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Abstract

In this paper, we show that the Multi-Stage Nested Wiener Filter (MSNWF)
can be identified to be the solution of the Wiener-Hopf equation in the Krylov
subspace of the covariance matrix of the observation and the crosscorrelation
vector of the observation and the desired signal. This understanding leads to
the conclusion that the Arnoldi algorithm which arises from the MSNWF de-
velopment can be replaced by the Lanczos algorithm. Thus, the computation
of the underlying basis of the Krylov subspace can be simplified. Moreover, the
settlement of the MSNWF in the Krylov subspace framework helps to derive an
alternative formulation of the already presented MSNWF composition.

1 Introduction

The Wiener filter (WF) is a well known approach to estimate the unknown
signal d0[n] from an observation x0[n] and is optimal in the Minimum Mean
Square Error (MMSE) sense. The WF is also optimal in the Bayesian sense if
the signals d0[n] and x0[n] are jointly Gaussian random variables (e. g. [Sch91,
MW95]).

Therefore, the WF is employed in many applications because it is easily
implemented and only relies on second order statistics which can be estimated
with partial knowledge of the transmitted signal.

Since the resulting filter depends upon the inverse of the covariance matrix
of the observation x0[n] and the needed filter length can be very large, if the
observation x0[n] is of high dimensionality, an alternative approach which oper-
ates in a reduced space is of great interest to reduce computational complexity
and the number of observations needed to estimate the statistics.

The first approach to reduce the dimension of the estimation problem is
the well established Principal Component (PC) method [Hot33, EY36]. The
observation signal is transformed by a matrix constituted by the eigenvectors
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belonging to the principal eigenvalues, thus, a truncated Karhunen-Loeve trans-
form is applied. The Wiener Filter solution with respect to the new observation
can be easily obtained since the covariance matrix of the new observation is a
diagonal matrix with the principal eigenvalues as its entries.

However, the PC method only takes into account the statistics of the obser-
vation signal and does not consider the relation to the desired signal. There-
fore, Goldstein et. al. [GR97b] introduced the Cross-Spectral (CS) metric which
evolved from the Generalized Sidelobe Canceller (GSC) [AC76, GJ82] and incor-
porates the similarity of the crosscorrelation vector of the observation and the
desired signal with the respective eigenvector. The CS method does not choose
the principal eigenvectors, but the eigenvectors which belong to the largest CS
metric as was also suggested by Byerly et. al. in [BR89].

Recently, Goldstein et. al. presented the Multi-Stage Nested Wiener Filter
(MSNWF) approach [GR97a, GRS98] which can be seen as a chain of GSCs.
This fundamental contribution showed that the reduction of the dimension of
the observations signal based on the eigenvectors as proposed by the PC and
CS methods is suboptimum. The MSNWF does not need the eigenvectors of
the covariance matrix of the observation signal and is, thus, computationally
advantageous (see [GGR99, GGDR98] for an illustrative example). This prop-
erty led to the application of the MSNWF in detection problems [GRZ99] and
CDMA interference cancellation [HG00]. Honig et. al. showed that the number
of necessary MSNWF stages even for a heavy loaded CDMA system is small
compared to the eigenspace based methods [HX99].

Pados et. al. presented a similar result in [PB99] for the Auxiliary Vector
(AV) method which was also developed from the GSC. In fact the earlier AV
publications [KBP98, PLB99] are an implementation of the GSC method. Their
formulation in [PB99] is similar to [HG00] except that the combination of the
transformed observation signal to form the estimate of the desired signal is
suboptimal.

Our contribution is to show that the Multi-Stage Nested Wiener Filter
(MSNWF) can be seen as the solution of the Wiener-Hopf equation in the
Krylov subspace of the covariance matrix of the observation signal and the
crosscorrelation vector of the observation and the desired signal. This conclu-
sion follows from the results in [PB99] and especially in [HG00], but we present
the consequences of this connection. First, the Arnoldi algorithm which is used
to find the orthonormal basis for the Krylov subspace can be replaced by the
Lanczos algorithm [Saa96] since the covariance matrix is Hermitian. Second,
we develop a new formulation of the MSNWF algorithm which gives an expres-
sion for the resulting Mean Squared Error (MSE), although it only works in
the reduced dimensional space. Schneider et. al. [SW99] presented a similar
algorithm which also included the computation of the error variance in an image
processing application. However, their formulation assumes only additive noise
and a few dominant eigenvalues of the covariance matrix.

