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1 Introduction

GPS is known to provide significant force enhancement capability. This force enhancement capability has been
demonstrated in every U.S. military operation since and including the Gulf War. The success of GPS in these
operations has led to an increasing DoD and Allied reliance on GPS. To date, over 200,000 GPS receivers
have been delivered to the DoD and its Allies. GPS uses include navigation targeting, sensor aiding, weapons
delivery, timing, and battlefield command/control.

The enemy threat is evolving in two areas: enemy use of GPS and the enemy’s ability to deny GPS to
the U.S. Worldwide military use of GPS is evolving due to the wide availability of commercial GPS receivers,
and the widespread knowledge of the force enhancement capabilities offered by GPS, differential GPS, and
satellite augmented GPS. The jamming threat is a concern because of the physical design of the GPS system.
The received power from the GPS satellites is approximately -157 dBW. Many jammers available on the arms
market today either already cover the GPS frequencies, or can be modified to do so. The primary focus of this
project is on the protection aspect. The goal is to develop an affordable GPS system-level solution that protects
the Department of Defense (DoD) and U.S. Allies operational use of GPS on a continual basis.

1.1 Problems, Difficulties, and Objectives

The success of GPS in Desert Storm and other operations has increased DoD’s commitment to equipping weapon
systems with GPS receivers. However, this commitment has been accompanied by a heightened awareness of
the potential vulnerabilities of GPS to both intentional and unintentional RF interference. Limited Electronic
Counter Counter Measures (ECCM’s) have been developed over the past two decades primarily based on the null
steering Controlled Reception Pattern Antenna (CRPA) and associated Antenna Electronics (AE). However, this
spatial filter technology is limited in its ability to cancel jammers due to component, device, and technology
limitations, as well as the increasing potential jamming threat. It is expected that the number of potential
military and commercial interferers will increase along with more and new jamming threats that will likely be
fielded in response to the U.S. fielding of numerous GPS equipped weapon systems.

The objective is to identify, evaluate, develop, and demonstrate innovative anti-jam (AJ) processors that are
effective against intentional and unintentional interference to GPS user equipment. This will entail a system-
level study of the trade-offs between protection performance versus hardware and computational complexity for
various integrated levels of processing. The primary end objective is to build and test a programmable anti-jam
processor brassboard to demonstrate higher, yet affordable AJ capabilities for GPS user equipment on navy
cruisers, aircraft, and airborne weapons systems.

The AJ processor should be capable of suppressing a mixture of interferer types including multiple broadband
Gaussian noise interferers. This type of interferer is a significant threat as it is possible to distribute the
jammer power across the 20.46 MHz bandwidth of the standard military P(Y) code signal centered at the GPS
L1 frequency, for example, at a low enough level that it is difficult to detect and identify, and yet the noise
background is increased enough to disrupt tracking of the GPS signal. This is particularly true if the enemy
distributes (spatially) a number of relatively low power broadband jammers over the combat arena.

The processor should also provide suppression capabilities against other types of interferers, both intentional
and inadvertent. These include including continuous wave (CW), swept CW, pulsed CW, phase shift keying
(PSK), pseudo-noise signals (20 MHZ bandwidth), and narrowband and wideband frequency modulated signals.
The interferers may be located anywhere within or adjacent to the 20.46 MHz bandwidths centered at the GPS
L1 frequency of 1575.42 MHz or the L2 frequency of 1227.60 MHz, and distributed anywhere over 27 steradians
of solid angle centered at zenith relative to the local horizontal plane of a GPS receiving antenna.

In addition to providing interference suppression, the processor should allow reception of GPS satellite
signals in a stressed environment by maximizing the signal power-to-interference plus noise power ratio (SINR)
for acquisition and tracking of the GPS signal. Various user environments will be addressed. A top-down
requirements study of the number of antennas and number of taps per antenna will be conducted under various
user environments ranging from a foot soldier in the field to a navy cruiser to a high performance fighter aircraft.

2 Overview of Research Team

The proposal team consists of a synergistic group of researchers from academia, industry, and a government
laboratory who have collaborated on pioneering research on space-time adaptive signal processing for applica-
tions in GPS, spread spectrum communications, and radar. The team members have strong ties to the Navy
through both SPAWAR and the Office of Naval Research. Members of the research team are listed in Table 1
along with their respective affiliations and areas of expertise related to this project.

A brief overview of each team member is provided below. The overview emphasizes a small sampling of prior
individual and collaborative contributions of the team members that will be utilized in the proposed research
on enhancing the reliability and and robustness of GPS.



