � h

(Kr)
i

i
; h

(j)
i =H

(Kr)
i e�(j�1)+1; j 2 f1; 2; : : : ; Krg ; (6.18)

where

H
(Kr)
i =

L�1X
k=0

hT
i ek�

k�(L�1)
�(Kr�1)+1

2 C(�(Kr�1)+1)�(�(Kr�1)+1) (6.19)

is a convolution matrix similar to G (cf. Equation 6.11), and e�(j�1)+1 or ek is a unit norm
vector with a one at the (� (j � 1) + 1)-th or k-th position, respectively. Compared to the

matrix H
(Kr)
i , the channel matrix H

(Kr)
i considers the fact that the received signals y1 [n]

and y2 [n] in Figure 6.1 are oversampled with the factor � while the symbols s [m] are only
sampled in times of the symbol duration TS.

If we use the training symbols of one burst in order to de�ne the symbol matrix S 2
C(�(Kr�1)+1)�L as

S =

 
Kr�1X
k=0

s [nt + k]��k+1�L
�(Kr�1)+1

!�
1L

0(�(Kr�1)+1�L)�L

�
; (6.20)
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and remember Equation (6.10), Equation (6.14) may be transformed as follows

yi =H
(Kr)
i s+ �i = Shi + �i = SGh0i + � i: (6.21)

Thus, the channel vector hi can be estimated applying the least squares method [1], i. e.

ĥi = Gĥ
0

i = G (SG)y yi: (6.22)

In order to compute �nally R̂
(LS)

y0
and r̂(LS)y0;s0

from the channel vector ĥi, it is necessary to

calculate the channel matrix Ĥ
(M)

i 2 CN�M , M = b(N � 1) =�c + 1, �rst. Note that H
(M)
i

generates the observation vector y0 [n] and not the received training sequence asH(Kr)
i does.

To this end, we replace hi and Kr in Equation (6.19) by ĥi andM , respectively, and plug the

result Ĥ
(M)

i in Equation (6.18). If we build the matrix Ĥ
(M)

by using the resulting matrices

Ĥ
(M)

1 and Ĥ
(M)

2

Ĥ
(M)

=

"
Ĥ

(M)

1

Ĥ
(M)

2

#
; (6.23)

the estimation of the cross-correlation vector ry0;s0 is simply the d-th column of Ĥ
(M)

, i. e.

r̂(LS)y0;s0
= Ĥ

(M)
ed; (6.24)

where d is a integer symbol delay. Assuming white Gaussian noise, uncorrelated transmitted
symbols and a signal power of one yields the estimate of the covariance matrix

R̂
(LS)

y0
=

1

^SNR
1N + Ĥ

(M)
Ĥ

(M);H
: (6.25)

In Equation (6.25), we see that it remains to estimate the SNR at the receiver. The estimation
of the noise vector �i is the error of the least squares method in Equation (6.22). It holds
for i 2 f1; 2g

�̂i = yi � Sĥi; (6.26)

and thus, the remaining term in Equation (6.25), ^SNR, may be written as

^SNR =
2� (Kr � 1) + 1

�̂H1 �̂1 + �̂H2 �̂2
: (6.27)

In the next section, we apply the equalizers derived in Chapters 2, 4, and 5 to an EDGE
system using the estimates given by Equations (6.7) and (6.8), or Equations (6.24) and
(6.25), respectively.
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6.3 Simulation Results

Recall the EDGE transmission system de�ned in Section 6.1. We sample two times during
one symbol duration, i. e. � = 2, and take 20 samples of the received signal at each antenna
to build the space-time observation vector y0 [n], thus, its dimension N = 40. The length
of the channel vector L0 = 7 if we assume a delay spread of �max = 10�s or approximately
three symbol times, hence, the channel vector which includes the pulse shaping �lter, hi, has
length L = 17. Besides, the channel is constant during one burst.