In the next section, we briefly review the theory of the Wiener filter to
make the reader familiar with our notation. Before we discuss the reduced rank
MSNWF in Section 4, we concentrate on the original MSNWF approach in
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Section 3 to motivate our reasoning in Section 5, where we show the close rela-
tionship between the MSNWF and Krylov subspace based methods. In Section
6 we present a new formulation of the MSNWF algorithm.

2 Wiener Filter

Figure 1 shows the principle of a Wiener Filter (WF). The desired signal d0[n] ∈
C which is assumed to be a zero-mean white Gaussian process is estimated by
applying the linear filter w ∈ CN to the observation signal x0[n] ∈ CN which is
a multivariate zero-mean Gaussian process. The error of the estimation can be
written as

ε0[n] = d0[n]− d̂0[n] = d0[n]−wHx0[n], (1)

where (•)H denotes conjugate transpose. The variance of the estimation error
is the mean squared error

MSE0 = E{|ε0|
2} = σ2

d0
−wHrx0,d0 − r

H
x0,d0

w +wHRx0
w, (2)

with the covariance matrix of the observation x0[n]

Rx0 = E{x0[n]xH
0 [n]} ∈ CN×N , (3)

the variance of the desired signal d0[n]

σ2
d0

= E{|d0[n]|2}, (4)

and the crosscorrelation between the desired signal d0[n] and the observation
signal x0[n]

rx0,d0 = E{x0[n]d∗0[n]} ∈ CN , (5)

where (•)∗ denotes complex conjugate.

"0[n]

w0 d̂0[n]

d0[n]

x0[n]

Figure 1: Wiener Filter

The Wiener filter w0 is the filter w which minimizes the mean squared error,
thus,

w0 = arg min
w

MSE0. (6)

This criterion leads to the Wiener-Hopf equation

Rx0w0 = rx0,d0 (7)

and the Wiener filter
w0 = R−1

x0
rx0,d0 ∈ CN . (8)
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Consequently, the minimum mean squared error (MMSE) can be written as

MMSE0 = σ2
d0
− rH

x0,d0
R−1
x0
rx0,d0 . (9)

Before we focus on the Multi-Stage Nested Wiener Filter (MSNWF) in the
next section, we have to recite the following theorem (e. g. [GRS98]) which is
proved in Appendix A.

Theorem 1 If the observation x0[n] to estimate d0[n] is pre-filtered by a full-
rank matrix T ∈ CN×N , i. e., z1[n] = Tx0[n], the Wiener filter wz1

to estimate

d0[n] from z1[n] leads to the same estimate d̂0[n], thus, the MMSE is unchanged.

This Theorem can be generalized to a bigger set of pre-filtering matrices by
the following corollary.

Corollary 1 If the pre-filtering matrix T ∈ CM×N ,M ≥ N has full column
rank, i. e. T has a left inverse, the resulting estimate d̂0[n] and the MMSE are
unchanged.

The proof of Corollary 1 is straightforward, the inverse of T just has to be
replaced by the left inverse of T in Appendix A. However, if T is tall, i. e.,
M > N , then the Wiener filter solution is ambiguous, because a vector which
is orthogonal to the column space of T can be added to wz1

in Equation (58)

without changing the estimate d̂0[n] and the MMSE.

3 Multi-Stage Nested Wiener Filter

The Multi-Stage Nested Wiener Filter (MSNWF) was developed by Goldstein
et. al. [GR97a, GRS98] to find an approximate solution of the Wiener-Hopf
equation (cf. Equation 7) which does not need the inverse or the eigenvalue
decomposition of the covariance matrix. The approximation for the Wiener
filter is found by stopping the recursive algorithm after D steps, hence, the
approximation lies in a D-dimensional subspace of CN .

The first step of the MSNWF algorithm is to apply a full rank pre-filtering
matrix of the form

T 1 =

[
hH

1

B1

]
∈ CN×N (10)

to get the new observation signal

z1 = T 1x0[n] =

[
hH

1 x0[n]
B1x0[n]

]
=

[
d1[n]
x1[n]

]
∈ CN (11)

which does not change the estimate d̂0[n] as postulated in Theorem 1. The rows
of B1 are chosen to be orthogonal to hH