Team Member Affiliation Expertise Related to Project

Michael D. Zoltowski | Purdue University Space-time adaptive interference cancellation for
GPS; compact arrays with polarization diversity

Laurence B. Milstein | University of California, San Diego | interference cancellation for spread spectrum com-
munications

Michael Honig Northwestern University Reduced-rank adaptive filtering for spread spec-
trum communications

J. Scott Goldstein SAIC Reduced-rank space-time adaptive processing
(STAP) for radar and GPS

James R. Zeidler SPAWAR Systems Center Nonlinear effects in stochastic gradient methods
and compact arrays

V. Balakrishnan Purdue University Optimal control, optimal subspace selection

Table 1: Research Team Composition and Areas of Expertise.

Dr. Michael Zoltowski, Professor of Electrical Engineering, Purdue University

Dr. Michael Zoltowski has been working on the problem of anti-jam protection for GPS since an industrial
contract with E-Systems in 1995 [Zo1-Zo2]. E-Systems built one of the earliest anti-jam spatial filters for GPS,
a seven element antenna array system. The principle used in the CRPA-AE system built by E-Systems (and
deployed on F-16 fighters) to cancel interference is power minimization. That is, prior to correlation, the GPS
signals are roughly 15 dB below the noise floor. Thus, a proven and widely used way to suppress interference
is to set the weight for the reference antenna to unity and find that set of weights which when applied to the
auxiliary antennas drives the output power of the beamformer as close to the noise floor as possible. This will
adaptively steer nulls in the directions of those interferers whose power levels are above the noise floor.

The primary problem with the CRPA-AE system is that the weights applied to the auxiliary antennas were
adjusted by analog means at RF. The vector modulators used did not allow precise control of the weight values.
In addition, analog power measurements were used to drive the weight adaptations; this has problems dealing
with pulsed jammers, among other things. Thus, the industry has moved towards digital solutions wherein the
output of each antenna is down-converted and sampled at a rate at least twice the 20.46 MHz bandwidth.

Power minimization remains a popular means of canceling interference in a pre-processing mode of operation
wherein standard GPS receivers are simply retro-fitted with a front-end device. With funding from the Air Force
Office of Scientific Research (AFOSR) through the New World Vista (NWV) Program Jam-Proof Area Deniable
Propagation, Dr. Zoltowski developed space-time extensions of the power minimization principle. These are
discussed in detail in Section 3.1. Dr. Zoltowski also developed a low-cost post-correlation blind adaptive
beamforming algorithm for GPS based on the cyclostationary nature of the BPSK signal obtained after de-
spreading the signal received from a given GPS satellite. The nulling capabilities of the algorithm have been
successfully demonstrated on a prototype GPS test-bed discussed in detail in Section 3.2.1.

Dr. Laurence Milstein, Professor of Electrical Engineering, University of California, San Diego

Dr. Milstein is a pioneering researcher and world renown expert in the area of spread-spectrum communica-
tions, in general, and interference suppression techniques for spread-spectrum communications, in particular. It
should be noted that from a signaling viewpoint, the GPS system is a classical direct-sequence spread spectrum
(DS-SS) or Code-Division Multiple Access (CDMA) communication system wherein each satellite is assigned a
unique specific Pseudo-Noise (PN) sequence as a code. Some of the algorithms proposed herein for the GPS
application have roots in interference suppression techniques developed for CDMA to effect reliable information
transfer over a wireless link.

A very important difference between the commercial CDMA problem and the GPS application is that
multipath pejoratively affects timing calculations and therefore should ideally be canceled. This is in contrast
to commercial CDMA where the goal is to achieve diversity gains by adding the multipaths up in phase. In
addition, the signals from the different GPS satellites arrive at the receiver roughly equal in strength. Thus,
Multi-User Access Interference (MUALI) is not an issue as it is in cellular CDMA systems; there is not a near-far
problem and the number of GPS satellites is far less than the length of the C/A code for a given GPS satellite.
The protection problem for GPS is combating the interference types listed towards the end of Section 1.1.

Dr. Michael Honig, Professor of Electrical Engineering, Northwestern University

Dr. Honig has worked on interference suppression techniques for CDMA for over fifteen years. Consider
the case of Minimum Mean Square Error (MMSE) estimation where the information symbols carried by the



code are estimated by weighting and summing chip-spaced samples encompassing at least the length of the
code. In [H3], Dr. Honig developed an adaptive algorithm for finding that weight vector which maximizes the
post-correlation SINR for a given “user” knowing only the code of that “user”, the P(Y) (or C/A) code for a
given GPS satellite in the field of view in our case here. One very important aspect of Dr. Honig’s algorithm
is that also cancels any delayed replicas of the desired GPS satellite’s signal caused by multipath propagation.
This is very desirable in the GPS application as discussed previously.