Simulations show that the CG implementation of the MSNWF given by Algorithm 4.1
yields exactly the same results as the Lanczos based MSNWF. This con�rms the transfor-
mation we made in Section 4.1 and in the following simulations, we may restrict ourselves
on the investigation of the CG based MSNWF.

B
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MMSE
CG MSNWF { 10 steps
CG MSNWF { 8 steps
CG MSNWF { 6 steps
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10�3

10�2

10�1

100

Fig. 6.4. BER for known statistics using CG MSNWF equalizer

For comparison purposes, we �rst analyze a known channel. Thus, the exact statistics,
i. e. the covariance matrixRy0

and the cross-correlation vector ry0;s0 are available. Figure 6.4
shows the resulting BER using the CG based MSNWF with D 2 f6; 8; 10g steps compared
to the MMSE equalizer or Wiener �lter which corresponds to the MSNWF with D = 40
steps. We observe that the MSNWF with D = 10 steps is very close to the MMSE equalizer
even for high SNR values.

In order to verify the dependence of the BER on the number of iteration steps D, we
computed Figure 6.5, where we used a SNR of 15 dB. Again, for D > 9, the CG implemen-
tation of the MSNWF yields almost the same result as the MMSE equalizer, however, the
MMSE solution is always better than every rank D MSNWF.

In Figure 6.6, the CG based MSNWF is compared to the CS and PC equalizer which
we explained in Chapter 5. Except for the MMSE �lter, all equalizers in Figure 6.6 �nd the
approximate solution of the Wiener-Hopf equation in a subspace of dimension D = 8. We
see that the MSNWF yields the best approximation of the MMSE equalizer or the Wiener
�lter.
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Fig. 6.5. BER for known statistics using CG MSNWF equalizer (SNR = 15dB)
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Fig. 6.6. BER for known statistics using di�erent equalizers (D = 8)

Next, we estimate the statistics with correlation, takeKr = 26 training symbols beginning
at the 62-nd symbol of a burst, i. e. nt = 61, and use Equation (6.7) to compute the estimate
of the cross-correlation vector, r̂(C)y0;s0

. Equation (6.8) yields an estimate of the covariance

matrix, R̂
(C)

y0
, if we setKR = 148 symbols. We get the simulation result depicted in Figure 6.7.

Compared to the simulation where we assumed a known channel (cf. Figure 6.4), the CG
based MSNWF with D 2 f2; 4; 6g steps is now always better than the MMSE �lter. This
con�rms also Figure 6.8 where the BER depending on the number of iteration steps D is



6.3 Simulation Results 41
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Fig. 6.7. BER for estimated statistics (correlation) using CG MSNWF equalizer

shown (SNR = 15 dB). Moreover, we observe that every rank D MSNWF performs better
than the MMSE equalizer and that the best solution is obtained for D = 4. Unfortunately,
there exists no criterion to stop the algorithm at the iteration step with the optimum solution.
It remains to explain the fact that the BER increases again for D > 4. Recall the eigenvector
decomposition of Ry0

and note that the small eigenvalues of Ry0
have the largest estimation

errors. Due to the inversion ofRy0
in the Wiener �lter, especially these eigenvalues determine

the �lter coe�cients and cause the bad behavior.
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Fig. 6.8. BER for estimated statistics (correlation) using CG MSNWF equalizer (SNR = 15dB)
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Fig. 6.9. BER for known ry0;s0 and estimated Ry0 (correlation) using MMSE or CG MSNWF

equalizer with D = 8 steps, respectively

The BER in Figure 6.7 is much higher compared to Figure 6.4 where we knew the
statistics. Figure 6.9, where ry0;s0 is assumed to be known and only the covariance matrix
Ry0

is estimated by correlation, shows that especially the estimation of the covariance matrix
causes this problem. The BER of the CG MSNWF with D = 8 steps and SNR = 15 dB in
Figure 6.8 is only a little bit higher than the BER of the CG MSNWF for KR = 148 and
SNR = 15 dB in Figure 6.9. Figure 6.9 shows also that the number of samples KR used for
the estimation of Ry0

, has to be much larger than 148 to get a low BER. However, the CG
based MSNWF achieves the same BER as the MMSE with much less samples KR.