1 , therefore,

B1h1 = 0 or B1 = null(hH
1 )H. (12)
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The intuitive choice for the first row hH
1 is the vector which, when applied to

x0[n], gives a scalar signal d1[n] that has maximum correlation with the desired
signal d0[n]. Without loss of generality we assume that ‖h1‖2 = 1 and force
d1[n] to be ‘in-phase’ with d0[n], i. e. the correlation between d0[n] and d1[n]
is real, which is motivated by the trivial case when d1[n] = d0[n]. Note that
this criterion is different from the one proposed in [GGDR98] since we do not
optimize the absolute value of the correlation which would lead to a loss of
information about the phase and, thus, Goldstein et. al. had to use Schwarz
inequality to derive the same result. The formulation in [PB99, PLB99] is also
based on the absolute value of the correlation, but in the proof of the result
the correlation is assumed to be real. With our consideration we end up with
following optimization problem

h1 = arg max
h

E{Re(d1[n]d∗0[n])} or

h1 = arg max
h

1

2
(hHrx0,d0 + rH

x0,d0
h) s.t.: hHh = 1 (13)

which results in the normalized matched filter

h1 =
rx0,d0

‖rx0,d0‖2
∈ CN . (14)

Note that d1[n] contains all information about d0[n] which can be found in
x0[n] since d0[n] is a scalar, thus, the information about d0[n] lies in a one-
dimensional subspace of CN and with the matched filter we pick out only these
portions of x0[n] which are included in this subspace. Moreover, the second part
of z1[n], namely x1[n], does not contain any information about d0[n] because
of the orthogonality condition in Equation (12).

"0[n]

d̂0[n]x0[n]

d0[n]

T 1

z1[n]
wz1

Figure 2: Wiener Filter with Pre-Filtering

Again, we have to solve the Wiener-Hopf equation of the new system depicted
in Figure 2 to get

wz1 = R−1
z1
rz1,d0 ∈ CN , (15)

where the covariance matrix of z1[n] can be expressed by the statistics of d1[n]
and x1[n], i.e.,

Rz1 =

[
σ2
d1

rH
x1,d1

rx1,d1 Rx1

]
∈ CN×N , (16)

with the variance of d1[n]

σ2
d1

= E{|d1[n]|2} = hH
1Rx0

h1, (17)
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the crosscorrelation vector between x1[n] and d1[n]

rx1,d1 = E{x1[n]d∗1[n]} = B1Rx0
h1 ∈ CN−1 (18)

and the covariance matrix of x1[n]

Rx1
= E{x1[n]xH

1 [n]} = B1Rx0
BH

1 ∈ CN−1×N−1. (19)

The crosscorrelation vector of the pre-filtered observation signal z1[n] and
the desired signal d1[n] reveals the usefulness of the choice of pre-filtering:

rz1,d0 = T 1rx0,d0 = ‖rx0,d0‖2e1 ∈ RN , (20)

where ei denotes a unit norm vector with a one at the i-th position. Therefore,
the Wiener filter wz1

of the pre-filtered signal z1[n] is just a weighted version
of the first column of the inverse of the covariance matrix Rz1

in Equation
(16). After applying the inversion lemma for partitioned matrices (e. g. [Sch91,
MW95]) we end up with [GR97a, GRS98]

wz1
= α1

[
1

−R−1
x1
rx1,d1

]
∈ CN , (21)

where
α1 = ‖rx0,d0‖2(σ2

d1
− rH

x1,d1
R−1
x1
rx1,d1)−1. (22)

Equation (21) is the key equation to understand most interpretations of the
MSNWF.

The first and most important observation in Equation (21) is that the vector
in brackets, when applied to z1[n], gives the error signal ε1[n] of the Wiener
filter which estimates d1[n] from x1[n]:

ε1[n] = d1[n]− d̂1[n] = d1[n]−wH
1 x1[n] =

[
1,−wH

1

]
z1[n] (23)

with the Wiener filter
w1 = R−1

x1
rx1,d1 ∈ CN−1. (24)

This observation immediately leads to the next step in the MSNWF develop-
ment. In the second step, the output of the Wiener filter w1 with dimension
N−1 can be replaced by the weighted error signal ε2[n] of a Wiener filter which
estimates the output signal d2[n] of the matched filter h2 from the blocking-
matrix output x2[n] = B2x1[n].
Moreover, this observation shows the close relationship of the MSNWF to the
Generalized Sidelobe Canceller (GSC, [AC76, GJ82, GRZ99]). The GSC can be
interpreted as a MSNWF after the first step.