Another very important aspect of the algorithm developed by Dr. Honig in [H3] is that adaptation towards
the SINR maximizing weight vector is solely based on the known code for the desired “user.” In terms of the
GPS application, the point to be made is that the algorithm does not attempt to do beamforming through
effecting phase shifts derived from the azimuth and elevation coordinates of a given GPS satellite. It is difficult
and expensive to design antenna arrays calibrated well enough to achieve beamforming through geometrically
derived phase shifts. There are nonlinear effects amongst the individual antennas comprising the array, mutual
coupling, for example, and these nonlinear effects are generally time-varying. Thus, an adaptation scheme based
solely on the known code is highly advantageous.

However, there are a couple of problems with applying Dr. Honig’s algorithm in [H3] to the GPS problem.
First, synchronization has to be acquired before it can be applied. This synchronization has to take into account
the Doppler shift induced by the satellite motion. We will address the synchronization issue in the proposed
research. Another important problem is that the weight vector has to be at least the length of the code which
is on the order of thousands for either the C/A code (minimum length of 1023) or the P(Y) code portion of
the signal arriving from a given GPS satellite. Such a large weight vector implies a large computational burden
and very slow convergence to an operating point providing adequate interference suppression.

Dr. J. Scott Goldstein, Manager, Adaptive Signal Exploitation, SAIC

This is where the work of Dr. Goldstein comes into play. Over the past five years, Dr. Goldstein has worked
on reduced-rank adaptive filtering schemes that constrain the adaptive weight vector to lie in a low-dimensional
subspace. This substantially reduces the computational burden and dramatically speeds up convergence, if the
subspace is chosen properly. In linear Minimum Mean Square Error (MMSE) estimation, the optimum weight
vector is the solution to the Weiner-Hopf equation

R,.w =rg, (1)

where R, is the correlation matrix of the data and ry, is the cross-correlation vector between the data and the
desired signal. Prior work along the lines of dimensionality reduction restricted the weight vector w to lie in a
subspace spanned by the Principal Components (PC) or dominant eigenvectors of R,,. Although this speeds
up convergence, there is the intense computational burden of computing the dominant eigenvectors of R

Dr. Goldstein formulated an alternative to Principal Components analysis referred to as the Multi-Stage
Nested Weiner Filter (MSNWF) [G4]. The MSNWF represents a pioneering breakthrough in that it achieves
a convergence speed-up substantially better than that achieved with Principal Components at a dramatically
reduced computational burden relative to Principal Components. Intuitively speaking, achieving the best of
both worlds — faster convergence AND reduced computation — is made possible by making use of the information
inherently contained in both R,, and rg; in choosing the reduced-dimension subspace w is constrained to to
lie within. In contrast, Principal Components only makes use of the information embedded in R,

In MSNWF, there is no computation of eigenvectors. Through collaboration with Dr. Honig [H1], it has
been shown that MSNWTF constrains the weight vector to lie in the Krylov subspace spanned by { rg4;, RezCax,
R2 rys, ... , RP=1r;, }. Through theoretical analysis and extensive supporting simulations, MSNWF has been
shown to achieve near optimal SINR performance with a subspace of dimension roughly equal to D = 8 under
diverse operating conditions for two different applications: (1) cancellation of multi-user access interference
(MUALI) in asynchronous CDMA with flat fading [H1] and (2) cancellation of narrowband/wideband jammers
for GPS employing a power minimization based space-time pre-processor [Zo7]. The latter application will be
discussed in detail shortly. The fact that a subspace of dimension only equal to D = 8 provides near optimal
SINR performance in two very different application areas is an astounding result that highly motivates further
investigation into the efficacy of MSNWEF.

Dr. James Zeidler, Senior Scientist, Communications and Information Systems, SPAWAR

The aforementioned interference canceling algorithm of Dr. Honig based on the code of the desired “user”
can be implemented in terms of an LMS based adaptation which brings in the work of Dr. Zeidler. Dr. Zeidler
has demonstrated and analyzed nonlinear effects inherent in LMS weight adaptations [Zel]; LMS is a stochastic
gradient descent algorithm. These nonlinear effects are actually advantageous for the GPS application. One
result of these nonlinear effects is that they facilitate the formation of a sharper spectral notch to cancel a
narrowband interferer, for example, than that achievable with purely linear processing. This is very important
result: in the process of canceling interference, it is critical to minimize the resulting distortion to the GPS
signal as best as possible. Dr. Zeidler discovered the nonlinear effects inherent in LMS weight adaptation and



is to first researcher to analyze them. Dr. Zeidler has also researched nonlinear effects in compact arrays [Ze2].
This expertise is critical to the success of the project: it is important to be cognizant of the nonlinear effects
that occur in real antenna array systems and to recognize that optimal estimation schemes should invariably
involve nonlinear signal processing. Nonlinear quantization effects incurred in A/D conversion should also be
factored into algorithm design. Along these lines, the project will benefit from the Dr. Milstein has conducted
into finite word length effects on MMSE receiver performance for DS-CDMA [M7].