In order to improve the result shown in Figure 6.7, we apply the least squares method to
estimate the channel and from it the statistics as described in Section 6.2. Figure 6.10 shows
the results for the CG based MSNWF withD 2 f6; 8; 10g steps and the MMSE equalizer. We
see that the least squares method yields much lower bit error rates than using correlation.
As in Figure 6.4, the MSNWF with D = 10 steps behaves almost the same as the MMSE
�lter.

Finally, Figure 6.11 shows a comparison of the CG MSNWF algorithm to the PC and
CS equalizers. Again, the MSNWF is much better compared to the other reduced dimension
methods.

Note that all �gures show the raw BER. Due to channel coding, an uncoded BER of 10�1

results in acceptable speech transmission.
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Fig. 6.10. BER for estimated statistics (least squares method) using CG MSNWF equalizer
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Fig. 6.11. BER for estimated statistics (least squares method) using di�erent equalizers (D = 8)





7. Conclusion and Outlook

In this thesis, we derived the relationship between the Lanczos based implementation of
the MSNWF and the CG method. Both are methods to approximate a solution of a linear
equation system, which is in our case the Wiener-Hopf equation, searching in a subspace of
reduced dimension. A new implementation of the MSNWF is obtained by transforming its
formulas into those of the CG algorithm.

Then, we applied the obtained algorithm to an EDGE transmission system and compared
it to other reduced dimension methods, i. e. the PC and CS algorithm. If we assumed known
statistics, simulation results showed that despite the reduced computational complexity, the
CG based MSNWF yields almost the same result as the MMSE equalizer and moreover,
it performs much better than the PC or CS �lter. Although the results deteriorated if we
estimated the statistics using correlation, we observed that the CG MSNWF performs better
than the MMSE equalizer for every number of iteration steps D. Finally, we used the least
squares method to estimate the channel and the statistics. The simulation results could be
improved and again, the CG implementation of the MSNWF is a good approximation of the
Wiener �lter.

x [n] CG

MSNWF

Nonlinear

Equalizer
Channel

Pulse

Shaping
s [m]

x̂ [n]
ŝ [m]

y1 [n]

y2 [n]

Fig. 7.1. Nonlinear Equalizer with CG based MSNWF as Pre-Filter

Another way to improve the BER in an EDGE system is depicted in Figure 7.1 [17]. We
propose to use the CG MSNWF as a pre-�lter in order to estimate the base band signal x [n]
from the received signals y1 [n] and y2 [n], respectively, using the covariance matrix Ry0

and
the cross-correlation vector ry0;x0. Note that the cross-correlation vector can be computed
using the training symbols and the known pulse shaping �lter. Then, the estimated base
band signal, x̂ [n], is processed by a nonlinear equalizer, e. g. a Viterbi equalizer to remove
the severe inter-symbol interference due to pulse shaping, which causes the high BER in
the case of linear processing. The nonlinear �lter estimates the desired symbol s [m] from
the estimated base band signal. Because of 8PSK-modulation and a pulse shaping �lter
containing 4�+1 samples, the number of states of a Viterbi equalizer is 84�. This high number
of states causes a huge trellis structure and is therefore di�cult to implement. Applying a
suboptimal reduced state Viterbi equalizer seems to be an acceptable alternative.