Second, the factor α1 is a scalar Wiener filter to estimate d0[n] from the
scalar ε1[n]. The covariance matrix or variance of ε1[n] is the MMSE of the
Wiener filter w1 and the crosscorrelation between the scalar observation signal
ε1[n] and the desired signal d0[n] is the norm of the matched filter rx0,d0 , thus,

α1 = σ−1
ε1
rε1,d0 = (σ2

d1
− rH

x1,d1
R−1
x1
rx1,d1)−1‖rx0,d0‖2. (25)
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"0[n]

d̂0[n]�1

x1[n]
B1 w1

h1x0[n]

d0[n]

"1[n]d1[n]

d̂1[n]

Figure 3: MSNWF after the First Step

These two interpretations lead to the well known structure in Figure 3. The
Wiener filter w0 is replaced by the scalar Wiener filter α1 which estimates d0[n]
from the error signal ε1[n] of the vector Wiener filter w1.

Third, the MSNWF can be created without knowledge of the covariance ma-
trix Rx0

and, therefore, the implementation of a MSNWF is simplified, because
at each step the Wiener filter is replaced by the normalized matched filter and
the next stage. Since the matched filter is simply the crosscorrelation between
the new observation xi[n] and the new desired signal di[n] at each step only
an estimation of this crosscorrelation is needed. Note, however, that estimating
all the crosscorrelations and estimating the covariance matrix lead to the same
resulting estimate d̂0[n] at the same expense.

Fourth, it is straightforward to see that each new desired signal di[n], i =
1, . . . , N, is the output of a length N filter

ti = (
i−1∏
k=1

BH
k )hi ∈ CN (26)

as depicted in Figure 4. This interpretation of the MSNWF will be used in
the following sections. Note that all following stages are orthogonal to the first
stage, i.e., tH1 ti = δ1,i, i=2,. . . ,N, and δk,i denotes the Kronecker delta function
which is 1 for k = i and 0 for k 6= i. However, the filters ti are not an orthogonal
basis of CN in general (cf. Section 5).
The Auxiliary Vector method [KBP98] also evolved from GSC considerations,
but ended the iteration after the second step and is, thus, a rank two MSNWF
approximation of the ideal Wiener filter. The extension of the AV method pre-
sented in [PB99] is basically the structure shown in Figure 4, but the proposed
choice of the scalar filters αi is suboptimal.

The very important property of the MSNWF is that the pre-filtered obser-
vation vector

d[n] = [d1[n], . . . , dN [n]]T, (27)

where (•)T denotes transpose, has a tri-diagonal covariance matrix [GRS98].
This can be understood with the help of Figures 3 and 4. The matched filter hi
is designed to retrieve all information of di−1[n] that can be found in xi−1[n].
Therefore, the output of hi, di[n], is correlated with di−1[n] and also with
di+1[n], because hi+1 is the matched filter to find di[n]. But di+1[n] includes
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x0[n]

t2

t1

d1[n]

d2[n]
�2

d̂2[n]

d̂1[n]

d̂0[n]�1

tN

dN [n]
�N

d̂N�1[n]

Figure 4: MSNWF as a Filter Bank

no information about di−1[n], since the input of hi+1 was pre-filtered by the
blocking matrix Bi+1. Consequently, di[n] is only correlated to its neighbours
di−1[n] and di+1[n] leading to a tri-diagonal covariance matrix.

The remaining part of the MSNWF (summers and scalar Wiener filters αi)
is a Wiener filter which estimates d0[n] of d[n]. Because only d1[n] is correlated
with d0[n], the crosscorrelation vector is simply a weighted version of e1, thus,
again only the first column of the inverse of the covariance matrix of d[n] is of
interest. The structure with summers and scalar Wiener filters follows from the
tri-diagonal property of the covariance matrix of d[n].

4 Reduced Rank MSNWF

The reduced rank MSNWF of rank D is easily obtained by stopping the devel-
opment of the MSNWF after D − 1 steps and replacing the last Wiener filter
wD−1 by the respective matched filter. Thus, the MSNWF of rank 1 is simply
the matched filter rx0,d0 .

We restrict ourselves to the MSNWF interpretation shown in Figure 4, hence,
forD < N we get the length D observation with a tri-diagonal covariance matrix

d(D)[n] = T (D),Hx0[n] ∈ CD, (28)

where the superscript (•)(D) indicates that we use a rank D approximation and
the transformation matrix

T (D) = [t1, . . . , tD] ∈ CN×D (29)

comprises the first D filters which were already defined in Equation (26). There-

fore, we have to find the Wiener filter w
(D)
d which estimates d0[n] from d(D)[n].