Dr. Venkataramanan Balakrishnan, Associate Professor of Electrical Engineering, Purdue Uni-
versity

Dr. Venkataramanan Balakrishnan has extensive experience in devising fast algorithms for large-scale prin-
cipal component analysis for problems in optimal control [B1]. His contribution to the project will be to address
real-time computational issues that are fundamental to implementation aspects. Dr. Balakrishnan has devel-
oped methods for computing a basis for a Krylov subspace, required for MSNWF as discussed previously, in
an efficient and numerically stable manner. Dr. Balakrishnan has also made several contributions in applying
optimization techniques, convex optimization in particular, to the efficient numerical solution of problems from
systems, control, communications and signal processing [B2-B6].

Institution Annual Budget | Breakdown of Annual Costs

Purdue University $205K 25% support of Michael Zoltowski

25% support of Venkataramanan Balakrishnan
50% support of 3 graduate research assistants

Northwestern University $100K 15% support of Michael Honig
50% support of 2 graduate research assistants
SAIC $200K 20% support for J. Scott Goldstein

1 man-year (mid-career) engineering support
Use of Maui High Performance Computer Center

University of California, San Diego | $100K 20% support of Laurence B. Milstein

50% support of 2 graduate research assistants
SPAWAR $145K 20% support for James Zeidler

.75 man-year (mid-career) engineering support
Total $750K Proposed Annual Budget

Table 2: Overview of Proposed Annual Budget.

3 Prior Work on Interference Cancellation for GPS

3.1 Power Minimization Based Space-Time Preprocessor

With funding from the Air Force Office of Scientific Research through the New World Vista Program Jam-
Proof Area Deniable Propagation (NWV Topic 20), Dr. Zoltowski developed space-time extensions of the power
minimization principle. The output of a space-time pre-processor is a weighted sum of chip-spaced samples
across both space and time as depicted in Figure 1.

In order for the GPS receiver to provide accurate navigation information, it is necessary to track the signals
from at least four different GPS satellites. Given the parallax error associated with GPS satellites near zenith
relative to the plane of the receiver array, it is desirable to track the respective signals from a larger number
of GPS satellites. It is desired then that the preprocessor “pass” unaltered as many GPS signals as possible.
Mathematically, it is desired that the multidimensional Fourier Transform of the space-time weights be as flat
in magnitude as possible.

A system based on space-only processing requires the placing of a spatial null in the direction of each
narrowband interferer as well as each wideband interferer. This leads to two problems. First, the maximum
number of interferers that can be spatially nulled is M — 1, where M is the number of antennas. In the GPS
application, M is small due to cost considerations, size limitations, power consumption, etc. Thus, cancellation
of narrowband interferers through spatial nulling consumes precious degrees of freedom. Second, if a narrowband
interferer and a GPS satellite are closely-spaced in angle, the formation of a null towards that interferer may drop
the gain in the direction of the GPS satellite so low that it is rendered useless. Again, due to the aforementioned
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Baseband

1&Q Demod
Jammer Type SNR AOA | AOA | Bandwidth
Ex.1 | Ex.2
Wideband -100 dBW | 20° 20° 20 MHz
Wideband -110 dBW | N/A 0° 20 MHz
Wideband -100 dBW | N/A | —20° 20 MHz
Wideband -100 dBW | N/A | —40° 20 MHz
GPS Wideband -110 dBW | N/A | —60° 20 MHz
X Receive Jammer Type SNR AOA | AOA | Freq. - L1
Baschand Narrowband | -100 dBW | 60° 60° -10 MHz
1.Q emod| | Narrowband | -100 dBW | 15° | N/A -5 MHz
Narrowband | -100 dBW | —10° | N/A 0 MHz
Narrowband | -100 dBW | —30° | N/A 5 MHz
Narrowband | -110 dBW | —55° | N/A 10 MHz

Table 3. Interference parameters for illustrative
simulations presented in Figure 2.

Figure 1. Power minimization based
joint space-time preprocessor.

economical considerations, the array aperture in the GPS application is typically on the order of one wavelength.
Thus, the interferer and the GPS satellite may be widely-spaced in terms of physical angle but closely-spaced
in terms of beamwidths.