45





Appendix

A1 Abbreviations

BER Bit Error Rate

C Correlation

CD Conjugate Directions

CDMA Code Division Multiple Access

CG Conjugate Gradients

CS Cross Spectral

EDGE Enhanced Data rates for GSM Evolution

ETSI European Telecommunications Standards Institute

GMSK Gaussian Minimum Shift Keying

GP Guard Period

GPS Global Positioning System

GSM Global System for Mobile communication

LS Least Squares

MMSE Minimum Mean Square Error

MSE Mean Square Error

MSNWF Multi-Stage Nested Wiener Filter

PSK Phase Shift Keying

TS Tail Symbols

A2 Symbols

j�j absolute value

k�k2 Euclidean norm

k�kA A-norm

(�)� conjugate complex

(�)T transpose

(�)H conjugate transpose

(�)y pseudo inverse

(�)(D) term belongs to reduced dimension D

1i i� i identity matrix
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0i i� 1 zero vector

0i�j i� j zero matrix

�i real valued factor at stage i of MSNWF

�i real valued variable used at iteration step i of the Lanczos based
MSNWF


i real valued step length at iteration step i of CG algorithm


0i arbitrary real valued step length at iteration step i

�i i� i nilpotent matrix

�i real valued step improvement at iteration step i of CG algorithm

"0 [n] error between desired signal and its estimate

�i; 'i; �i real valued factors of linear combinations

�i real valued step length at iteration step i of the CG based MSNWF

� oversampling factor

�i eigenvalue of the covariance matrix Ry0

� diagonal matrix of the eigenvalues of Ry0

�
(D)
CS diagonal matrix of the D eigenvalues of Ry0

which ful�ll the CS cri-
terion

�
(D)
PC diagonal matrix of the D largest eigenvalues of Ry0

�i Lagrange multiplier

�i [n] additive white Gaussian noise signal added at the i-th antenna

�i additive white Gaussian noise vector added at the i-th antenna

�̂i estimated noise vector added at the i-th antenna

%i real valued variable whose absolute value is the length of the residual
gi at iteration step i� 1 of the CG based MSNWF

�i singular value of blocking matrix

�2x variance of a signal x [n]

 i real valued step improvement at iteration step i of the CG based
MSNWF

A matrix of a linear equation system

b [n] data bit

b̂ [n] estimated data bit

b right side of a linear equation system

b(D) vector used for the derivation of the backward recursion

Bi blocking matrix at stage i of MSNWF

c
(D)
i;j real valued matrix element at the i-th row and the j-th column of

C(D)

c
(D)
i real valued i-th column of C(D)

c
(i)
�rst real valued �rst column of C(i)

c
(i)
last real valued last column of C(i)

C(D) real valued inverse of R(D)
s

D reduced dimension
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e (x) error function

ei unit norm vector with a one at the i-th position

E f�g expected value

g (t) linear Laurent pulse shaping �lter

g [n] sampled Laurent impulse

gi residual at iteration step i� 1 of the CG based MSNWF

G pulse shaping matrix

h0i [n] channel impulse response of i-th antenna (pulse shaping excluded)

hi channel vector of i-th antenna (pulse shaping included)

ĥi estimated channel vector of i-th antenna (pulse shaping included)

h0i channel vector of i-th antenna (pulse shaping excluded)

ĥ
0

i estimated channel vector of i-th antenna (pulse shaping excluded)

h
(m)
i m-th column of the channel matrix H

(j)
i of i-th antenna

H
(j)
i (� (j � 1) + 1)� j channel matrix of i-th antenna

Ĥ
(j)

i estimated (� (j � 1) + 1)� j channel matrix of i-th antenna

H
(j)
i (� (j � 1) + 1) � (� (j � 1) + 1) channel matrix of i-th antenna for

oversampled symbol sequence

Ĥ
(j)

i estimated (� (j � 1) + 1) � (� (j � 1) + 1) channel matrix of i-th an-
tenna for oversampled symbol sequence

i; j; k; `;m; n integer variables

Kr number of samples used to estimate the cross-correlation vector ry0;s0
KR number of samples used to estimate the covariance matrix Ry0

K(i) (A;x) i-dimensional Krylov subspace of a matrix A and a vector x

li absolute value of %i used at iteration step i � 1 of the CG based
MSNWF

L dimension of channel vector hi which includes pulse shaping

L0 length of h0i [n] or dimension of channel vector h0i, respectively (pulse
shaping excluded)