Obviously, this Wiener filter reads as

w
(D)
d =

(
R

(D)
d

)−1

r
(D)
d,d0

=
(
T (D),HRx0T

(D)
)−1

T (D),Hrx0,d0 (30)

and the MSNWF rankD approximation of the Wiener filterw0 can be expressed
as

w
(D)
0 = T (D)w

(D)
d = T (D)

(
T (D),HRx0

T (D)
)−1

T (D),Hrx0,d0 (31)
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and has following mean squared error :

MSE(D) = σ2
d0
− rH

x0,d0
T (D)

(
T (D),HRx0

T (D)
)−1

T (D),Hrx0,d0 . (32)

5 MSNWF and Krylov Subspace

In Section 3 we stated that the filters ti in Figure 4 are not orthogonal in
general. It can be easily shown that they are orthogonal for the special choice
of the blocking matricesBi to have the property that all singular values unequal
to 0 are the same, i. e., σ1 = . . . = σN−i = σ and σk = 0, k > N − i.

In the following we restrict ourselves to this class of blocking matrices, there-
fore, the filters ti are orthogonal. Moreover, without loss of generality we assume
that ‖ti‖2 = 1.

Now, recall the MSNWF development (cf. Figure 3). At step i the signal
xi−1[n] at the blocking matrix output of the previous stage was the input for
the matched filter hi and the blocking matrix Bi. Again, the matched filter
was chosen, because its output di[n] has the maximum correlation with the
output of the previous stage di−1[n]. Because we can substitute the chain of
blocking matrices and the matched filter hi ∈ CN−i+1 by a filter ti ∈ CN
(cf. Equation 26) and since we restrict ourselves to use orthonormal filters ti,
we can compute the filters ti directly. At the i-th step we get the additional
output signal di[n] = tHi x0[n] which has to be maximally correlated with the
output signal of the previous stage di−1[n] = tHi−1x0[n]. Together with the
orthogonality conditions this leads to following optimization:

ti = arg max
t

E{Re(di[n]d∗i−1[n])} or

ti = arg max
t

1

2
(tHRx0ti−1 + tHi−1Rx0t) (33)

s.t.: tHt = 1 and tHtk = 0, k = 1, . . . , i− 1.

The result which is easily obtained (e.g. with Langrange multipliers, cf. Ap-
pendix B) reads as

ti =

(∏1
k=i−1 P k

)
Rx0ti−1

‖
(∏1

k=i−1 P k

)
Rx0

ti−1‖2
, (34)

where P k denotes the projector onto the space orthogonal to tk, i.e.,

P k = 1N − tkt
H
k (35)

and 1N denotes the N ×N identity matrix.
The expression in Equation (34) implies that the best choice for the blocking

matrix Bi is the projector P i onto the orthogonal space of the matched filter
ti, if the filters ti are orthogonal to each other. This result suggests that the
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reduction of the dimension of the solution space at each step of the MSNWF
iteration does not necessarily lead to a reduction of the length of the filter
as proposed by Goldstein et. al. in [GRS98]. This result is consistent since
Corollary 1 allows to use a tall pre-filtering matrix T i at each step. Honig
et. al. [HX99, HG00] already developed the same result, but they gave no
motivation for this special choice of Bi. Also Pados et. al. [PB99, LUN99]
ended up with a similar expression for the Auxiliary Vector (AV) method, but
did not consider the orthogonality of the filters ti which they incorporated into
the optimization, leading to a more complicated expression.

However, both contributions did not make the observation that the recursive
algorithm described in Equation (34) is the well known Gram-Schmidt Arnoldi
algorithm [Arn51, Saa96]. The Arnoldi recursion is the basic algorithm to com-
pute the orthonormal basis of the Krylov subspace K(D) of the square matrix
A ∈ CM×M and the column vector b ∈ CM . The Krylov subspace of dimension
D is defined as follows [Saa96, vdV00]:

K(D) = span
(

[b,Ab, . . . ,AD−1b]
)
. (36)

Again, also Honig et. al. [HX99] made this observation and proved that for the
choice Bi = P i the filters ti are an orthonormal basis of the Krylov subspace.
However, they did not excavate the fundamental implications of this result which
can be found in following theorem [Arn51, Saa96].