In contrast, space-time processing only requires the formation of a “point-like” null in the multi-dimensional
spectrum at the frequency-angle coordinates of each strong narrowband interferer. A sharp line null, i. e.,
a spatial null across the entire frequency band, is required along the angular coordinates of each broadband
interferer. These nulling characteristics of power minimization based space-time pre-processing are illustrated
in Figures 2(c) and 2(f), which will be discussed shortly.

The disadvantage of space-time processing relative to space-only processing is the large dimensionality of
the space-time weight vector. This translates into a larger computational burden and slower convergence. As a
result, Dr. Zoltowski collaborated with Dr. Goldstein in applying the MSNWF to the power minimization based
space-time pre-processor [Z03-Zo7]. MSNWF constrains the space-time weight vector to lie in a low-dimensional
subspace, thereby speeding up convergence as well as reducing computational complexity. Illustrative simulation
results are presented to demonstrate the impressive capabilities of the MSNWF.

3.1.1 Illustrative Simulation Results

The simulation study employed N = 7 taps at each of M = 7 antenna elements equi-spaced along a line. Al-
though the prototype antenna system and GPS test-bed to be discussed shortly employs a circular array ge-
ometry, as do most practical anti-jam systems for GPS, a linear array was used in this illustrative simulation
example in order to have only one angular variable. This allows the use of a single mesh or contour plot to
display the multi-dimensional Fourier Transform of the space-time weights obtained from a given trial run.
Table 3 summarizes the parameters of the wideband and narrowband jammers simulated in each of two
different scenarios. The angles-of-arrival (AOA’s) listed are relative to broadside; the frequency listed for each
narrowband jammer is its offset relative to L1. The first scenario involved 5 narrowband jammers and one
wideband jammer. The attendant results are plotted in Figure 2(a) thru 2(c). The second scenario involved 1
narrowband jammer and five wideband jammers. The attendant results are plotted in Figure 2(d) thru 2(f). In
all cases, the first tap at the first antenna was constrained to be unity. Given the 20M H z receiver bandwidth
at each antenna, the noise floor was determined to be approximately -128 dBW. Recall the goal of power
minimization is to drive the output power of the space-time beamformer as close to the noise floor as possible.

Figures 2(a) and 2(d) plot average power output of the MSNWF as a function of subspace dimension
or rank of the dimensionality reducing matrix transformation. The subspace dimension at which MSNWF
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Fig. 2(b). Power Output vs Sample Support: 1 WB, 5 NB. Fig. 2(e). Power Output vs Sample Support: 5 WB, 1 NB.
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approximately achieves the performance of the full-dimension ideal (asymptotic) Weiner filter is roughly the
same in both scenarios, around 8. In contrast, Principal Components (PC) generally requires a subspace
dimension equal to the number of degrees of freedom taken up by the jammers to achieve the same output
power level. Each narrowband jammer takes up one degree of freedom. Each wideband jammer takes up N =7
degrees of freedom, where N is the number of taps per antenna. This is because the cancellation of a wideband
jammer requires a spatial null, implying a null across the entire 20.46 MHz spectrum at its AOA. In Scenario
1, the jammers take up 5x1 + 1x7 = 12 degrees of freedom; in Scenario 2, the jammers take up 1x1 + 5x7 =
36 degrees of freedom.

Figures 2(b) and 2(e) examine the space-time snapshot sample support necessary to effectively null the
jammers for each of the two scenarios simulated. The power output for each sample support level was averaged
over 250 Monte Carlo trial runs. The greatest differential in performance between the MSNWF and PC based
methods is observed in Figure 2(e) corresponding to Scenario 2. In this case, Figure 2(d) and the above
calculation dictate that PC needs to adapt in a 36-dimensional subspace, while the MSNWF need only adapt
in a 10-dimensional space. As a result, the MSNWF is able to converge more rapidly than PC.

At the same time, there is no computation of eigenvectors involved in the MSNWF. Only a small number
of simple matrix-vector multiplications are needed to determine the required low-dimensional Krylov subspace.
In contrast, the computation of the 36 eigenvectors needed by the PC method in Scenario 2 is a substantial
computational burden. Note, though, that PC does indeed converge more quickly than the full-dimension (49),
finite-sample Weiner filter. Note that Figure 2 also displays the performance of the Cross-Spectral Metric
(CSM) method [G6]. Similar to the PC method, the CSM method constrains the space-time weight vector to
lie in a subspace spanned by a subset of the eigenvectors of the space-time correlation matrix. The choice of
eigenvectors is dictated by a cross-spectral metric derived from the cross-correlation vector, rather than simply
choosing those eigenvectors associated with the largest eigenvalues. CSM yields improved performance relative
to PC, but its performance is not nearly as good as MSNWF and it too requires the computation of eigenvectors.