L (t; �1; : : : ) Lagrange function

mi matched �lter at stage i of MSNWF

M number of symbols which produce the oversampled observation vector

MSE0 mean square error of the linear �lter w

MSE
(D)
0 mean square error of rank D MSNWF

MSE
(D)
CS mean square error of CS �lter

MMSE0 minimum mean square error achieved by the Wiener �lter w0

MMSEz1 minimum mean square error achieved by the Wiener �lter wz1

M set of integers corresponding to the eigenvalues ofRy0
which ful�ll the

CS criterion

M0 arbitrary subset of f1; 2; : : : ; Ng
nt time index of the �rst symbol of the training sequence within a burst

N dimension of observation
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O (�) Landau symbol

pi A-conjugate vectors at iteration step i of CG algorithm

P i projector onto the space orthogonal to the pre-�lter ti
Q (t) Gaussian error integral

Q modal matrix of the covariance matrix Ry0

ri;j matrix element at the i-th row and the j-th column of R(D)
s

rx;y cross-correlation between a signal x [n] and y [n]

ri residual vector at iteration step i� 1 of CG algorithm

rx;y cross-correlation vector between a vector x [n] and a signal y [n]

r̂(C)y0;s0
estimated cross-correlation vector ry0;s0 (correlation method)

r̂(LS)y0;s0
estimated cross-correlation vector ry0;s0 (least squares method)

R (t) function used for the de�nition of the pulse shaping �lter g (t)

Rx covariance matrix of a vector x [n]

R̂
(C)

y0
estimated covariance matrix Ry0

(correlation method)

R̂
(LS)

y0
estimated covariance matrix Ry0

(least squares method)

s [m] data symbol

ŝ [m] estimated symbol

s0 [n] desired signal

ŝ0 [n] estimate of desired signal

si [n] desired signal at stage i of MSNWF

ŝi [n] estimate of the desired signal at stage i of MSNWF

ŝ
(D)
0;CS [n] CS estimate of desired signal using a D-dimensional subspace

ŝ
(D)
0;PC [n] PC estimate of desired signal using a D-dimensional subspace

ŝz1 [n] estimate of the desired signal using the �lter wz1

s data symbol vector

s [n] pre-�ltered observation vector

s
(D)
CS [n] CS pre-�ltered D � 1 observation vector

s
(D)
PC [n] PC pre-�ltered D � 1 observation vector

S (t) function used for the de�nition of the pulse shaping �lter g (t)
^SNR estimated SNR

S symbol matrix

t time variable

ti i-th pre-�lter vector of MSNWF

TS symbol time

T 1 pre-�lter matrix

T (D) pre-�lter matrix of rank D MSNWF

T
(D)
CS CS pre-�lter matrix using a D-dimensional subspace

T
(D)
PC PC pre-�lter matrix using a D-dimensional subspace

ui Ry0
-conjugate vectors at iteration step i of CG based MSNWF

v vector used by the Lanczos based MSNWF or the CG based MSNWF

w linear �lter
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w0 Wiener �lter

wi Wiener �lter at stage i of MSNWF

wx Wiener �lter which estimates the desired signal from a vector x [n]

w
(D)
0 rank D MSNWF

w
(D)
0;CS CS �lter using a D-dimensional subspace

w
(D)
0;PC PC �lter using a D-dimensional subspace

x [n] transmitted base band signal

x̂ [n] estimated base band signal

x solution of a linear equation system

x(i) approximate solution of a linear equation system at iteration step i of
CG algorithm

yi [n] received signal at the i-th antenna

yi received signal vector at the i-th antenna

y0 [n] observation signal

yi [n] observation signal at stage i of MSNWF

y0;i [n] observation signal at the i-th antenna

z1 [n] pre-�ltered observation signal
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