Theorem 2 If the columns of the matrix TD = [t1, . . . , tD] were computed
using the recursion

ti =

(∏1
k=i−1 P k

)
Ati−1

‖
(∏1

k=i−1 P k

)
Ati−1‖2

, t1 =
b

‖b‖2
, (37)

where A ∈ CN×N is an arbitrary square matrix and b ∈ CN is an arbitrary
column vector, then the following equality holds:

AT (D) = T (D)H(D) + hD+1,DtD+1e
T
D, (38)

where H(D) is a D×D Hessenberg matrix and tD+1 denotes the next vector of
the recursion. Obviously, since the vectors ti are orthonormal, Equation (38)
can be rewritten to get

H(D) = T (D),HAT (D). (39)

The proof of Theorem 2 which shows the actual values of the entries of H(D)

can be easily obtained from the recursion in Equation (37) and is outlined in
Appendix C. To see the value of Theorem 2 we need to specialize A to be
Hermitian.
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Corollary 2 Given an Hermitian square matrix A ∈ CN×N , i.e., A = AH,
the recursion in Equation (37) leads to a transformation matrix T (D) which
tri-diagonalizes A, i.e.,

H(D) = T (D),HAT (D).

is a Hermitian tri-diagonal matrix.

Proof. Theorem 2 proposes that H(D) is a Hessenberg matrix. Since A is
Hermitian,

H(D),H = T (D),HAHT (D) = T (D),HAT (D) = H(D), (40)

therefore, H(D) is a Hermitian Hessenberg matrix or Hermitian tri-diagonal.

Equation (34), Theorem 2, and Corollary 2 disclose the connection between
the MSNWF approach and Krylov subspace methods to solve linear equation
systems. Our conclusion is that the MSNWF approach, although it is only moti-
vated by statistical reasoning, is simply the solution of the Wiener-Hopf equation
by employing the Krylov subspace of the matrix vector pair (Rx0

, rx0,d0), if the
filters ti are orthogonal. Furthermore, if a reduced rank MSNWF with rank D
is computed, this is fully equivalent to solving the Wiener-Hopf equation in the
D-dimensional Krylov subspace K(D). And more descriptively, the inverse of
the covariance matrix R−1

x0
is approximated by a matrix polynomial q(Rx0) of

order D − 1.
We showed that the MSNWF procedure delivers filters ti which form an or-

thonormal basis of the Krylov subspace. Henceforth, we can base our reasoning
on the Krylov subspace. With Corollary 2 it is straightforward to understand
that the covariance matrix Rd of the pre-filtered observation d[n] (cf. Equation
27) is tri-diagonal, because the covariance matrix of the original observation
x0[n] is Hermitian. Moreover, the Hermitian property of Rx0

can be exploited
to compute the orthogonal basis ti of the Krylov subspace K(D) of (Rx0 , rx0,d0).
In the case of Hermitian matrices the Lanczos algorithm [Lan50, Lan52, Saa96]
can be applied to find the orthogonal basis:

ti =
P i−1P i−2Rx0

ti−1

‖P i−1P i−2Rx0
ti−1‖2

=
Rx0

ti−1 − t
H
i−2Rx0

ti−1ti−2 − t
H
i−1Rx0

ti−1ti−1

‖Rx0
ti−1 − t

H
i−2Rx0

ti−1ti−2 − t
H
i−1Rx0

ti−1ti−1‖2
. (41)

Thus, we reduced the complexity of the MSNWF iteration by exploiting the
fact that the MSNWF is equivalent to finding the solution of the Wiener-Hopf
equation in the Krylov subspace of (Rx0 , rx0,d0). However, the Lanczos algo-
rithm is sensitive to rounding errors, hence, the filters ti are not orthogonal
anymore for large i. In the sequel, we assume that the necessary rank D to find
an good approximation of the Wiener filter is small enough to be able to apply
the Lanczos algorithm.
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6 A New MSNWF Iteration

In this section, we develop a new algorithm which computes the rank D
MSNWF, but works only within the Krylov subspace of dimensionD. Therefore,
we assume that the orthonormal basis T (D) ∈ CN×D of the Krylov subspace
K(D) was found by the Arnoldi algorithm (cf. Equation 34) or by the Lanc-
zos algorithm (cf. Equation 41). The resulting rank D MSNWF is given in