Figures 2(c) and 2(f) display contour plots of the magnitude of the multi-dimensional Fourier Transform
of the space-time weights obtained from the MSNWF with 40 space-time snapshots. For Scenario 1, Figure
2(c) displays a well-defined “point-null” at the angle-frequency coordinate of each narrowband jammer and a
well-defined “line-null” along the arrival angle of the wideband jammer. For Scenario 2, Figure 2(f) displays a
well-defined “point-null” at the angle-frequency coordinate of the one narrowband jammer and a well-defined
“line-null” along the respective arrival angle of each of the five the wideband jammers. As important, in both
cases the response of the space-time beamformer is observed to be relatively flat away from the null locations.

3.2 Post-Correlation Adaptive Beamforming

The advantage of the power minimization based space-time digital pre-processor is that it allows standard GPS
receivers to be simply retro-fitted with a front-end device. However, there are at least two problems with this
approach. First, as a practical matter, in order to truly avoid no modification to the GPS receiver itself, the
output of the space-time pre-processor needs to undergo both D/A conversion followed by mixing back up to
at least IF. Both Mitre and Mayflower market products that do just this. This is obviously counter-productive
but necessary in cases where a simple retro-fit is the mandated solution.

Second, the space-time filter effected via power minimization is not optimized for any one GPS satellite signal
in terms of maximizing the signal to interference plus noise ratio (SINR). The pre-processor simply attempts to
pass as many GPS signals unaltered as best as possible while rejecting strong interference. Again, though, the
GPS signals are very weak. It would certainly be nice to take advantage of the SNR gain possible with multiple
antennas equal to the number of antennas in the case of simple co-phasal beamforming.

Another problem with the power minimization based space-time digital pre-processor is that it requires
processing the data at the chip rate commensurate with the P(Y) code. As a low cost alternative, we have
also developed an algorithm that operates on the antenna outputs after they have been de-spreaded [Zo2]. In
this case, the spectrum is confined between DC and 50 Hz (after compensating for the Doppler shift due to the
satellite motion) so that the data may be processed at at just several times the bit rate using a low-cost general
purpose microprocessor or DSP chip. Recall that the 50 bits/sec data stream carriers the following information:
ephemeris data, clock corrections, satellite status, Almanac data, HandOver Words, etc.

A post-correlation adaptive beamforming algorithm yielding the maximum SINR for each GPS satellite
signal was developed in [Zo2]. The algorithm exploits the cyclostationarity of the aforementioned BPSK signal
obtained after despreading. The algorithm forms one cyclic spatial correlation matrix at the bit rate and one
at DC. It can be shown that the beamforming weight vector yielding the maximum SINR is equal to the largest
eigenvector of the difference between these two matrices. This maybe easily computed via a few power iterations.
Note that this represents a nonlinear signal processing algorithm.

A very important aspect of this algorithm is that it steers the beam and adapts the nulls based only on the
known code for the desired “user.” In terms of the GPS application, the point to be made is that the algorithm
does not attempt to do beamforming through effecting phase shifts derived from the azimuth and elevation
coordinates of a given GPS satellite. As discussed previously, it is difficult and expensive to design antenna
arrays calibrated well enough to achieve beamforming through geometrically derived phase shifts. There are



nonlinear effects amongst the individual antennas comprising the array, mutual coupling, for example, and
these nonlinear effects are time-varying for a variety of reasons. Thus, an adaptation scheme based solely on
the known code is highly advantageous.

Note that this algorithm does require a modified GPS receiver, not a simple retro-fit. Further, in its
current form, it does not work in a cold start-up situation since it requires synchronization to effect interference
cancellation. Finally, it also is currently formulated as a space-only scheme thereby placing spatial nulls in the
direction of each strong interferer whether it is narrowband or wideband. Methodologies for removing these
restrictions are part of the proposed research.

A prototype antenna array system was developed as a test-bed for demonstrating this algorithm. The
prototype presented below was built at the Polytechnic University of Madrid through a collaboration between
Dr. Zoltowski and an electromagnetics group there. A similar test-bed is being developed at Purdue University,
but using TI DSP chips and polarization diversity amongst the antenna elements.

3.2.1 Description of Prototype/Test-bed
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A block diagram of the receiver is shown in Figure 3. The antenna array consists of 6 elements equi-spaced
along a circle of radius equal to roughly half the wavelength at L1. Each antenna element is a low cost stacked
patch antenna. This configuration provides a wide bandwidth allowing the reception of INMARSAT as well as
GPS. To achieve circular polarization, a 90° hybrid is placed below each element. The antenna array subsystem
is pictured in Figure 6. Following that are six Low Noise Amplifiers (LNA) in MMIC. The RF outputs of the
six antennas are handed to six standard DS-SS receivers with the special feature that all of them are locked
to the same Local Oscillator (LO). These six spread spectrum receivers are basically composed of two stages:
downconversion from RF to IF, followed by digital down conversion from IF to BaseBand (BB). The design and
implementation of each of these two stages are described below.