Equation (31) by the means of the Wiener filter w
(D)
d which is applied to the

pre-filtered observation

d(D)[n] = T (D),Hx0[n] ∈ CD, (42)

with the tri-diagonal covariance matrix

R
(D)
d = T (D),HRx0

T (D) =

 0
T (D−1),HRx0T

(D−1)

rD−1,D

0T r∗D−1,D rD,D

 ∈ CD×D (43)

and the crosscorrelation vector with respect to the desired signal d0[n]

r
(D)
d,d0

= T (D)rx0,d0 =

[
‖rx0,d0‖2

0

]
∈ RD. (44)

If we use the covariance matrix R
(D−1)
d , the new entries of R

(D)
d are simply

rD−1,D = tHD−1Rx0
tD and rD,D = tHDRx0

tD. (45)

Because rd,d0 has the property that only the first element is not equal to 0, only
the first column of the inverse of Rd is needed to compute

w
(D)
d = R

(D),−1
d r

(D)
d,d0
∈ CD. (46)

Consequently, we are only interested in the first column c
(D)
1 ∈ CD of

C(D) = R
(D),−1
d = [c

(D)
1 , . . . , c

(D)
D ] ∈ CD×D (47)

and the inversion lemma for partitioned matrices (e. g. [Sch91, MW95]) leads
to

C(D) =

[
C(D−1) 0

0T 0

]
+ β−1

D b(D)b(D),H, (48)

where the additional terms read as

b(D) =

 −C(D−1)

[
0

rD−1,D

]
1

 =

[
−rD−1,Dc

(D−1)
D−1

1

]
∈ CD (49)

and

βD = rD,D − [0T, r∗D−1,D]C(D−1)

[
0

rD−1,D

]
= rD,D − |rD−1,D|

2c
(D−1)
D−1,D−1

(50)
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with c
(D−1)
D−1,D−1 being the last element of the last column c

(D−1)
D−1 of C(D) at the

previous step. Therefore, the new first column c
(D)
1 can be written as

c
(D)
1 =

[
c

(D−1)
1

0

]
+ β−1

D c
(D−1),∗
1,D−1

[
|rD−1,D|2c

(D−1)
D−1

−r∗D−1,D

]
∈ CD, (51)

where c
(D−1)
1,D−1 denotes the first element of c

(D−1)
D−1 . Obviously, the first column of

C(D) and, thus, the Wiener filter w
(D)
d at step D depends upon the first column

c
(D−1)
1 at step D − 1 and the new entries of the covariance matrix rD−1,D and
rD,D. However, we also observe a dependency on the previous last column

c
(D−1)
D−1 . Hence, we have to find an expression for the last column of C(D) and

with Equation (48) we get

c
(D)
D = β−1

D

[
−rD−1,Dc

(D−1)
D−1

1

]
(52)

which only depends on the previous last column and the new entries of R
(D)
d .

So, we found an iteration that only updates two vectors c
(D)
1 and c

(D)
D at each

step and, moreover, the mean squared error at step D can be expressed with

the first entry c
(D)
1,1 of c

(D)
1 (cf. Equation 32):

MSE(D) = σ2
d0
− ‖rx0,d0‖

2
2c

(D)
1,1 . (53)

The iteration in Equation (51) and (52) only operates with scalars and vec-
tors. However, the scalars rD−1,D and rD,D (cf. Equation 45) are needed which
are quadratic forms with the N × N covariance matrix Rx0

. But the matrix
vector multiplication Rx0ti with O(N2) which can be found in the expression
for ri−1,i and ri,i has already been used for the Lanczos algorithm in Equation

(41) to find the orthonormal basis T (i). Thus, it is worth to include the Lanczos
recursion and the resulting algorithm is shown in Table 1, where we substituted

c
(i)
1 and c

(i)
i by c

(i)
first and c

(i)
last, respectively. The resulting computational com-

plexity for a rank D MSNWF is O(N2D), since a matrix vector multiplication
with O(N2) has to be performed at each step.

Note that the algorithm in Table 1 is just a version of the Conjugate Gradient
algorithm [HS52, Saa96]. In fact it is a direct version of the Lanczos algorithm
[Saa96] for linear systems.

A Wiener Filter with Pre-Filtering

The new observation signal after pre-filtering with a full-rank matrix T ∈ CN×N
reads as

z1[n] = Tx0[n] (54)

leading to a new mean squared error

MSEz1
= σ2

d0
−wH

z rz1,d0 − r
H
z1,d0

wz +wH
zRz1

wz, (55)
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choose desired MSE: σ2
ε

choose maximum dimension: D
t0 = 0, t1 = rx0,d0/‖rx0,d0‖2
u = Rx0

t1
r0,1 = 0, r1,1 = tH1 u

c
(1)
first = r−1

1,1, c
(1)
last = r−1

1,1

MSE(1) = σ2
d0
− ‖rx0,d0‖

2
2c

(1)
first

∆ = 1
for i = 2, . . . , D

if MSE(i) < σ2
ε then ∆ = i− 1; break

v = u− ri−1,i−1ti−1 − ri−2,i−1ti−2

ri−1,i = ‖v‖2
if ri−1,i = 0 then ∆ = i− 1; break
ti = v/ri−1,i

u = Rx0
ti

ri,i = tHi u

βi = ri,i − |ri−1,i|2c
(i−1)
last,i−1

c
(i)
first =

[
c

(i−1)
first

0

]
+ β−1

i c
(i−1),∗
last,1

[
|ri−1,i|2c

(i−1)
last

−r∗i−1,i

]
c

(i)
last = β−1

i

[
−ri−1,ic

(i−1)
last

1

]
MSE(i) = σ2

d0
− ‖rx0,d0‖

2
2c

(i)
first,1

T (D) = [t1, . . . , t∆]

w
(D)
0 = ‖rx0,d0‖2T

(D)c
(∆)
first

Table 1: Lanczos MSNWF

where the covariance matrix of the new observation signal z1[n] can be expressed
as

Rz1
= E{z1[n]zH

1 [n]} = TRx0
TH (56)

and the new crosscorrelation vector is

rz1,d0 = E{z1[n]d∗0[n]} = Trx0,d0 . (57)

If we apply the resulting Wiener filter (cf. Equation 8)

wz1
= R−1

z1
rz1,d0 = T−1,HR−1

x0
T−1Trx0,d0 (58)

to the new observation z1[n] to get the new estimate

d̂0,z1 [n] = wH
z1
z1[n] = rH

x0,d0
R−1
x0
T−1Tx0[n] = wH

0 x0[n], (59)

we observe that d̂0,z1 [n] = d̂0[n] and, thus, the estimate is unchanged. Conse-
quently, the new minimum mean squared error

MMSEz1
= σ2

d0
−wH

z1
R−1
z1
wz1

= σ2
d0
− rH

x0,d0
THT−1,HRx0

T−1Trx0,d0 (60)
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is the same as before (cf. Equation 9) which completes the proof of Theorem 1.

B Basis of MSNWF is Krylov Subspace

The Langrange function for the optimization in Equation (33) reads as

L(t, λ1, . . . , λi) =
1

2
(tHRx0

ti−1 + tHi−1Rx0
t)−

i−1∑
k=1

λkt
Htk − λi(t

Ht− 1). (61)

The derivation with respect to the complex conjugate of t must be zero, thus,

∂L(t, λ1, . . . , λi)

∂t∗
=

1

2
Rx0ti−1 −

i−1∑
k=1

λktk − λit = 0. (62)

Because t is orthogonal to tk, k = 1, . . . , i−1 and the filters tk are orthonormal,
i.e., tHk tl = δk,l, the Langrange multipliers can be expressed as

λk =
1

2
tHkRx0

tk, k = 1, . . . , i− 1, (63)

and

λit =
1

2
Rx0

ti−1 −
1

2

i−1∑
k=1

tHkRx0
ti−1tk =

1

2
(1N −

i−1∑
k=1

tkt
H
k )Rx0

ti−1. (64)

If we rewrite this expression by substituting the sum with a product of projection
matrices (cf. Equation 35), we end up with

t =
1

2λi

(
1∏

k=i−1

P k

)
Rx0

ti−1 (65)

and since λi has to be chosen to give a unit norm vector, we proved the result
in Equation (34).

C Tri-Diagonalization with Arnoldi Algorithm

The recursion formula of Theorem 2 in Equation 37 can be rewritten to get

hi+1,iti+1 =

(
1∏
k=i

P k

)
Ati, (66)

where we introduced the abbreviation

hi+1,i = ‖

(
1∏
k=i

P k

)
Ati‖2. (67)
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If the product of the projectors P k is converted to a sum and the orthogonality
of the ti is considered, Equation (66) reads as

hi+1,iti+1 = Ati −
i∑

k=1

tHkAtitk (68)

and by substituting
hk,i = tHkAti (69)

we end up with

Ati = hi+1,iti+1 +
i∑

k=1

hk,itk (70)

which is the i-th column of the matrix equality in Equation (38).
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