Two ASIC’s are used in the implementation. The first one accomplishes the down conversion from RF to IF
at 4.32 MHz. The output of the last mixer is sampled at 5.71 MHz and coded with only 2 bits. The second ASIC,
a Digital Signal Processor (DSP), accomplishes the following tasks: down conversion to Base Band accounting
for the Doppler offset, the correlation with the code corresponding to each satellite, bit synchronization, and
the symbol decision relative to the BPSK constellation.



All the DSP involved in the IF-BB conversion is guided by a low cost microprocessor. The microprocessor
serves the second integrated circuit asynchronously, i.e., on demand. The same microprocessor carries out the
rest of the tasks needed in a GPS receiver which exceed that strictly necessary in a standard DS-SS receiver.
This includes the estimation of the satellite-user distance, acquisition of the Universal Coordinated Time (UCT),
decoding of the navigation message sent by the satellites and the computation of the users location. In addition
to the aforementioned tasks, the microprocessor has to control the Digital ASIC and perform the beamforming
using the weights computed from the aforementioned cyclostationarity based algorithm.

The digitalized signal is provided to the IF-BB stage at a rate of 5.71 MHz. Figure 3 outlines the structure
of the parallel processing carried out on these signals. The processing gain in a DS-SS system is proportional
to the ratio of the RF bandwidth to the bandwidth after the decorrelation with the desired GPS satellite code.
The RF bandwidth is fixed by the chip rate. It has to be at least twice the chip rate. The minimum bandwidth
the system should have after decorrelating or despreading is the bit rate (in base-band or twice that at IF).
Thus, a narrowband filter has to be placed after decorrelation to achieve a high processing gain that permits a
good suppression of low-level jammers and receiver noise, ideally having a bandwidth of 50 Hz.

On the other hand, the received frequency might be Doppler shifted up to + 5KHz away from the nominal
L1 (or L2) frequency due to GPS satellite motion. Therefore, the receiver has to have a very wide bandwidth
relative to the bit rate. Similar comments hold relative to the code: in order to achieve high resolution in the
location estimate provided by GPS, a very accurate estimation of the code delay is required. However, codes
with a delay larger than (or equal to) half a chip are suppressed by the correlator. To balance these opposing
requirements, the carrier and code recovery are done simultaneously in two stages: search and tracking.

The search stage consists of successive trials with different frequencies for the carrier and different delays
for the code. After the search process, the worst case is a local oscillator 500Hz away from the actual received
carrier and a generated code delayed less than half a chip with respect to the received code. Then the tracking
stages begin for both carrier and code. Since the modulation for GPS is BPSK, the tracking of the carrier
cannot be done with a regular PLL but with a Costas Loop. The tracking of the code delay is performed by a
DLL (Delay Lock Loop). The Costas Loop estimates the phase error as the result of an iterative search. The
phase error is measured by a phase detector which can be implemented in different ways in the digital receiver.
Although the more reasonable phase detector would be to compute atan(Q,/I,), the prototype uses the lower
cost approximation sign(Q,)I,. The design of the DLL follows a parallel optimization similar to the Costas
Loop. In this case, the input to the loop is I} + Q2 — I3 — Q3.

Both the tracking of the carrier and the code are governed by only one of the six receivers (Master) and the
phase of the carrier and delay of the code are updated identically in the other five receivers (Slaves). At this
point, the process in charge of the beamforming is fed with the I, + j@, complex envelope values at a rate of
one sample per millisecond. The complex envelope is available for each of the six antennas.

3.2.2 Proof of Concept Experiment

An experiment was conducted in which the experimental GPS receiver was programmed to receive a GPS signal
arriving at an elevation angle of 30 degrees with respect to the boresite axis of the array. After despreading, the
SNR of the GPS signal was roughly 10 dB per element. In addition, interference was intentionally injected by a
nearby radiating antenna at an angle of 20 degrees with respect to boresite, and at a power level 40 dB above the
desired GPS signal (prior to despreading.) The beamforming weights were determined via the aforementioned
cyclostationarity based post-correlation blind adaptive beamforming scheme. In order to give some idea of the
improvement achieved, in Figure 5 the eye diagram at the antenna element with the best SNR is compared
with that obtained at the beamformer output. It is clear that the jammer has been sufficiently rejected so as
to “open up the eye.”

Figure 6. Prototype stacked patch antenna array. Figure 7. Compact array used for DF at HF.



4 Preliminary Research Plan

Several innovative avenues of research were briefly discussed during the overview of the research team in Section
2. In particular, we propose to investigate the use of the algorithm developed by Dr. Honig in [H3] that adapts
towards the SINR maximizing weight vector based solely on the known code for the desired “user.” Recall that
this algorithm cancels multipath reflections. This algorithm has not been applied to the GPS problem to date.
The MSNWF of Dr. Goldstein will be used to make this algorithm amenable to real-time implementation. A
small sampling of other innovative avenues of research to be pursued as part of this effort are briefly outlined
below. Expanded discussion on these research themes along with additional innovations will be presented in
the full proposal. All facets of these research will progress in an integrated fashion. In addition, all candidate
algorithms will be tested in a prototype at Purdue as well as applied to GPS data obtained from other sources.

4.1 Space-Time Power Minimization & Post-Correlation Adaptive Beamforming

The problem with post-correlation adaptive beamforming based on cyclostationarity is that it requires synchro-
nization which is not achievable if strong interference is present when the GPS receiver is first turned on. In the
experimental result presented in Section 3.2.2; synchronization was achieved prior to turning on the interferer.
To avert this restriction, we propose to investigate the efficacy of a hybrid combination of power minimization
based pre-processing and cyclostationarity based post-correlation beamforming.

The idea is to create as many space-time power minimization based pre-processor outputs as there are
antennas. The m-th one will be created by constraining the weight value of the first tap at the m-th antenna
to be unity; the remaining weights are chosen as those which yield minimum output power. In practice, this
may be effected via an LMS adaptation, which has advantageous nonlinear effects, by using the output of the
first tap of the m-th antenna as a reference signal. This yields M linearly independent outputs, where M is
the number of antennas, each of which reduces the interference well enough to at least achieve approximate
synchronization, but none of which is optimized for any one GPS satellite. After correlating with the code of a
given GPS satellite at EACH of these M outputs, the cyclostationarity based algorithm may be applied to find
that linear combination of these M space-time power minimization based outputs yielding maximum SINR.

4.2 Beamforming with Polarization Diverse Arrays

As discussed previously, the formation of a null towards an interferer may drop the gain in the direction of a
particular GPS satellite so low that it is rendered useless. Again, due to the small array aperture in the GPS
application, an interferer and a GPS satellite may be widely-spaced in terms of physical angle but closely-spaced
in terms of beamwidths. Polarization diversity amongst the antenna elements is a way to combat this problem.

For example, consider the compact array pictured in Figure 7 used for direction finding (DF) and beamform-
ing at HF for electronic warfare applications. This vector sensor consists of three orthogonal loops and three
orthogonal dipoles, all co-located but having mutually orthogonal orientations. Dr. Zoltowski has developed
algorithms for DF and beamforming which exploit the polarization diversity inherent in this compact array [Zo6,
ZoT]. For example, it has been demonstrated that two signals coming from exactly the same radial direction
but with different polarization states may be extracted individually! In the GPS application, the beamforming
weights that yield maximum SINR for a given GPS satellite have a complex dependence on on the polarization
states and azimuth/elevation angles of both that satellite’s signal and the interfering signals. However, all of
the algorithms proposed for this project adapt either based on the known code of a given GPS satellite or on
the power minimization principle if in a pre-processing mode. The optimal weights are achieved automatically
without the need for estimating polarization states or azimuth/elevation angles.

The compact array pictured in Figure 7 was developed for operation at HF. What we primarily desire
for the GPS application (operating around 1.5 GHz) is polarization diversity amongst the antenna elements.
We will initially investigate a circular array geometry with adjacent antenna elements circularly polarized but
in opposite directions, clock-wise followed by counter clock-wise in sequence. Compact array geometries and
alternative realizations of polarization diversity will also be investigated exploiting the expertise of Dr. Zeidler.

4.3 Efficient and Numerically Stable Computation of Krylov Subspace for MSNWF

As discussed previously, Dr. Honig [H1] has shown that MSNWF constrains the weight vector to lie in the
Krylov subspace generated by R, and ry,. The general problem of computing a basis for the span of the matrix
[b Ab A% --- A""1b ] directly from the vectors {b, Ab, Ab, ..., A"~1b} becomes rapidly ill-conditioned,
as the vectors A’h become linearly dependent very quickly with 4 (this is simply a power iteration). Dr.
Balakrishnan will address this issue by exploring numerically stable methods for computing a well-conditioned
basis by applying Krylov subspace methods such as the Lanczos algorithm or the Arnoldi process. Another
approach towards stably computing a basis relies on noting that span [ b Ab A% .- A" lb } = span W,

where W, is the solution to the Lyapunov equation AW, AT — W, = A"bbT (AT)r — bb™.
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